Państwowa służba geologiczna Państwowa służba hydrogeologiczna

Ocena perspektywiczności geologicznej Polski pod względem możliwości odkrycia nowych złóż węglowodorów oraz przygotowanie materiałów na potrzeby postępowań prowadzonych w celu udzielenia koncesji węglowodorowych – etap IV.

UMOWA NFOŚiGW nr 307/2021/Wn-07/FG-sm-dn/D z dnia 21.04.2021 r. Zadanie 22.5004.2101.00.1

Pakiet danych geologicznych do postępowania przetargowego na poszukiwanie i rozpoznawanie złóż ropy naftowej i gazu ziemnego oraz wydobywanie ropy naftowej i gazu ziemnego ze złóż

Obszar przetargowy

"GRYFICE"

Opracował: Zespół pod kierunkiem mgr. Krzysztofa WAŚKIEWICZA i mgr Eweliny KRZYŻAK

Sfinansowano ze środków Narodowego Funduszu Ochrony Środowiska i Gospodarki Wodnej

Koordynator zadania: dr Krystian WÓJCIK

Warszawa, kwiecień 2021 r.

Skład zespołu

mgr Krzysztof WAŚKIEWICZ – kierownik zespołu mgr Ewelina KRZYŻAK – kierownik zespołu mgr Dariusz BRZEZIŃSKI mgr Martyna CZAPIGO-CZAPLA mgr Joanna FABIAŃCZYK dr Marek JASIONOWSKI mgr Anna KALINOWSKA dr Hubert KIERSNOWSKI mgr inż. Sylwia KIJEWSKA mgr Paulina KOSTRZ-SIKORA dr Aleksandra KOZŁOWSKA dr Olimpia KOZŁOWSKA mgr inż. Joanna KRASUSKA dr Marta KUBERSKA mgr Jowita KUMEK mgr Martyna LEŚNIAK mgr inż. Barbara MASSALSKA mgr inż. Rafał NASIŁOWSKI prof. dr hab. Tadeusz PERYT mgr Elżbieta PRZYTUŁA dr inż. Olga ROSOWIECKA inż. Leszek SKOWROŃSKI mgr Marcin TYMIŃSKI mgr Rafał WARUMZER mgr inż. Dorota WEGLARZ mgr inż. Michał WOROSZKIEWICZ dr Krystian WÓJCIK

Pakiet danych geologicznych dla obszaru przetargowego "Gryfice" został przygotowany w ramach umowy z NFOŚiGW na realizację zadania pn. "Ocena perspektywiczności geologicznej Polski pod względem możliwości odkrycia nowych złóż węglowodorów oraz przygotowanie materiałów na potrzeby postępowań prowadzonych w celu udzielenia koncesji węglowodorowych – etap IV". Zgodnie z art. 49.f Ustawy z dnia 9 czerwca 2011 roku Prawo geologiczne i górnicze (Dz. U. 2011 Nr 163 poz. 981, t.j. Dz. U. z 2021 r. poz. 1420, 2269) obszary przeznaczone do postępowania przetargowego ustala organ koncesyjny we współpracy z państwową służbą geologiczną. Obszar przetargowy "Gryfice" został wskazany do przetargu przez Ministra Środowiska na podstawie "Ogłoszenia o granicach przestrzeni dla których planowane jest wszczęcie postępowania przetargowego na koncesje na poszukiwanie i rozpoznawanie złóż węglowodorów oraz wydobywanie węglowodorów ze złóż w 2021 r. (5 runda przetargowa)" z dnia 26 czerwca 2020 r. (pismo znak: DGK-IV.4750.5.2020.MW).

Dane o budowie geologicznej i potencjale złożowym obszaru przetargowego "Gryfice" obejmują informację geologiczną będącą własnością Skarbu Państwa, dostępną w zasobach Narodowego Archiwum Geologicznego PIG-PIB oraz w ogólnodostępnych publikacjach naukowych. Źródła zamieszczonych informacji są zawarte w końcowej części pakietu danych geologicznych. Dane źródłowe, dotyczące w szczególności sejsmiki 2D i 3D, a także wyniki badań przeprowadzonych w otworach wiertniczych, karotaże oraz wyniki innych analiz istotnych z punktu widzenia poszukiwań naftowych, wraz z ich wyceną, zostały zebrane i są dostępne do wglądu w ramach "data roomu", zorganizowanego w Czytelni Narodowego Archiwum Geologicznego w Warszawie w trakcie trwania 5. rundy przetargowej.

spis treści	
. WSTĘP	5
1.1. INFORMACJE OGÓLNE O OBSZARZE PRZETARGOWYM	5
1.2. UWARUNKOWANIA ŚRODOWISKOWE Paulina Kostrz-Sikora, Olimpia Kozłowska, Joanna Krasuska	8
. BUDOWA GEOLOGICZNA	15
2.1. OGÓLNY ZARYS BUDOWY GEOLOGICZNEJ Rafał Nasiłowski	
2.2. TEKTONIKA Rafal Nasilowski	
2.3. STRATYGRAFIA Marek Jasionowski, Hubert Kiersnowski, Aleksandra Kozłowska, Ewelina Krzyżak, Marta Kuberska, Tadeusz Peryt, Olga Rosowiecka, Krzysztof Waśkiewicz, Krystian Wo	27 ójcik
2.3.1. DEWON	
2.3.2. KARBON	
2.3.3. PERM – CZERWONY SPĄGOWIEC	
2.3.4. PERM – CECHSZTYN	
2.3.5. TRIAS	
2.3.6. JURA	
2.3.7. KREDA	74
2.3.8. KENOZOIK	75
2.4. HYDROGEOLOGIA Elżbieta Przytuła, Rafał Warumzer	76
S. SYSTEM NAFTOWY Hubert Kiersnowski, Ewelina Krzyżak, Barbara Massalska, Tadeusz Peryt, Krzysztof V	
3.1. OGÓLNA CHARAKTERYSTYKA NAFTOWA OBSZARU PRZETAR 3.2. SKAŁY MACIERZYSTE	GOWEGO 84 85
3.3. SKAŁY ZBIORNIKOWE	94
3.4. SKAŁY USZCZELNIAJACE I NADKŁADU	
3.5. GENERACJA, MIGRACJA, AKUMULACJA I PUŁAPKI WĘGLOWO	DORÓW 108
. CHARAKTERYSTYKA ZŁÓŻ WĘGLOWODORÓW Dariusz Brzeziński, Martyna Czapigo-Czapla, Joanna Fabiańczyk, Anna Kalinowska, J	116 Martyna Leśniak,
Marcin Tymiński, Michał Woroszkiewicz	
4.1. ZŁOŻA WĘGLOWODORÓW W SĄSIEDZTWIE OBSZARU PRZETA	RGOWEGO 116
4.2. ZŁOŻE ROPY NAFTOWEJ REKOWO	
4.3. ZŁOŻE GAZU ZIEMNEGO WRZOSOWO	
4.4. ZŁOŻE GAZU ZIEMNEGO DARGOSŁAW	
4.5. ZŁOŻE GAZU ZIEMNEGO GORZYSŁAW N	
4.6. ZŁOŻE GAZU ZIEMNEGO GORZYSŁAW S	
4.7. ZŁOŻE ROPY NAFTOWEJ KAMIEŃ POMORSKI	
4.8. ZŁOŻE GAZU ZIEMNEGO TRZEBUSZ	
4.9. ZŁOŻE ROPY NAFTOWEJ WYSOKA KAMIEŃSKA	

5. OTWORY WIERTNICZE	157
Jowita Kumek, Leszek Skowroński, Krystian Wójcik	
5.1 INFORMACIE OCÓI NE	157
5.1. INFORMACJE OGOLINE	137
5.2. DENICE 1	159
5.3. BENICE 2	101
5.5 BENICE /K	105
5.6 BROICE IG-1	168
5.0. DROJEL 10 1	100
5.8 DOBROPOLE 1	173
5.9. DUSIN 1	176
5.10. GOSTYŃ 2	179
5.11. GRYFICE 1	182
5.12. GRYFICE 2	185
5.13. GRYFICE 3	188
5.14. JARSZEWO 1	190
5.15. KALEŃ 1	192
5.16. KAMIEŃ POMORSKI 3	192
5.17. KAMIEŃ POMORSKI 7	195
5.18. KAMIEŃ POMORSKI 13	197
5.19. LASKA 2	199
5.20. REKOWO 1	203
5.21. REKOWO 2	205
5.22. REKOWO 3	207
5.23. REKOWO 4	209
5.24. REKOWO 6	210
5.25. SKARCHOWO 1	213
5.26. STRZEŻEWO 1	215
5.27. ŚWIERZNO 1	218
5.28. ŚWIERZNO 2	220
5.29. ŚWIERZNO 4	223
5.30. ŞWIERZNO 5	226
5.31. SWIERZNO 9	228
5.32. WRZOSOWO 1	230
5.33. WRZOSOWO 2	234
5.34. WRZOSOWO 3	238
5.35. WRZOSOWO 8	239
5.36. WRZOSOWO 9	244
6. SEJSMIKA	249
Sylwia Kijewska	
7. BADANIA GRAWIMETRYCZNE, MAGNETYCZNE I MAGNETOTELLURYCZNE Olga Rosowiecka	255
7.1. BADANIA GRAWIMETRYCZNE	255
7.2. BADANIA MAGNETYCZNE	
7.3. BADANIA MAGNETOTELLURYCZNE	
8 PODSUMOWANIE	761
6. I ODSOTVIO W AINIL. Krystian Wóicik	204
	• • •
9. MATERIAŁY ZRODŁOWE	266

1. WSTĘP 1.1. INFORMACJE OGÓLNE O OBSZARZE PRZETARGOWYM

Obszar przetargowy "Gryfice" ma powierzchnię 747,96 km² i obejmuje część bloków koncesyjnych na poszukiwanie i rozpoznawanie złóż węglowodorów oznaczonych numerami 62, 82, 83 (Fig. 1.1). Koordynaty geograficzne punktów załamania granic obszaru przetargowego zostały zdefiniowane w Tab. 1.1, a położenie tych punktów ilustruje Fig. 1.2.

N	Współrz	edne PL-92
Nr punktu	X	Y
1	691055,17	219674,19
2	692737,14	221619,12
3	693771,09	224785,26
4	695846,05	233241,52
5	697800,71	239098,78
6	689034,77	237808,88
7	688700,54	245043,47
8	687684,41	264181,99
9	684723,09	259134,45
10	673948,18	266614,09
11	675598,09	237055,20
12	673865,95	223383,30
13	673409,40	219824,29
14	677185,11	213499,78
15	687174,95	217946,87
16	685637,43	221987,20
17	688367,49	223047,42
18	689636,16	219042,50
z wyłączeniem p	oligonu zdefiniov	vanego punktami
	19–23:	
19	679335,20	223870,95
20	679746,86	224268,31
21	679040,45	224478,55
22	678251,69	224485,63
23	678251,81	224056,04

Tab. 1.1. Współrzędne punktów załamania granic obszaru przetargowego "Gryfice" (Fig. 1.1 i 1.2).

W latach 1999-2014, wschodnia częśc obszaru przetargowego była objęta koncesją PGNiG S.A. "Gryfice" nr 12/99/p. W części zachodniej, w latach 2008–2015, ta sama firma posiadała koncesję "Kaleń" nr 28/2008/p. Z kolei północny fragment obszaru przetargowego w latach 2008-2013 był objęty koncesją "Rybice", na której prace prowadziła firma Blue Energy.

Na obszarze przetargowym "Gryfice" i w jego bliskim sąsiedztwie znajduje się 8 złóż węglowodorów: Rekowo, Wrzosowo, Dargosław, Gorzysław N, Gorzysław S, Kamień Pomorski, Trzebusz i Wysoka Kamieńska. Obszar "Gryfice" jest perspektywiczny dla poszukiwania konwencjonalnych akumulacji ropy naftowej i gaz ziemnego w utworach karbonu i czerwonego spągowca. Dodatkowym, konwencjonalnym celem poszukiwawczym, są utwory permu – cechsztynu (dolomitu głównego).

 \rightarrow Fig. 1.1. Położenie obszaru przetargowego "Gryfice" na mapie koncesji na poszukiwanie, rozpoznawanie oraz wydobywanie węglowodorów oraz podziemne bezzbiornikowe magazynowanie substancji i podziemne składowanie odpadów według stanu na 30.11.2021 r.

Fig. 1.2. Punkty załamania granic oraz pozycja obszaru przetargowego "Gryfice" na tle sąsiednich koncesji według stanu na 30.11.2021 r.

1.2. UWARUNKOWANIA ŚRODOWISKOWE

Położenie administracyjne

Obszar przetargowy "Gryfice" jest położony w granicach administracyjnych województwa zachodniopomorskiego, na terenach należących do 11 gmin (w tym 4 wiejskich i 7 miejsko-wiejskich), przy czym najwiekszy udział w jego powierzchni mają 3 z nich: Gryfice, Świerzno i Kamień Pomorski. Będące siedziwładz gminnych, miasta Gryfice bami i Kamień Pomorski są jednocześnie największymi ośrodkami urbanizacyjnymi na obszarze przetargowym. Gryfice, położone w południowo-wschodniej części terenu, pełnią funkcję lokalnego ośrodka administracyjnego, a także usługowo-przemysłowego, finansowego, oświatowego, a ponadto są istotnym węzłem komunikacyjnym, w którym przecinają się trzy drogi wojewódzkie i linia kolejowa. Miasto ma powierzchnię 12,4 km² i jest zamieszkiwane przez 16 415 osób (dane BDL GUS stan na 31.12.2019 r.). Z kolei, położony przy zachodniej granicy obszaru przetargowego, Kamień Pomorski, jest ośrodkiem o ponad 1000-letniej historii, którą dokumentują liczne zabytki architektoniczne, w tym m.in. odbudowany ratusz gotycki w centrum rynku, XVIII-wieczna budowla ryglowa, zachowane fragmenty średniowiecznych murów miejskich z Brama i Baszta Wolińska oraz, będące pomnikiem historii, Konkatedra Najświętszej Marii Panny, św. Jana Chrzciciela i św. Faustyna wraz z osiedlem katedralnym. Kamień Pomorski ma status uzdrowiska, specjalizującego się w leczeniu chorób ortopedyczno-urazowych, neurologicznych, reumatologicznych, kardiologicznych i nadciśnienia oraz dolnych dróg oddechowych. Na terenie uzdrowiska znajdują się złoża torfu i wód leczniczych, które są wykorzystywane w zabiegach oferowanych kuracjuszom.

Sieć komunikacyjna

Dostępność komunikacyjną opisywanego obszaru zapewnia przebiegająca przez jego wschodnie krańce droga ekspresowa S6 (odcinek Płoty – Kiełpino), która docelowo ma być główną arterią łączącą największe miasta północnej Polski: Szczecin, Kołobrzeg, Koszalin, Słupsk, Gdynię oraz Gdańsk, a także

stanowić część międzynarodowego korytarza transportowego pomiędzy obwodem kaliningradzkim, Litwą i krajami zachodniej Europy. Poza krótkim odcinkiem S6, na obszarze przetargowym "Gryfice" znajdują się drogi skategoryzowane jako wojewódzkie, powiatowe i gminne. Drogami wojewódzkimi są: DW nr 109 relacji Płoty - Mrzeżyno (w granicach obszaru ma ona przebieg zbliżony do południkowego i łączy Brodniki, Gryfice Górzyce), DW nr 105 (prowadzaca z Kamienia Pomorskiego przez Świerzno i Gryfice do Brojc), DW nr 110 (biegnaca z Gryfic przez Przybiernówko w kierunku Cerkwicy), DW nr 107 (łącząca w granicach opisywanego obszaru miejscowości Dziwnówek, Wrzosowo, Kamień Pomorski, Rekowo, i Dobropole), biegnący wzdłuż wybrzeża odcinek DW nr 102 komunikujący Dziwnów z Rewalem, a także DW nr 103 prowadząca z Kamienia Pomorskiego przez Świerzno do Cerkwicy i dalej do Trzebiatowa oraz DW nr 106 na odcinku Rzewnowo – Niemica.

Elementem infrastruktury komunikacyjnej są również linie kolejowe. Biegnąca przez wschodnią część obszaru "Gryfice" linia nr 402 (Koszalin – Goleniów) jest linią pasażerską, niezelektryfikowaną, jednotorową, skategoryzowaną jako drugorzędna. Z kolei przez zachodnią część opisywanego terenu przebiega linia nr 407 (Wysoka Kamieńska–Kamień Pomorski), drugorzędnej kategorii, jednotorowa, zelektryfikowana. Przez obszar przetargowy przebiega także trasa Nadmorskiej Kolei Wąskotorowej.

Dostępność komunikacyjną opisywanego terenu – z racji jego położenia nad Bałtykiem – należy rozpatrywać także w kontekście możliwości wykorzystania dróg wodnych.

Infrastruktura techniczna

Jedynym elementem krajowego systemu infrastruktury techniczno-inżynieryjnej, znajdującym się w zasięgu obszaru przetargowego, jest, przebiegająca przez jego południowowschodnie krańce, nitka magistralnego gazociągu przesyłowego DN 700 relacji Szczecin– Gdańsk (odcinek Płoty – Karlino).

W granicach obszaru przetargowego "Gryfice" nie występują sieci elektroenergetyczne najwyższych napięć (według danych PSE S.A.). Najbliższe tego typu elementy infrastruktury ulokowane są za południowo-zachodnią granicą charakteryzowanego terenu, w rejonie Wolina (linia 220 kV pracująca na 110 kV). Dane publikowane przez operatorów krajowych sieci przesyłowych (Gaz-System S.A. i PSE S.A.) nie wskazują, aby w najbliższej perspektywie czasu w granicach opisywanego terenu planowano prace inwestycyjne związane z budową nowych sieci przesyłowych.

Infrastruktura wodna

Przy południowej granicy opisywanego terenu znajduje się sztuczny zaporowy Zbiornik Rejowice, utworzony na rzece Rega, na którym zbudowano elektrownię wodną (MEW Rejowice). W Kamieniu Pomorskim znajduje się także port jachtowy. Marina Kamień Pomorski jest podzielona na dwie części: Marinę Sezonową, zlokalizowaną w centrum miasta przy al. Mistrzów Żeglarstwa, oraz Marinę Techniczną, usytuowaną 300 m na południe od Mariny Sezonowej, przy ul. Wilków Morskich, gdzie mieszczą się warsztaty, hangary, place do zimowania i pozostała infrastruktura techniczna obiektu.

Położenie fizycznogeograficzne

Zgodnie z regionalizacją fizyczno-geograficzną Polski (Kondracki, 2013) obszar przetargowy "Gryfice" znajduje się w całości w zasięgu makroregionu Pobrzeże Szczecińskie. Wśród jednostek niższej rangi – mezoregionów – największy udział w jego powierzchni ma Równina Gryficka (75%). Jest ona falistą wysoczyzną morenową, wznoszącą się do około 40–50 m n.p.m. W jej krajobrazie, dzięki żyznym glebom brunatnoziemnym, dominują pola uprawne. Towarzyszą im występujące w pradolinie, na piaszczystym podłożu, bory sosnowe.

Na północy Równina Gryficka sąsiaduje z Wybrzeżem Trzebiatowskim, które ciągnie się wąskim pasem od cieśniny Dziwny aż po Kołobrzeg i obejmuje swoim zasięgiem 24% powierzchni obszaru przetargowego. W środkowej części mezoregionu występują podcinane przez fale kępy morenowe – w Trzęsaczu nad urwiskiem nadmorskim można podziwiać południową ścianę gotyckiego kościoła, który wzniesiony w odległości około 1,8–2 km od brzegu morza, pośrodku wsi, uległ zniszczeniu w wyniku procesów abrazyjnych. Wybrzeże Trzebiatowskie w sezonie letnim jest miejscem rekreacji i wypoczynku, znajduje się tu wiele miejscowości turystycznych, w tym: Dziwnów, Pobierowo, Trzęsacz i Rewal. Mezoregiony Uznam i Wolin oraz Równina Goleniowska mają marginalny udział w powierzchni obszaru przetargowego – łącznie w ich zasięgu znajduje się mniej niż 1% opisywanego terenu.

Formy ochrony przyrody

Część terenów położonych w obrębie obszaru przetargowego podlega ochronie prawnej reana mocy przepisów lizowanej Ustawv o ochronie przyrody (t.j. Dz.U. z 2020 r., poz. 55 z późn. zm.). Wśród obszarowych form chronionych na opisywanym terenie zinwentaryzowano m.in. leśny rezerwat przyrody Bór Samliński im. Henryka Zięciaka, który znajduje się przy południowej granicy obszaru i zajmuje znikoma powierzchnie (<1%) w stosunku do powierzchni całkowitej obszaru przetargowego. Podobnie jest w przypadku położonego nieco bardziej na zachód, ale w dalszym ciągu przy południowej granicy opisywanego wydzielenia, zespołu przyrodniczo-krajobrazowego Dolina Stawny. Zajmuje on mniej niż 1% obszaru przetargowego i kontynuje się poza jego granice. Relatywnie większy teren jednostki "Gryfice" jest natomiast włączony w obszary sieci Natura 2000 - na opisywanym terenie znajdują się 3 obszary specjalnej ochrony (OSO) utworzone w opraciu o tzw. "Dyrektywę Ptasią" (PLB 320001 Bagna Rozwarowskie, PLB320011 Zalew Kamieński i Dziwna oraz PLB320010 Wybrzeże Trzebiatowskie) oraz 3 specjalne obszary ochrony (SOO) wyznaczone w ramach tzw. "Dyrektywy Siedliskowej" (PLH 320018 Ujście Odry i Zalew Szczeciński, PLH320049 Dorzecze Regi i PLH320017 Trzebiatowsko-Kołobrzeski Pas Nadmorski). Łącznie zajmują one prawie 27% powierzchni obszaru przetargowego. Wśród innych form chronionych należy wymienić 4 użytki ekologiczne, 1 stanowisko dokumentacyjne oraz 50 pomników przyrody, które – z jednym wyjątkiem (grupy drzew) – są rosnącymi pojedynczo drzewami.

Poza opisanymi powyżej formami chronionymi, za cenne przyrodniczo należy uznać zwarte areały gruntów ornych wysokich klas bonitacyjnych występujące niemal na całym obszarze przetargowym. Poza nimi, w dolinie Stuchowskiej Strugi, pomiędzy Gryficami a Świerznem, w dolinie Niemicy, pomiędzy wsią o tej samej nazwie a Grębowem, w dolinach Grzybnicy i Wołczenicy i w północnej części obszaru przetargowego: w dolinie rzeki Świniec oraz na terenach przyle-Kanałów Strzeżewo-Radawka głych do i Lądkowskiego, wyraźnie zanaczają się też łaki wykształcone na glebach pochodzenia organicznego. W strukturze zagospodarowania terenu uwagę zwracają także kompleksy leśne - stanowią one część opisanych powyżej obszarów prawnie chronionych. Niewielka ich część - na mocy rozporządzenia Ministra Ochrony Środowiska, Zasobów Naturalnych i Leśnictwa z dnia 25 sierpnia 1992 r. (Dz.U. z 1992 r., Nr 67, poz. 337) - posiada status lasów ochronnych.

Złoża kopalin

Charakteryzowany obszar jest również miejscem prowadzenia działalności wydobywczej i przetwórczej. W jego granicach znajduje się 16 złóż kopalin udokumentowanych i zestawionych w bazie danych MIDAS (Tab. 1.2; z granic obszaru przetargowego wyłączono złoże ropy naftowej Rekowo). Udokumentowano przede wszystkim złoża kruszyw naturalnych (9 złóż), ale także piasków kwarcowych do produkcji cegły wapienno-piaskowej (1 złoże), torfów (2 złoża), gazu ziemnego (1 złoże) i wód leczniczych (2 złoża) oraz termalnych (1 złoże)

W ramach prac, wykonywanych na potrzeby Szczegółowej Mapy Geośrodowiskowej Polski, w granicach obszaru przetargowego wyznaczono kilkadziesiąt zróżnicowanych pod względem powierzchni obszarów perspektywicznych występowania piasków oraz piasków i żwirów, a także torfów. Obszary prognostyczne wyznaczono wyłącznie dla torfów – są one zlokalizowane m.in. na północ i na południe od Świerzna, a także pomiędzy wsiami Grądy i Otok, oraz we wschodniej części opisywanego terenu, w rejonie Przybiernowa.

Uwarunkowania środowiskowe obszaru przetargowego "Gryfice" zostały podsumowane w Tab. 1.3 i na Fig. 1.3.

ID złoża	Nazwa złoża	Typ kopaliny
2762	Wicimice	piaski kwarcowe d/p cegły wappiaskowej
4035	Gostyniec	kruszywa naturalne
4732	Wrzosowo	gazy ziemne
4835	Janowo	kruszywa naturalne
6340	Kamień Pomorski	torfy
7942	Kamień Pomorski	wody lecznicze
7944	Dziwnówek Józef	wody lecznicze
8957	Janowo-1	kruszywa naturalne
9341	Przybiernówko-Grądy II	torfy
16751	Trzęsacz GT-1	wody termalne
16830	Tąpadły	kruszywa naturalne
18456	Wicimice I	kruszywa naturalne
19670	Jatki	kruszywa naturalne
19711	Przybiernówko I	kruszywa naturalne
19744	Ciećmierz	kruszywa naturalne
19807	Prusinowo	kruszywa naturalne

Tab. 1.2. Złoża kopalin na obszarze przetargowym "Gryfice" według bazy MIDAS, 2021.

	KARTA UWARUNKOWAŃ ŚRODOWISKOWYCH OBSZADU PRZETARCOWECO – CRVEICE"								
	OBSZARU	nazwa i numer arkusza	Miedzywodzie 75 D	Miedzywodzie 75 Dziwnów (Pobierowo)					
1.	LOKALIZACJA OBSZARU	mapy w skali	76. Wolin 114. Kan	nień Pomorski 115.					
	PRZETARGOWEGO NA MAPIE	1:50 000	Grvfice 116	Broice 117					
		województwo	zachodnio	pomorskie					
		powiat	kami	eński					
		gmina i % powierzchni	Świerzno (18,72%	b), Wolin (5,12%),					
	POŁOŻENIE	zajmowanej w granicach	Kamień Pomo	rski (26,39%),					
2.	ADMINISTRA CV INE	obszaru przetargowego	Dziwnów (3,11%),	Golczewo (3,09%)					
		powiat	gryf	icki					
			Płoty (4,78%), k	Karnice (5,60%),					
		gmina	Rewal $(1,67\%)$,	Brojce $(6,60\%)$,					
	DECIONALIZACIA EIZVOZNO	maleroragion	Dobrzożo Szozoo), Grynce $(24, 17\%)$					
	CEOCRAFICZNA	maktoregion	Pównina Goleniowsk	(313.2-3)					
3.	(WG KONDRACKIEGO 2013	mezoregion	Gryficka (313 33) Wyhrzaża Trzebiatow						
	ORAZ SOLONA i in., 2018)	mezoregion	skie (313.22). Uzna	m i Wolin (313.21)					
			691055.17	219674.19					
			692737,14	221619,12					
			693771,09	224785,26					
			695846,05	233241,52					
			697800,71	239098,78					
		689034,77	237808,88						
			688700,54	245043,47					
			687684,41	264181,99					
			684723,09	259134,45					
	WSPÓŁRZĘDNE PUNKTÓW WYZNACZAJĄCYCH GRANICE OBSZARU PRZETARGOWEGO	układ PI 1002 [V. V]	673948,18	266614,09					
			675598,09	237055,20					
4			673865,95	223383,30					
4.		$u_{\text{Mau}} = 1.1772 [\Lambda, 1]$	677185.11	219624,29					
OBSZARU PRZETARGOWEGO			687174.95	217946.87					
			685637.43	221987.20					
			688367,49	223047,42					
			689636,16	219042,50					
			z wyłączeniem polig	onu zdefiniowanego					
			punk	tami:					
			679335,20	223870,95					
			6/9/46,86	224268,31					
			679040,45	224478,55					
			678251.81	224485,05					
	POWIERZCHNIA OBSZARU		070231,01	224030,04					
5.	PRZETARGOWEGO	[km²]	747	,96					
_			poszukiwanie i rozp	oznawanie złóż wę-					
6.	CEL KONCESJI		glowodorów ora	z wydobywanie					
			Węglowodo	row ze złoż					
			perm – czerwo	ony spagowiec					
7.	WIEK FORMACJI ZŁOŻOWEJ		perm ezerwe	, ii j sp480 ii i oo					
			perm – cechsztyr	n/dolomit główny					
			(dodatkowy cel j	poszukiwawczy)					
	PRZYRODNICZE OBSZARY	[tak/ nie]							
	PKAWNIE CHKONIONE:	[]							
	rezerwaty	jeśli "tak" to: nazwa	nie Pór Samliński im Henryka Ziaciska (*10/)						
8.	narki krajobrazowe	obszaru oraz %	bor Samiinski im. Henryka Zięciaka (<1%)						
	obszary chronionego krajobrazu	powierzchni zajmowanej	nie						
		w granicach obszaru	PLH320018 Uiście Odry i Zalew Szczeciń-						
	Natura 2000 – SOO	przetargowego	ski (7%), PLH320049 Dorzecze Regi (2%).						

	KARTA UWARUNKOWAŃ ŚRODOWISKOWYCH							
	OBSZARU	PRZETARGOWEGO "G	RYFICE"					
			PLH320017 Trzebiatowsko-Kołobrzeski					
		_	Pas Nadmorski (<1%)					
			PLB320001 Bagna Rozwarowskie 5%),					
	Natura 2000 – OSO		PLB320011 Zalew Kamieński i Dziwna					
	11aaaa 2000 050		(9%), PLB320010 Wybrzeże Trzebiatow-					
			skie (11%)					
	zespoły przyrodniczo-		Dolina Stawny (<1%)					
	-krajobrazowe		4					
	uzytki ekologiczne		4					
	pomniki przyrody	[tak (ilosc)/ nie]	50					
	stanowiska dokumentacyjne		1					
9.	GLEBY CHRONIONE	[tak/ nie]	tak					
10.	KOMPLEKSY LESNE	[tak/ nie]	tak					
		[tak (powierzchnia,%						
11	LASY OCHRONNE	powierzchni zajmowanej	29.4 km^2 (3.9%)					
		w granicach obszaru	29,7 km $(3,970)$					
		przetargowego)/ nie]						
		[tak (ilość)/ nie]						
	OBIEKTY DZIEDZICTWA	grodzisko	11					
12.	KULTUROWEGO	osada	5					
	Zabytki archeologiczne	cmentarzysko	2					
		inne	4					
13	STREFY OCHRONY	[tak/nie]	tak					
13.	UZDROWISKOWEJ		tak					
14.	TERENY ZAGROŻONE	[tak/ nie]	nie					
	PODTOPIENIAMI	[tean me]						
	UDOKUMENTOWANE ZŁOŻA	[tak (rodzai kopaliny)/	tak (kruszywa naturalne, piaski kwarcowe					
15.	KOPALIN	niel	d/p cegły wappiaskowej, wody lecznicze,					
			wody termalne, torfy, gazy ziemne)					
	OBSZARY PROGNOSTYCZNE							
16	I PERSPEKTYWICZNE	[tak (rodzaj kopaliny)/	tak (niaski niaski i zwiry torfy)					
10.	WYSTĘPOWANIA KOPALIN	nie]	tak (plaski, plaski i zwiry, torry)					
	(z wyłączeniem węglowodorów)							
17.	SIECI PRZESYŁOWE GAZU	[tak/ nie]	tak					
18	PODZIEMNE MAGAZYNY	[tak/nie]	nie					
10.	GAZU		IIIC					
19.	DATA WYPEŁNIENIA KARTY		09.03.2021 r.					
20	ZESTAWIENIE	Douling Va	strz Sikora Joanna Krasuska					
20.	I OPRACOWANIE DANYCH	Paulina Kosurz-Sikora, Joanna Krasuska						

Tab. 1.3. Karta uwarunkowań środowiskowych obszaru przetargowego "Gryfice".

→Fig. 1.3. Mapa środowiskowa obszaru "Gryfice".

Mapa środowiskowa obszaru "GRYFICE" Environmental map of the "GRYFICE" area

1000 m 0 1 2 3 4 5 6 7 8 9 km hormont

Varodowy Fundusz Ochrony Środowiska i Gospodarki Wodnej

Ministerstwo Klimatu i Środowiska

Objaśnienia do mapy środowiskowej obszaru Gryfice Legend of the ervironmental map of the "GRYFICE" area

(opracowano na podstawie bazy MGśP z zasobów PIG-PIB*)

(based on MGśP database*)

ZŁOŻA KO ICH WYS	OPALIN ORA TEPOWANIA	Z PERSI	PEKTYV	VYIP	ROGN	OZY		STREFA SHORE ZONE	WYBRZEŻA MORSKIE	EGO	
MINERAL DEPO	OSIT AND AREA'S, PROGNOST	IC AREA'S FO	DR DOCUME	NTING DE	POSITS				tor wodny		
	piaski i żwiry	E	X.X.X	piaski k	warcowe				fairway granica strefy ochrony brzegu		
	sands and gravels	Ľ		quartz sa	ands				border of shore protection zone granica wód wewnetrznych		
	sands			peat					border of internal waters		
4688	identyfikator z baz	zy Midas złoż	a małokonfli	iktowego					breakwater		
0400	ID from the MIDAS d	atabase of the	small environr	mental con	flict				groyne		
2493	ID from the MIDAS da	atabase of the	small environr	nental con	flict			370	kilometraż linii brzegowej shoreline mileage		
	granica złoża deposit boundary							⊕	stacje pomiarowe IMGW hydrologic and weather monitoring sta	tions	
	granica obszaru p	rognostyczne	ego					ጌ	porty morskie		
	granica zweryfikov	wanego obsz	aru prognos	stycznego)			.t.	przystanie morskie		
	granica obszaru p	ea boundary	znego					_			
	perspective area bou	indary	-						VA PRZYRODY, KRAJO	JBRAZU I ZABY I KOW KULI TURAL HERITAGE	URY
•	perspective area bou	indary							grunty orne (klasy I-IVa użytków	rolnych)	
GÓRNICT	WO I PRZET	WÓRST	wo ко	PALIN	1				arable land (class I-IVa)		
MINING AND M	IINERAL PROCESSIN	iG							łąki na glebach pochodzenia org meadows on organic soils	anicznego	
	boundary of the minin	ng area							lasy		
	granica terenu go boundary of the mini	rniczego ng terrain							lasy ochronne		
0	obszar i teren gón area and terrain of th	niczy złoża c le deposit with	• powierzchn area ≤ 5 ha	ii≤5 ha					protected forests		
●p	punkt niekoncesjo	onowanej ek	sploatacji ko	paliny (p	- rodzaj l	(opaliny)			zieleń urządzona urban greenery		
Symbol kopali	point of unlicensed e	xpioitation or a	Symbol ied	pe of mine Inostki str	rai) atvorafica	nei:		····	granice terenów zarządzanych p	rzez Generalną Dyrekcję Lasów Państwow	/ych
Mineral symbol:			Symbol of th	e stratigrap	phic unit:				granica parku narodowego, nazy	al Directorate of the State Forests va parku	
G - natural gas	19		Q - Quater	nary					boundary of national park, park name) parku parodowego	
R - crude oil	virv		Cr - Cretace	eous					boundary of buffer zone of landscape	parka narodowogo park	
pz- sands and g	gravels		J Jurassi	ic					boundary of nature and landscape cor	nplex; complex name	
p - piaski	Is		C Karbo	n n				т	granica rezerwatu przyrody lub c (L - leśny, T - torfowisko, Fn - fa	obszaru ochrony ścisłej (os) w obrębie park unistyczny)	u narodowego
t - torfy			Carbon	hiferous					boundary of natural reserve or strict n granica strefy ochronnei (otuliny	ature reserve within national park (L - forests, T - p) rezerwatu przyrody	eat, Fn - faunistic)
Wim- wody leczi curative. mi	nicze, mineralne,								boundary of buffer zone of natural res	erve	
Wt- wody term thermal wat	ters								Natura 2000 ecological network; area	ogicznej Natura 2000; kod obszaru code	
MINING AND MINERAL PROCESSING granica observe update and mining area granica cobserve update set in the deposit with area < 5 ha area and terrain of the deposit with area < 5 ha area and terrain of the deposit with area < 5 ha area and terrain of the deposit with area < 5 ha area and terrain of the deposit with area < 5 ha area and terrain of the deposit with area < 5 ha area and terrain of the deposit with area < 5 ha area and terrain of the deposit with area < 5 ha area and terrain of the deposit with area < 5 ha area and terrain of the deposit with area < 5 ha area and terrain of the deposit with area < 5 ha area and terrain of the deposit with area < 5 ha area and terrain of the deposit with area < 5 ha area and terrain of the deposit with area < 5 ha area and terrain of the deposit with area < 5 ha area and terrain of the deposit with area < 5 ha area and terrain of the deposit with area < 5 ha area and terrain of the deposit with area < 5 ha area and terrain of the deposit statigraphic unit. Symbol does that area < 5 ha area and terrain of the statigraphic unit. Symbol does th			\mathbb{N}	rezerwat przyrody o powierzchni boundary of natural reserve with area	< 5 ha (N - przyrody nieożywionej) < 5 ha (N - inimate nature)						
SURFACE AND	undergroung WA	ATERS	szego rzedu					▲ ⁿ	pomnik przyrody żywej (n - liczb animate nature monument (n - numer	a obiektów) of objects)	
	water divide of first ra	ank							użytek ekologiczny		
· ·	water divide of secor	nd rank	igo rzędu					۵	użytek ekologiczny o powierzchr	ni ≤ 5 ha (n - liczba obiektów)	
	granica działu wo water divide of third i	dnego trzeci	ego rzędu					Ŧ	ecological area with area < 5 ha (n - n	umber of objects)	
	granica działu wo	dnego czwa	tego rzędu						documentation site of inanimate natur	e	
	arapica dównego	n rank	ód podziemu	aveb wra:	z z iego n	umerem		\mathbf{v}	geostanowisko o znaczeniu regi geosite of regional importance	onalnym	
 102 	principle boundary a	quifer with ID n	umber	iyon wida	2 Jogo II	uneren		\bigcirc	geostanowisko o znaczeniu loka	Inym	
· · · · · · · ·	granica strefy och boundary of "C" prot	nronnej "C" u ected zone wit	zdrowiska nin resort					<u>ж</u> п	stanowisko archeologiczne (n - l	iczba obiektów)	
	granica strefy och	nrony pośred	niej ujęcia w	/ód					archeological site (n - number of object	its)	
	granica obszaru o	orniczego el	ry ksploatacii v	vód leczn	iczych m	ineralnych i termal	nvch	ADDITIONAL IN			
<u> </u>	boundary of curative	, mineral and t	nermal waters	mining are	a				granica państwa country border		
*	granica terenu gó boundary of curative	miczego eks , mineral and t	ploatacji wó	d lecznic mining ter	zych, mir rain	eralnych i termalny	ych		granica powiatu		
\sim	zbiornik retencyjn	iy, nazwa zbi	omika						granica gminy, miasta		
	ujęcie wód podzie	emnych o wy	dajności ≥ 5	i0 m³/h				S3	oś autostrady lub drogi szybkieg	o ruchu	
Q	(k - komunalne, p underground water in	 przemysło ntake with capa 	we, Q - wieł acity ≥ 50 m³/h	k ujmowa 1 (k - munic	ipal, p - inc	orów) lustrial, Q - age of exp	loited rocks	ZIWNÓW	siedziba urzędu gminy, miasta		
¥	ujęcie wód lecznie	czych i minei	alnych				<u> </u>	211111011	commune or town office headquarter		
	ujęcie wód termal	Inych						*****	natural gas pipeline network		
	thermal water intake	drowisko						*****	high-voltage power network	szych hapięc	
	l	na Location of tende	arkuszach f	1:50 000 with a scale	- e of 1:50 00	0	Pala	tonio obozoru l	konsesuinere Cadies		
				1077	43		r010.	a tle podziału a	administracyjnego		
				Trzebia- tów N	Kołobrzeg		Locatio	n of tender area on	administrative division map	woj. ZACHODNIOPOMORSKIE powiat kamieński powiat koło	brzeski
		75 Miedzy	76 77	78	79		ORZE BALT	YCKIL	- ζ · _ ζ»	12 - gm. ko 2 - gm. Dziwnów 3 - gm. Sie	iobrzeg emyśl
		wodzie (Pob	erowo, Niechorz	®Trzebiatóv	¢ Gościno	M		2 2	· ~ ~ ~	4 - gm. Świerzno powiat łobe. 5 - gm. Golozewo 15 - gm. Golozewo	ski
		114 1 Kar	15 nień 116	117	118 Sławo		P	Et .	Mar and to Tre	powiat gryficki 6 - am Rewal	SNU
		Woin Por	orski Gryfice	Brojce	borze		2.	En c		7 - gm. Karnice 8 - gm. Trzebiatów	
		152 1 Racimierz C	53 154	155	156	L		- FX	<u>}</u>	9 - gm. Gryfice 10 - gm. Broice	
		-300// 100/2 GO/C	2.5 morvowogan	- rtesko	NUSINOW		Zal	5	2 m S As	11 - gm. Ploty	

* Wykozystano informacje udostępniane przez: RZGW, GDOŚ, GDLP, IMGW-PIB, NID, PSE, GAZ-SYSTEM, urzędy morskie oraz z baz danych PSG i PSH w PIG-PIB * Data source: RZGW, GDDŚ, GDLP, IMGW-PB, NID, PSE, GAZ-SYSTEM, maritime offices and from database of PIG and PSH

2. BUDOWA GEOLOGICZNA 2.1. OGÓLNY ZARYS BUDOWY GEOLOGICZNEJ

W budowie geologicznej obszaru przetargowego "Gryfice" można wyróżnić platformę zachodnioeuropejską (paleozoiczną; Nawrocki i Becker, 2017) oraz jej pokrywę permskomezozoiczną i kenozoiczną. Podłoże platformy paleozoicznej było fałdowane podczas kolejnych orogenez neoproterozoiczno-paleozoicznych, po czym ścięte erozyjnie, głównie pod koniec karbonu (z końcem wizenu lub najpóźniej w najwcześniejszym namurze; Żelichowski, 1987) i na początku permu. W obrębie obszaru wyróżnia się cztery piętra strukturalne (Fig. 2.1-2.2): kaledońskie (niższy paleozoik) - pasmo fałdowe pomorskokujawskie, waryscyjskie (dewon - karbon) podłoże podpermskie, laramijskie – pokrywa permsko-mezozoiczna, oraz najmłodsze piętro kenozoiczne (Żelaźniewicz i in., 2011).

Na powierzchni obszaru przetargowego "Gryfice" występują utwory kenozoiczne, które zalegają niezgodnie na skałach permu i mezozoiku, zdeformowanych w wyniku staroalpejskich (laramijskich) ruchów tektonicznych. Obszar "Gryfic" znajduje się na terenie antyklinorium środkowopolskiego (Fig. 2.1; Nawrocki i Becker, 2017). W świetle nowej regionalizacji tektonicznej Polski, ta jednostka jest określana jako antyklinorium śródpolskie, a obszar "Gryfice" znajduje się w jego pomorskim segmencie (Żelaźniewicz i in., 2011). W obrębie analizowanego obszaru wyróżnia się bloki tektoniczne "Gryfic" oraz (w jego zachodnim skraju) "Wolina". Rozdziela je strefa uskokowa Adler-Kamień Pomorski (Dadlez, 1990). W planie podkenozoicznym dominuje antyklina Kamienia Pomorskiego, o przebiegu NW-SE, na wschodzie obszar zahacza zaś o synkline Trzebiatowa. Rowy synsedymentacyjne o zgeneralizowanym przebiegu NN-SSW są związane ze strefami rozłamowymi posiadajacymi założenia W starszym podłożu (Dadlez, 1980). Pietro laramijskie obszaru "Gryfice" ilustrują:

- mapa kompleksu cechsztyńsko-mezozoicznego (Dadlez i in., 1998; Fig. 2.3),
- mapa geologiczna Polski bez utworów kenozoiku (Dadlez i in., 2000; Fig. 2.4),
- mapa ścięcia na poziomie -3000 m n.p.m. (Kotański, 1997; Fig. 2.5),

- mapa strukturalna powierzchni podcechsztyńskiej (Kudrewicz, 2008; Fig. 2.6),
- przekroje geologiczne (Fig. 2.8).

W planie podpermskim na obszarze "Gryfice" wystęują struktury waryscjskie – zapadlisko przedgórskie zbudowane ze skał karbonu (Fig. 2.1; Nawrocki i Becker, 2017). Poniżej, zapewne w ciągłości sedymentacyjnej, występują utwory dewonu zalegające na staropaleozoicznym podłożu kujawsko-pomorskiego pasma fałdowego (Fig. 2.2; Żelaźniewicz i in., 2011). Obszar przetargowy jest położony na zachód od TTZ, w zachodniej części strefy TESZ (Matyja, 2006). Budowę piętra waryscyjskiego ilustrują:

- mapa głównych jednostek tektonicznych Polski w planie podwaryscyjskim (Żelaźniewicz i in., 2011; Fig. 2.2),
- mapa strukturalna powierzchni podpermskiej (Kudrewicz, 2008; Fig. 2.7),
- mapa geologiczna Pomorza Zachodniego bez utworów młodszych od pensylwanu (Matyja, 2006; Fig. 2.9),
- mapa geologiczna podłoża permu Pomorza Zachodniego (Waksmundzka i Buła, 2017; Fig. 2.10.A),
- mapa geologiczno-strukturalna podłoża permu Pomorza Zachodniego (Lech, 2001; Fig. 2.10.B).

W dalszej części rozdziału przedstawiono zarys tektoniki oraz charakterystykę poszczególnych wydzieleń stratygraficznych. Do opisu stratygrafii i litologii obszaru przetargowego "Gryfice" wykorzystano dane z otworów położonych w jego granicach. Są to: Benice 1, 2, 3, 4K, Brojce IG-1, Chomino 1, Dobropole 1, Dusin 1, Gostyń 2, Gryfice 1, 2, 3, Jarszewo 1, Kaleń 1, Kamień Pomorski 3, 7, 13, Laska 2, Rekowo 1, 2, 3, 4, 6, Skarchowo 1, Strzeżewo 1, Świerzno 1, 2, 4, 5, 9, Wrzosowo 1, 2, 3, 8, 9. Ich lokalizację można znaleźć na Fig. 5.1.

Fig. 2.1.A. Położenie obszaru przetargowego "Gryfice" na szkicu głównych jednostek tektonicznych Niżu Polskiego na powierzchni podkenozoinczej (Nawrocki i Becker, 2017). **B.** Położenie obszaru przetargowego "Gryfice" na szkicu głównych jednostek waryscyjskiego planu tektonicznego (Nawrocki i Becker, 2017).

Fig. 2.2. Położenie obszaru przetargowego "Gryfice" na tle mapy głównych jednostek tektonicznych Polski pod pokrywą permsko-mezozoiczną i kenozoiczną (Żelaźniewicz i in., 2011). Czerwonym konturem zaznaczono granice obszaru przetargowego.

Fig. 2.3. Obszar przetargowy "Gryfice" na tle mapy tektonicznej kompleksu cechsztyńsko-mezozoicznego (Dadlez i in., 1998; zmodyfikowane).

Fig. 2.4. Obszar przetargowy "Gryfice" na tle mapy geologicznej Polski bez utworów kenozoiku (Dadlez i in., 2000; zmodyfikowane).

Fig. 2.5. Obszar przetargowy "Gryfice" na tle mapy ścięcia na poziomie -3000 m n.p.m. (Kotański, 1997; zmodyfikowane).

Fig. 2.6. Obszar przetargowy "Gryfice" na tle mapy powierzchni podcechsztyńskiej (Kudrewicz, 2008; zmodyfikowane).

Fig. 2.7. Obszar przetargowy "Gryfice" na tle mapy powierzchni podpermskiej (Kudrewicz, 2008; zmodyfikowane).

Fig. 2.4.A

Fig. 2.8. Przekroje geologiczne ilustrujące wgłębną budowę obszaru przetargowego "Gryfice" (Dadlez, 2001; Mazur i in., 2005; zmodyfikowane). Lokalizacja przekrojów na Fig. 2.4.

Fig. 2.9. A. Obszar przetargowy "Gryfice" na tle mapy geologicznej rejonu Pomorza Zachodniego i obszarów sąsiadujących bez utworów pensylwanu i młodszych (Matyja, 2006; zmodyfikowane). **B.** Powiększenie Fig. A.

Fig. 2.10. A. Obszar przetargowy "Gryfice" na tle mapy geologicznej Polski bez utworów permu i młodszych (Waksmundzka i Buła, 2017; zmodyfikowane). **B.** Obszar przetargowy "Gryfice" na tle mapy geologiczno-strukturalnej podłoża permu Pomorza Zachodniego (Lech, 2001; zmodyfikowane).

2.2. TEKTONIKA

W waryscyjskim planie strukturalnum, obszar przetargowy "Gryfice" jest położony na platformie zachodnioeuropejskiej (paleozoicznej; Nawrocki i Becker, 2017; Żelaźniewicz i in., 2011; Fig 2.1-2.2). Na obszarze przetargowym można wyróżnić cztery strukturalne: kaledońskie, wayscyjskie, laramijskie i kenozoiczne. Najstarsze z nich - piętro kaledońskie, nie zostało rozpoznane wiertniczo, a informacje o nim można zaczerpnąć z otworu L2-1/87, który znajduje się tuż za jego północną granicą, w części morskiej Bałtyku. W planie poddewońskim, obszar "Gryfice" znajduje się prawdopodobnie w pomorskokujawskim paśmie fałdowym kaledonidów (Żelaźniewicz i in., 2011; Fig. 2.2). W planie waryscyjskim obszar "Gryfice" jest położony w północnej części karbońsko-dewońskiego zapadliska przedgórskiego waryscydów (Żelaźniewicz i in., 2011; Nawrocki i Becker, 2017; Fig. 2.1–2.2). Wyżej, niezgodnie zalega kompleks permsko-mezozoiczny (staroalpejski) antyklinorium środkowopolskiego (Nawrocki i Becker, 2017; Fig. 2.1.A). Obszar przetargowy jest zlokalizowany w jego północno-zachodniej części, w niewielkiej odległości do niecki szczecińsko-gorzowskiej, będącej częścią większej struktury - synklinorium szczecińsko-miechowskiego (Nawrocki i Becker, 2017; Fig. 2.1.A). Całość niezgodnie przykrywają osady kenozoiku.

Waryscyjskie piętro strukturalne, tworzące zapadlisko przedgórskie, przykrywa najprawdopodobniej pasmo fałdowe kaledonidów (Fig. 2.2), zaś od góry jest ograniczone podpermską powierzchnią erozyjną (Fig. 2.7; Fig. 2.10.B). Głebokość omawianej powierzchni stropowej jest zróżnicowana. Najpłycej jest pogrzebana w północno-zachodniej części obszaru, osiągając do 3000 m p.p.t., zaś w kierunku jego centralnej i wschodniej części zaczyna się pogłębiać do 3700 m p.p.t. (Lech, 2001; Fig. 2.10.B). Na powierzchni podpermskiej, w granicach obszaru "Gryfice, w jego północno-zachodniej części, odsłaniają się skały karbonu górnego, natomiast na południu i wschodzie karbonu dolnego, gdzie również wyłaniają się wychodnie dewonu górnego (Fig. 2.9; Fig. 2.10.B). W dzisiejszym obrazie strukturalnym tworzą one struktury pozytywne, układające się linijnie w kierunku NW-SE. Skały paleozoiku są poprzecinane uskokami o kierunkach od NW-SE (kierunek dominujący) po NNE-SSW (Fig. 2.10.B). Przyjmuje się, że kompleks dewońsko-karboński posiada budowę pochylonych bloków/półrowów, powstałych w warunkach ekstensji powaryscyjskiej (Antonowicz i in., 1993, 1994), powiązanej z założeniem sedymentacyjnego basenu niemiecko-polskiego (Kiersnowski i Buniak, 2006). Do zuskokowania i w efekcie powstania zrębów Kołobrzegu, Gryfic i Wolina dochodziło etapami, początkowo w późnym dewonie, a najintensywniej w późnym karbonie (por. Dadlez, 1978, 1990; Matyja, 2006; Fig. 2.8).

Na wychylonych utworach karbonu niezgodnie zalegają skały wulkaniczne i osadowe facji czerwonego spągowca. Miąższość poszczególnych wydzieleń jest zróżnicowana i zwiększa się w kierunku południowym i południowo-zachodnim. Największa miąższość wulkanitów czerwonego spagowca, około 500 m - występuje w południowozachodniej części obszaru (Wagner i in., 2008), natomiast skały górnego czerwonego spagowca najbardziej miaższe są na południu obszaru, gdzie osiągają około 150 m, a na półocnym-wschodzie nie występują wcale (Wagner i in., 2008). Na powierzchni spągu permu zaznaczają się elewacje w okolicach Kamienia Pomorskiego – na głębokość około 3200 m, a także w okolicach Gryfic, na głębokości około 3500 m. Spąg permu jest najbardziej pograżony, na około -3900 m n.p.m., przy wschodniej i południowej granicy obszaru przetargowego (Kudrewicz i in., 2008; Fig. 2.7). Podcechsztyńska powierzchnia strukturalna na obszarze "Gryfice" rozciąga się między -2700 m n.p.m na północnym-zachodzie (wyniesienie Kamienia Pomorskiego) i opada w kierunkach od NE-SW osiągając -3800 m n.p.m na wschodzie obszaru (Kudrewicz, 2008; Fig. 2.6). Powierzchnia stropu czerwonego spagowca jest rozcięta uskokami o dominującym przebiegu od NW-SE do NNW-SSE, którym lokalnie towarzyszą podrzędne uskoki poprzeczne o kierunku NE-SW. Część nieciągłości, przebijających strop czerwonego spagowca, ma swoja kontynuacje wyżej, przemieszczając dolną część cechsztynu, i wygasa w cechsztyńskich solach. Strefy przyuskokowe oraz antykliny towarzyszące tym dyslokacjom mogą stanowić potencjalne pułapki strukturalne węglowodorów.

Główną strukturą regionalną planu permsko-mezozoicznego jest antyklinorium środkowopolskie z podrzędną synkliną Trzebiatowa na wschodzie i antyklina Kamienia Pomorskiego na zachodzie, rozciągającymi się w kierunku NW-SE (Dadlez, 1980; Dadlez i in., 2000; Fig. 2.4). Na obszarze przetargowym fałdy te są łagodne, szerokopromienne i asymetryczne (Fig. 2.8). Antyklina Kamienia Pomorskiego posiada dwie elewacje: zachodnią w okolicy Kamienia Pomorskiego i centralna w okolicy Gryfic (Dadlez i in., 2000; Fig. 2.4). Główne strefy uskokowe o przebiegu NW-SE ograniczają blok Gryfic od zachodu strefą Adler - Kamień Pomorski od bloku Wolina, zaś od wschodu strefa Trzebiatowa od bloku Kołobrzegu (Fig. 2.8). Wymienione fałdy są związane z propagacją uskoków odwróconych wspomnianych stref dyslokacyjnych, które posiadają przedpermskie założenie (Fig. 2.8). Pozostałe uskoki na obszarze przetargowym przebiegają od NWW-SEE po NNE-SSW, niektóre z nich występują jedynie w części wydzieleń kompleksu permsko-mezozoicznego (Fig. 2.6). Związane są z nimi trzy rowy synsedymentacyjne, występujące na obszarze przetargowym. Centralny rów, w strefie Trzebieszowa - Koplina (Dadlez, 1990), oraz wschodni, w strefie Unibórz - Błotno, rozciągają się w kierunku NNE-SSW, a zachodni rów, we wspomnianej już strefie Adler - Kamień Pomorski, jest łukowato wygięty na wschód, występują w nim też diapiry solne, częściowo przebijające kompleks mezozoiczny (Dadlez i in., 2000; Fig. 2.4, Fig. 2.8).

Obszar przetargowy podlegał subsydencji termicznej od późnego permu do późnej kredy, leżąc w obrębie basenu polskiego (Dadlez i in 1995; Mazur i in., 2005). Przez cały mezozoik regionalne trendy osiadania były zdominowane przez osiową część basenu polskiego w kierunku północno-wschodnim z niewielkimi zaburzeniami wynikającymi z bocznych ruchów soli, zapoczątkowanych w triasie (Mazur i in., 2005). Od późnej kredy po wczesny paleogen trwał etap inwersji basenu polskiego, powodujący wypiętrzenie i erozję jego osiowej części, tworząc regionalna strukture antyklinorium środkowopolskiego. Dzisiejszy układ strukturalny powstał w wyniku działalności procesów kompresyjnych, które spowodowały odmłodzenie uskoków w podłożu paleozoicznym i przeważnie skutkowały wyniesieniem ich wschodnich skrzydeł (Mazur i in. 2005). Pewne znaczenie miały też ruchy poślizgowe skierowane w kierunku NW-SE i SE-NE (Mazur i in. 2005). Analiza danych sejsmicznych z obszaru Bałtyku na północ od obszaru przetargowego wskazuje na aktywność głównych stref uskokowych w triasie i jurze jako elementów ekstensyjnych, a do ich reaktywacji i odwrócenia w reżimie kompresyjnym doszło w późnej kredzie (Mazur i in. 2005; Fig. 2.8). W wyniku propagacji uskoków powstały nad nimi asymetryczne fałdy. Z przytoczonych danych wynika również, że oddzielenie soli cechsztyńskich od podłoża nie miało większego wpływu na struktury inwersyjne na tym obszarze.

Stropowa powierzchnia ograniczającą piętro permsko-mezozoiczne jest podkenozoiczna powierzchnia erozyjna. Prawie na całej powierzchni obszaru przetargowego odsłaniają się skały osadowe jury, z wyjątkiem północno-wschodniej części, gdzie, w synklinie Trzebiatowa, zachowały się skały kredy (Fig. 2.4). W północno-zachodniej (okolice Kamienia Pomorskiego) oraz południowowschodniej (okolice Gryfic) części odsłaniają się skały jury dolnej, otoczone przez jurę środkowa. Utwory jury górnej występuja jedynie w południowo-zachodniej części obszaru oraz na wschodzie przy synklinie Trzebiatowa. Strop kompleksu permsko-mezozoicznego przebijają uskoki związane ze wspomnianymi trzema rowami synsedymentacyjnymi (Dadlez i in., 2000; Fig. 2.4).

2.3. STRATYGRAFIA 2.3.1. DEWON

Rozprzestrzenienie i miąższość

Na obszarze przetargowym "Gryfice" utwory dewonu rozpoznano w 3 otworach wiertniczych (Fig. 2.9; Fig. 2.11), na głębokości:

- Brojce IG-1: 3674,5–4252,0 m,
- Strzeżewo 1: ?3890,0–4521,0 m,
- Świerzno 4: 3195–3238,5 m.

Żaden z wymienionych otworów nie przewiercił utworów dewonu, najstarsze nawiercone warstwy należą do żywetu.

Miąższości przewierconego profilu dewonu wynosi od 43,5 m do ?631,0 m. Matyja (2006) zwraca jednak uwagę, że miąższość samego tylko górnego dewonu może dochodzić do 1300 m w okoliacah Brojcy i Gorzysławia.

Litologia i stratygrafia

Jak dotąd, najbardziej kompletny obraz litologii, stratygrafii oraz przestrzennych relacji facjalnych utworów dewnu Pomorza Zachodniego przedstawiła Matyja (1993, 2006, 2008, 2009; Fig. 2.11–2.12). Spośród licznych jednostek litostratygraficznych wyróżnionych przez autorkę, na obszarze "Gryfic" można zidenftfikować zaledwie trzy formacje: żywecką formację chojnicką, frańskie ogniwa unisławskie i strzeżewskie formacji człuchowskiej oraz fameńską formację krojancką (Fig. 2.11).

Formacja chojnicka

Osady formacji chojnickiej (Fig. 2.11–2.12.) występują prawdopodobnie w otworach Strzeżewo 1 (gł. 4518,0–4521,0 m) i Brojce IG-1 (gł. 4025,0–4252,0 m), choć noszą one cechy przejściowe między typowymi dla formacji chojnickiej a wyszeborskiej. W otworze Brojce IG-1 utwory te wykształcone w postaci piaskowców wapnistych, przeławiconych iłowcami marglistymi i marglami z nielicznymi szczątkami organicznymi brachiopodów. W otworze Strzeżewo 1, w stropie formacji dominują piaskowce. Nieliczne konodonty oraz miospory znalezione w obrębie w innych otworach w formacji chojnickiej sugerują, że należy ona do wyższej części środkowego i do górnego żywetu (Matyja, 2009).

Formacja człuchowska

W obrębie formacji człuchowskiej Matyja (1993, 2006, 2009) wydzieliła 5 ogniw (Fig. 2.11), ale tylko dwa najniższe – ogniwa unisławskie i strzeżewskie (Fig. 2.11-2.12) wyzdają się występować w otworach Strzeżewo 1 (gł. ?3890,0-4518,0 m) i Brojce IG-1 (gł. 3674,5-4025,0 m). Oba ogniwa reprezentują fran i charakteryzują się obecnością cienosadów koławicowych reprezentowanych głównie przez iłowce wapniste z wkładkami mniej lub bardziej marglistych wapieni mikrytowych, które czasem odznaczają się teksturą gruzłową i obecnością głowonogów, tentakulitów, małży, ramienionogów, konodontów i małżoraczków entomozoidowycyh (Matyja, 2006).

Formacja krojancka

Osady formacji krojanckiej (Fig. 2.11– 2.12) na obszraze "Gryfice" zostały stwierdzone w otworze Świerzno 4 (gł. 3195,0– 3238,5 m). Formacja jest tutaj wykształcona jako wapienie organogeniczne i detrytyczne, częściowo zdolomityzowane. Słabo zaznacza się również falisto-gruzłowa tekstura skały. Wśród mikroskładników organicznych dominują glony wapienne i otwornice, makroskopowo rozdróżnialne są fragmenty koralowców i ramienionogów.

						- CZEŚĆ SW	POMORZE ZA	CHODNIE - (CZĘŚĆ NE			7		
PIĘTRA	STÅGES	POZIOMY KONODONTC CONODONT ZONES	WE FC	E FORMACJE I OGNIWA FORMATIONS AND MEMBERS		FORMACJE I OGNIWA FORMATIONS AND MEMBERS		LITOLOGIA I ŚRODO LITHOLOGY AND SEDI	WISKA SEDYMENTACJ IMENTARY ENVIRONMENTS	I F FOI	ORMACJE I C	DGNIWA MEMBERS	MIĄŻSZOŚĆ (m) THICKNESS (m)	
		praesulcata	_	f Sapolno fm	450				Sąpolno i	↑ fm.	-85]		
		expansa	╡	edbouro um	85~	Świerzno 4		<u>.</u>				-		
MEN	INNIA	postera trachytera	=	Krojanty fm.	90-500			Kro	janty fm.	Kłanino fm.	0 ~500	_		
FA	FAME	marginifera	_	Gościno mb.Bielica mb	120 220				Bielica mb.	Gościno mb.	~20 60-5	_		
		rhomboidea crepida triangularis	Św fm.	Gorzysław mb.	86-840	Brojce IG-1, Strzeżewo 1			Gorzysław mb.		~300			
	_	linguiformis	stuche					3	Strzeż	tewo mb.	000	1		
AN	SNIAN	rhenana		Strzeżewo mb.	80-760							-		
FR	FRAS	jamieae hassi punctata transitans	_	Lipidow mb	-100				Koczała fm.		130-350			
		disparilis hermanni		Choinice fm.	120-260				Wyszebórz fr	n.	00	-		
VET	TIAN			Silno fm.	160-200			Sianóv	r fm.		100-20	0		
ŻΥν	GIVET	varcus		Tuchola fm.								1		
		hemiansatus				······		Miastko fm.			150-5			
EIFEL	EIFELIAN	ensensis kockelianus australis costatus partitus				Tuchola fm.		Tuchola fm.				Studn	Jamno fm.	Jamno fm.
EMS	EMSIAN	patulus serotinus												
		OWIK LUB SYLUR				huhahahahahahahahahahahahahahahahahahah		y				-		
	OR	DOVICIAN OR SILURIAN				V / / / / / / / / / / / / / /		/						
000	000	zlepieńce conglomerates		margle marls		wapienie stror koralowcowe	natoporoidowo-	ŚRODOWI SEDIMENTA	SKA SEDY RY ENVIRC	MENTACJI				
		piaskowce sandstones		wapienie marglist marly limestones		budowle organic buildu	niczne Ip	m sil	arginalmor	morskie silik arginal-marine	oklas	styczn		
$\langle \rangle \rangle$	ζ, ζ ζ	mułowce siltstones		wapienie gruzłow nodular	e	piaskowce do dolomitic	lomityczne	pł sh	ytkomorski alow carbor	ie węglanow nate	е			
		iłowce i łupki claystones and shales		wapienie faliste wavy limestones	^	 A A anhydryty anhydrites 		kl m	astyczno-w ixed	vęglanowe				
						luki stratygrafi stratigraphic gap	czne	gł de	ębokomors ep carbonat	skie węglano te	owe			
					7.	niezgodności angular unconformity	kątowe	ba ba	asenowe Isin shelf					
					~	powierzchnie discontinuity surfaces	nieciągłości							

Fig. 2.11. Stratygrafia, litologia i środowiska sedymentacji dewonu Pomorza Zachodniego (Matyja, 2009; zmodyfikowane). Czerwonym konturem zaznaczono interwały przewiercone w otworach Brojece IG-1, Strzeżewo 1 i Świerzno 4.

→Fig. 2.12. Paleogeografia i facje dewonu na obszarze "Gryfice" (Matyja, 2009; zmodyfikowane) w (A) późnym żywecie (sedymentacja formacji chojnickiej i wyszeborskiej), (B) wczesnym franie (sedymentacja ogniwa unisławskiego), (C) próźnym franie i wczesnym famenie (sedymentacja ogniwa strzeżowskiego), (D) środkowym i późnym famenie (sedymentacja formacji krojanckiej i kłanińskiej). Czerwonym konturem zaznaczono granice obszaru przetragowego "Gryfice". Pozostałe objaśnienia jak na Fig. 2.11.

2.3.2. KARBON

Rozprzestrzenienie i miąższość

Na obszarze przetargowym "Gryfice" utwory karbonu rozpoznano w 10 otworach wiertniczych (Fig. 2.9) na głębokościach:

- Gostyń 2: 3314,0-3447,0 m,
- Kaleń 1: informacja jest własnością inwestora,
- Kamień Pomorski 7: 3230-3410,0 m,
- Laska 2: 3456,0–3583,0 m,
- Strzeżewo 1: 3199,0–3890,0 m,
- Wrzosowo 1: 3081,5–3305,0 m,
- Wrzosowo 2: 3059,5–3127,3 m,
- Wrzosowo 3: 3101,0–3255,0 m,
- Wrzosowo 8: 3077,5–3310,0 m,
- Wrzosowo 9: 3084,5–3198,0 m.

Są one położone głównie w zachodniej części obszaru przetargowego. W dwóch otworach wiertniczych udało się przewiercić skały karbońskie, jednakże w jednym z nich udokumentowano dyslokację, w wyniku której, na skałach karbońskich zalegają niezgodnie skały dewońskie. Pozostałe otwory wiertnicze jedynie nawiercają utwory dolnego lub górnego karbonu (m.in. Karnkowski, 1993; Lipiec, 1997; Matyja, 2006, 2008).

Miąższości dolnego lub górnego karbonu, które zostały nawiercone bądź przewiercone na obszarze "Gryfice", osiągają maksymalnie 691,0 m (Strzeżewo 1).

Litologia i stratygrafia

Pierwszy podział litostratygraficzny utworów dolnego karbonu północno-zachodniej części Polski zaproponował Dadlez (1978). Nastepnie Żelichowski (1983, 1987, 1995; Żelichowski i in., 1986) dokonał jego rewizji i wyróżnił szereg nieformalnych jednostek litostratygraficznych, zdefiniowanych jako kompleksy. Podział ten został zmodyfikowany przez Lipca (Lipiec i Matyja, 1998; Lipiec, 1999), obecnie zaś obowiązujące zmiany w rangach wyróżnionych jednostek litostratygraficznych dolnego karbonu zostały opracowane w publikacjach Matyi (2006, 2008; Matyja i in., 2000; Fig. 2.13). Dla utworów górnego karbonu Pomorza Zachodniego zostały wyróżnione trzy jednostki litostratygraficzne w randze formacji (Żelichowski 1983, 1987, 1995).

W obowiązującym schemacie litostratygraficznym dolnego i górnego karbonu Pomorza Zachodniego, poszczególne jego jednostki zostały wyodrębnione dla dwóch regionów: północno-wschodniego i południowo-zachodniego (Matyja, 2006, 2008; Fig. 2.13). Odpowiadają one bardzo ogólnym zarysom stref facjalnych oraz są zgodne z naturalnym skłonem krawędzi basenu sedymentacyjnego Pomorza (*op. cit.*).

Spośród wszystkich otworów wiertniczych, występujących na obszarze przetargowym, jedynie w dwóch dokonano formalnego podziału litostratygraficznego (Lipiec, 1997; Żelichowski, 1987; Fig. 2.13), identyfikując nastęujące formacje:

- formacja wapieni z Czaplinka: Laska 2: 3456,0–3583,0 m,
- formacja Wolina: Strzeżewo 1: 3608,0–3890,0 m,
- formacja Regi: Strzeżewo 1: 3442,5–3608,0 m,
- formacja Dziwny: Strzeżewo 1: 3199,0–3442,5 m.

Pierwszą, najprawdopodobniej występującą (choć nienawierconą) jednostką litostratygraficzną <u>dolnego karbonu</u> na obszarze przetargowym "Gryfice" jest formacja iłowców z Łobżonki (Matyja, 2006; Fig. 2.13). Jej kontakt z skałami starszymi nie jest znany. Formacja iłowców z Łobżonki składa się z ciemnoszarych z iłowców i mułowców przeławicanych szarymi piaskowcami kwarcowymi. Mogą one osiągać do około 550,0 m miąższości. Według Turnau i in. (2005) utwory formacji iłowców z Łobżonki należą prawdopodobnie do najwyższego górnego turneju, a z całą pewnością do dolnego wizenu (czad – niższa część arundu)

Formacja wapieni z Czaplinka może osiągać do około 400 m miąższości (Fig. 2.13; Lipiec, 1997, 1999). Jednostka ta jest reprezentowana przez kompleks szarych wapieni organodetrytycznych oraz ooidowych wieku wizeńskiego (arund – brigant). Węglany formacji wapieni z Czaplinka są reprezentowane przez zróżnicowane litofacje wapienne, zawierające greinstony szkieletowe (mikrofacje

algowe, krynoidowe, mszywiołowe), greinstony oolitowe, słabo przemyte greinstony, pakstony i wakstony szkieletowe i mikryty (Fig. 2.13). Ich depozycja następowała na rozległym szelfie weglanowym typu rimmed shelf (op. cit). Analiza mikrofacjalna (Lipiec, 1997, 1999) wskazuje na obecność pełnego spektrum stref facjalnych na szelfie weglanowym: od laguny (wakstony szkieletowe ze spikulami gąbek i glonami z rodzaju Nanoropa, wakstony peloidowe, wakstony i pakstony grudkowe) przez szeroki pas płycizn i barier (mikrofacje greinstonów grudkowych, ooidowych i szkieletowych), strefę otwartego szelfu (słabo przemyte greinstony, pakstony, bogate w składniki ziarniste szkieletowe wakstony z bardzo różnorodną fauną i florą), po stok platformy z szkieletowymi floastoami, pakstonami i wakstonami.

Najmłodszą jednostką litostratygraficzną dolnego karbonu, która najprawdopodobniej występuje na obszarze przetargowym, jest formacja iłowców z Nadarzyc (Matyja, 2006; Fig. 2.13). Składa się ona z ciemnoszarych iłowców, pośród których występują skupienia syderytu, bioturbacje, powierzchnie z uwęglonym detrytusem roślinnym, rzadko zaś pojawiają się wkładki wapieni (Lipiec, 1999). Utwory formacji iłowców z Nadarzyc osiągają miąższość do około 250,0 m. Jednoznaczne określenie wieku formacji iłowców z Nadarzyc jest problematyczne. Na podstawie znalezionych w spągowej części otwornic (Soboń-Podgórska, 1982) i udokumentowanych w jej górnej części miospor (Górecka i in., 1980), Żelichowski (1987) sugerował, że formacja ta może być datowana na górny wizen – dolny namur.

Formacja Wolina <u>karbonu górnego</u> składa się z szarych i ciemnoszarych iłowców i mułowców z przewarstwieniami szarych piaskowców, tworzących ławice o miąższości od kilku do 30 cm (Fig. 2.13). Jednostka ta osiąga miąższość od 40 m do blisko 300 m (Matyja, 2006). W obrębie mułowców mogą występować cienkie pokłady lub soczewki węgla i poziomy gleb kopalnych, zawierające stigmarie oraz liczne szczątki roślinne (Waksmundzka 1997a; Waksmundzka i Żelichowski, 1997a). Na podstawie analizy karotaży geofizyki otworowej, Żelichowski (1987) sugerował o możliwości występowania wśród utworów formacji Wolina wkładek wapieni. Na podstawie ekspertyzy biostratygraficznej wykonanej przez Waksmundzką i Żelichowskiego (1997b) przyjęto, że formacja Wolina należy do najwyższego westfalu A, westfalu B i ewentualnie westfalu C. Z takimi orzeczeniem zgadziła się Matyja (2006), dzięki czemu wprowadziła je do swojego schematu litostratygraficznego.

Formacja Regi (Fig. 2.13) została rozpoznana jedynie na obszarze pomiędzy Kamieniem Pomorskim a Trzebiatowem. Leży ona w ciągłości sedymentacyjnej z utworami formacji z Wolina, jej strop zaś ma charakter erozyjny (Fig. 2.13). Utwory formacji Regi sa zdominowane przez piaskowce, które mogą osiągać miąższość ławic do 30 m (Fig. 2.13). W mniejszym stopniu występują mułowce i iłowce, w obrębie których są spotykane szczątki roślinne. Generalnie, dominującym kolorem wśród skał formacji Regi jest barwa brunatna. Utwory tej jednostki osiągają 150-170 m miąższości. Próby okruchowe i dane karotażowe wskazują na obecność pośród utworów formacji Regi wkładek skał wulka-(Waksmundzka i Żelichowski, nicznych 1997a). W świetle wyników badań palinologicznych, zamieszczonych w ekspertyzie Waksmundzkiej i Żelichowskiego (1997b), utwory formacji Wolina zostały wydatowane na westfal D - stefan B-C.

Ostatnią jednostką litostratygraficzną, wydzieloną pośród utworów górnego karbonu, jest formacja Dźwiny (Fig. 2.13). Charakteryzuje się obecnością mułowców i iłowców, w obrębie których występują ławice piaskowców ze zlepieńcami. Barwa tych skał jest brunatnoczerwona. W piaskowcach stwierdzono okruchy skał wulkanicznych ryolitów i dacytów (Waksmundzka i Żelichowski, 1997a). Utwory formacji Dźwiny osiągają od 70 do 250 m miąższości. Jej wiek, na podstawie analogii z profilami Rugii, Żelichowski (Waksmundzka i Żelichowski, 1997b) zinterpretował jako stefan – autun.

Ograniczone występowanie najmłodszych formacji karbonu (Wolina, Regi i Dźwiny) uniemożliwia przeprowadzenie szeroko zakrojonej analizy facjalnej. Pomimo to, dzięki wykonanej analizie sedymentologicznej na dostępnym materiale rdzeniowym m.in. z obszaru przetargowego "Gryfice" (Waksmundzka, 1997b), wyróżniono kilka najbardziej charakterystycznych litofacji: iłowcową, mułowcową i piaskowcową. Następujące po sobie poszczególne litofacje zostały przyporządkowane do ich szeroko zakreślonych środowisk sedymentacyjnych.

Litofacja iłowcowa została rozpoznana w obrębie formacji Wolina (szare iłowce masywne, zawierające m.in. zwęglona sieczką roślinną i horyzonty węglowe) oraz formacji Regi (iłowce pstre pozbawione roślin). Utwory te powstawały w procesie depozycji z zawiesiny w bagniskach i jeziorzyskach, występujących na równi zalewowej rzeki meandrującej (*op. cit.*)

Litofacja mułowcowa, wyróżniona w formacji Wolina, składa się z szarych mułowców z dosyć dużą ilością szczątków roślinnych; rzadko występują konkrecje hematytowe, partie zażelazione lub konkrecje syderytowe. Utwory mułowcowe formacji Regi mają barwy pstre i sporadycznie występują w nich szczątki roślinne. W obrębie litofacji mułowcowej wyróżniono dwie odmiany. Pierwsza z nich są mułowce masywne, które powstawały w procesie depozycji z zawiesiny w jeziorzyskach równi zalewowej, podobnie jak iłowce, z którymi tworzą płynne przejścia (op. cit.). Drugą zaś odmianą są mułowce laminowane bardzo drobnoziarnistym piaskowcem. Powstawały one również na obszarze równi zalewowej, ale ich depozycja odbywała się zarówno z zawiesiny, jak i w środowisku przepływu.

Litofacja piaskowcowa także składa się dwóch odmian (Waksmundzka, 1997b). Odmiana szara (formacja Wolina) lub pstra (formacja Regi) jest zbudowana z piaskowców drobno- i średnioziarnistych warstwowanych przekątnie w dużej skali i z piaskowców smużystych szarych (formacja Wolina). Dodatkowo odmiana pstra (formacja Regi) jest zbudowana z piaskowców gruboziarnistych warstwowanych przekątnie w dużej skali, w których często występuje powierzchnia erozyjna w spągu warstw i towarzyszą jej klasty iłowcowe (*op. cit.*)

Waksmundzka (1997b) wyróżniła w utworach formacji Wolina i Regi szereg cykli sedymentacyjnych o ziarnie drobniejącym ku

górze. Rozpoczynają się one zwykle powierzchnią erozyjną, podkreśloną klastami ilastymi, a w ich stropie często występuja paleogleby lub warstewki wegla. Omawiane cykle sedymentacyjne zostały zaobserwowane w osadach facji korytowych (piaskowce i zlepieńce) oraz pozakorytowych (iłowce, mułowce, piaskowce i czasami węgle), powstających na równi zalewowej, w jeziorzyskach, bagnach, wałach brzegowych i glifach krewasowych. Na podstawie badań fragmentarycznego materiału rdzeniowego formacji Dźwiny, zaobserwowano, że jednostka ta jest zdominowana przez utwory mułowcowo-iłowcowe, w obrębie których występują ławice piaskowców i zlepieńców. Rozpoznany szereg cech tych osadów sugeruje, że powstawały one w środowiskach fluwialnych.

Petrografia utworów karbonu

Osady karbonu są wykształcone głównie jako skały klastyczne: piaskowce (arenity i waki według Pettijohna i in., 1972), mułowce i iłowce oraz utwory węglanowe. Charakterystykę petrograficzną utworów karbonu przedstawiono na podstawie badań wykonanych przez Kozłowską (1997, 2004, 2005, 2006a, 2006b, 2008; Maliszewska i in., 2004a, 2004b; Kuberska i in., 2007) oraz Łoszewską (1983), Połońska (1991) i Lipca (1997, 1999). Ponadto wykorzystano informacje i dane zamieszczone w dokumentacjach wynikowych otworów zlokalizowanych na obszarze przetargowym: Gostyń 2 (Wójcik i Sabura, 1983), Kaleń 1 (Nowicka, 2000), Kamień Pomorski 7 (Ryba i Szpurgis, 1978), Laska 2 (Wójcik, 1980), Strzeżewo 1 (Ryba i Szewc, 1978a), Wrzosowo 1 (Ryba i Stefańska, 1976), Wrzosowo 2 (Ryba i Szewc, 1976), Wrzosowo 3 (Ryba i Szewc, 1979), Wrzosowo 8 (Ryba i Szewc, 1977c) i Wrzosowo 9 (Ryba i Szewc, 1978b), w opracowaniach archiwalnych (Narkiewicz, 1996) oraz w publikacjach Lipca i Matyi (1998), Lipca i in. (1998) i Matyi (2006).

Piaskowce <u>dolnego karbonu</u> (missisipu) należą prawdopodobnie do formacji iłowców z Łobżonki, gdzie tworzą przeławicenia w obrębie skał ilasto-mułowcowych (otwór Laska 2; w spągu profilu). Piaskowce są barwy szarej i reprezentują arenity i waki kwar-

cowe, od bardzo drobno- do średnioziarnistych. Materiał detrytyczny jest przeważnie półobtoczony. Głównym składnikiem detrytycznym jest kwarc, któremu w niewielkiej ilości towarzyszą skalenie, łyszczyki (muskowit, biotyt) oraz litoklasty (łupki kwarcowe, iłowce, skały krzemionkowe, kwaśne skały wulkaniczne). Minerały ciężkie (cyrkon, turmalin, amfibol) występują rzadko. Niekiedy jako składnik skały występują bioklasty i ooidy. Spoiwo piaskowców ma najczęściej charakter porowy. Tworzy go matriks ilastożelazisty oraz cementy węglanowe (kalcyt, syderyt) i kwarcowy, ponadto kaolinitowy, hematytowy, siarczanowe (anhydryt, gips) i piryt. Procesy diagenetyczne, takie jak: kompakcja i cementacja znacząco zredukowały porowatość pierwotną skały. Własności kolektorskie piaskowców są słabe; przeciętna porowatość wynosi około 1,6%, a przepuszczalność <0.01 mD.

Mulowce ciemnoszare i ilowce czarne dolnego karbonu należą prawdopodobnie do formacji iłowców z Łobżonki (otwór Laska 2). Reprezentuja skały o strukturze, odpowiednio: pelitowo-aleurytowo-psamitowej i pelitowo-aleurytowej. Charakteryzuja się teksturą bezładną lub kierunkową, podkreśloną ułożeniem m.in. minerałów ilastych. Głównym składnikiem ziarnistym jest kwarc, ponadto łyszczyki i fragmenty bioklastów. Mase wypełniającą lub podstawowa tworzy mieszanina minerałów ilastych (illit, kaolinit), krzemionki, tlenków i wodorotlenków żelaza, materii organicznej, węglanów oraz pirytu.

Wapienie dolnego karbonu należą do formacji wapieni z Czaplinka (otwór Laska 2). Sa to wapienie organodetrytyczne i ooidowe. Reprezentują mikrofacje: pakstonów i greinstonów szkieletowych, glonowych, krynoidowych, ooidowych, grudkowych oraz wakstonów szkieletowych. Wapienie zbudowane są z mikrytu i sparytu kalcytowego, które występują w różnych stosunkach ilościowych; mikryt dolomitowy i syderytowy jest nieliczny. W dużych ilościach występują bioklasty (fragmenty szkarłupni, ramienionogów, otwornic, korali, mszywiołów oraz glony) i ooidy, często przekrystalizowane. Domieszka materiału terygenicznego, głównie kwarcu, jest niewielka; zawartość pelitu ilastego (illit), lokalnie, może być duża. Ponadto spotyka się anhydryt, rzadziej gips i kalcyt, które tworzą gniazda lub żyłki. Miejscami sparyt kalcytowy jest impregnowany substancją żelazistą, która wypełnia szczeliny międzyziarnowe. Z procesów diagenetycznych widoczne są efekty kompakcji mechanicznej i wczesnej cementacji oraz neomorfizmu (rekrystalizacja mikrytu w grubszy mikryt lub mikrosparyt). Wapienie te nie są perspektywiczne jako skały zbiornikowe, ponieważ charakteryzują się porowatością około 0% i są nieprzepuszczalne.

Piaskowce górnego karbonu (pensylwanu) należą do formacji Wolina i Regi. Towarzyszą im iłowce i mułowce z wkładkami węgli oraz lokalnie skały węglanowe w formacji Wolina, natomiast mułowce i iłowce w formacji Regi. Piaskowce obu formacji, barwy szarej, szarowiśniowej oraz brunatnej, są podobnie wykształcone i charakteryzują się podobna historia diagenezy. Piaskowce (Fig. 2.14) sa reprezentowane przez arenity i waki, głównie kwarcowe, lokalnie sublityczne i subarkozowe, o strukturze od bardzo drobno- do gruboziarnistej i teksturze bezładnej lub kierunkowej, podkreślonej ułożeniem blaszek łyszczyków i minerałów ilastych. Ziarna detrytyczne w badanych piaskowcach są najczęściej półobtoczone i na ogół dobrze wysortowane. Materiał detrytyczny przeważnie jest luźno upakowany. Kwarc jest głównym składnikiem mineralnym szkieletu ziarnowego piaskowców, a jego zawartość wynosi przeciętnie około 65,0% obj. skały. Ziarna kwarcu monokrystalicznego przeważają nad polikrystalicznym. Skalenie, reprezentowane przez skalenie potasowe, występują w niewielkiej ilości. Większe ilości, do około 4,0% obj. skały, stwierdzono w rejonie Wrzosowa. Ziarna skaleni często ulegają procesom rozpuszczania, przeobrażania w minerały ilaste i albit oraz zastępowania przez węglany. Litoklasty są w niewielkiej ilości składnikiem skały. Wśród nich dominują okruchy skał wylewnych i fragmenty szkliwa wulkanicznego, rzadziej skał metamorficznych oraz sporadycznie skał osadowych. Blaszki łyszczyków (głównie muskowit, rzadziej biotyt przeobrażany w chloryt) występują w zmiennych ilościach. Z minerałów akcesorycznych stwierdzono obecność głównie cyrkonu, rzadziej rutylu i tytanitu. Przestrzenie międzyziarnowe w piaskowcach są wypełnione całkowicie lub częściowo matriksem i/lub cementem. Matriks jest zbudowany z detrytycznych minerałów ilastych, które miejscami tworzą mieszaninę z pyłem kwarcowym i substancją żelazistą. Głównymi składnikami cementu są: kwarc autigeniczny w formie obwódek syntaksjalnych na ziarnach kwarcu (Fig. 2.14.A, C), autigeniczne minerały ilaste (kaolinit, dickit, illit, minerały mieszanopakietowe illit/smektyt; Fig. 2.14.B-D, F), weglany (kalcyt, dolomit, ankeryt i syderyt; Fig. 2.14.E) oraz hematyt (Fig. 2.14.F) i wodorotlenki żelaza. Powszechnie, lecz w niewielkiej ilości, występują siarczany: anhydryt i baryt. Miejscami obserwowano materię organiczną. W piaskowcach wyróżniono efekty działania następujących procesów diagenetycznych: kompakcji, cementacji, zastępowania, rozpuszczania i przeobrażania. Największy wpływ na porowatość i przepuszczalność piaskowców miała kompakcja i cementacja oraz lokalnie rozpuszczanie.

Wśród mułowców i iłowców górnego karbonu występują odmiany piaszczyste. Skały te charakteryzują się strukturą pelitowoaleurytowo-psamitową i teksturą najczęściej kierunkową, wyrażoną równoległym ułożeniem blaszek minerałów ilastych i łyszczyków, którym często towarzyszą wodorotlenki żelaza, lokalnie syderyt i materia organiczna. Ze składników mineralnych, kwarc przeważa nad skaleniami czy litoklastami. Miejscami, w dużych ilościach występują łyszczyki (muskowit, biotyt). Masa podstawowa spoiwa jest złożona z minerałów ilastych i krzemionki oraz substancji żelazistej (wodorotlenki żelaza i hematyt), która często przeważa nad pozostałymi składnikami. Hematyt często tworzy formy masywne, miejscami skupienia bardzo drobnych form kulistych. Ponadto, lokalnie, występują węglany: ankeryt oraz syderyt (tylko w osadach formacji Wolina). W większości mułowców stwierdzono występowanie kaolinitu robakowatego.

Podsumowanie

1. Piaskowce górnego karbonu (pensylwan) formacji Wolina i Rygi reprezentuja arenity i waki kwarcowe, lokalnie subarkozowe. Głównym składnikiem szkieletu ziarnowego jest kwarc z przewaga kwarcu monokrystalicznego nad polikrystalicznym. W znacznie mniejszych ilościach występują łyszczyki, skalenie i okruch skał, a minerały akcesoryczne należą do nielicznych. Materiał detrytyczny najczęściej jest półobtoczony. Głównymi składnikami spoiwa piaskowców są: detrytyczne minerały ilaste oraz minerały autigeniczne, z których do najważniejszych należa: kwarc, kaolinit, kalcyt, dolomit, ankeryt, illit oraz hematyt i wodorotlenki żelaza. W niewielkiej ilości występują; anhydryt, baryt i syderyt.

2. Piaskowce górnego karbonu (pensylwan) charakteryzują się porowatością od <1,0 do >12,0%. Dominuje w nich porowatość pierwotna, natomiast porowatość wtórna (rozpuszczanie ziarn i cementów) stanowi nieznaczny procent. Przepuszczalność tych piaskowców najczęściej wynosi kilka mD, ale są wśród nich również nieprzepuszczalne, czy słabo przepuszczalne. Najlepsze właściwości zbiornikowe mają arenity kwarcowe, których głównymi składnikami spoiwa są kwarc autigeniczny i kaolinit. Występujący w piaskowcach illit włóknisty znacznie ograniczył ich przepuszczalność (rejon Wrzosowa).

3. Piaskowce dolnego karbonu (missisip) stanowią niewielki udział w profilu osadów. Są one silnie zdiagenezowane, masywne i mają niekorzystne właściwości petrofizyczne. Charakteryzują się porowatością około 1,6% i przepuszczalnością <0,01 mD.

4. Osady węglanowe, niezdolomityzowane wapienie, nie są perspektywiczne jako skały zbiornikowe, z uwagi na wczesną cementację, powszechną neomorficzną rekrystalizację oraz brak wtórnej porowatości. Porowatość ich najczęściej jest bliska zeru, a skały są nie-przepuszczalne.

Koncepcje poszukiwawcze w utworach karbonu

Pod względem rozpoznania budowy geologicznej, karbon obszaru przetargowego "Gryfice" należy uznać za słabo rozpoznany. Ponad połowa otworów wiertniczych, dowiercająca się do tych utworów, została wykonana wokół złoża Wrzosowo. Obraz budowy strukpowierzchni podcechsztyńskiej turalnej (w tym karbonu) jest główne oparty na licznych zdjęciach sejsmicznych 2D, wykonanych do końca lat 80-tych XX w., oraz późniejszych zdjęciach sejsmicznych 2D i zdjęcia sejsmicznego 3D. Pomimo reprocessingu zdjęcia sejsmicznego Świerzno 3D (2002) nie uzyskano do końca zadowalających wyników dla m.in. interpretacji horyzontów podcechsztyńskich (Chruścińska i Płatek, 2016). Jednakże, w ostatnich pracach Bajewskiego i in. (2019, 2020), zaprezentowano metodę zwiększenia jakości archiwalnych zdjęć sejsmicznych 2D dzięki reprocessingowi opartemu na sekwencji przetwarzania opracowanej przez INiG-PIB. W jej wyniku uzyskano poprawę czytelności horyzontów permsko-mezozoicznych i płaszczyzn dyslokacji. Horyzonty podcechsztyńskie również stały się bardziej widoczne, lecz nadal nie jest to obraz pozwalający na w pełni wiarygodną i szczegółową interpretację. Zdaniem Bajewskiego i in. (2020) w celu uzyskania lepszego obrazu sejsmicznego dla utworów podłoża podcechsztyńskiego należy starać się odwzorować poprawnie pola prędkości w ich obrębie.

Ze względu na bliskość odkrytych złóż gazu ziemnego (m.in. Wrzosowo, Gorzysław N, Dargosław) sugeruje się, aby wysiłek poszukiwawczy skupić wokół utworów górnego karbonu. Występują one W północnowschodniej i północnej części obszaru prze-"Gryfice" targowego (Fig. 2.10). Wraz z zastosowaniem najnowszych rozwiązań, opracowanych przez Bajewskiego i in. (2020), należy podjąć się nowej interpretacji strukturalnej podłoża podcechsztyńskiego, zwłaszcza pod katem występowania górnego karbonu. Najbardziej perspektywiczne, stosując analogię do odkrytych złóż, wydają się być strefy wyniesione, w których występują uskoki je obrzeżające, o kierunku NW-SE (strefa złóż Gorzysław – Trzebusz – Dargosław). Dodatkowo, podobnie jak w przypadku złoża Wrzosowo, perspektywiczne wydają się być strefy występujące w niedalekiej odległości od wychodni dewońsko-dolnokarbońskich. W pobliżu strefy krawędziowej, w utworach górnego karbonu, sugeruje się poszukiwanie półzrębów ograniczonych jedną powierzchnią dyslokacyjną. Sama zaś pułapka najprawdopodobniej będzie się składać z pakietów piaskowcowo-mułowcowych.

Utwory górnego karbonu obszaru przetargowego "Gryfice" można również potraktować jako potencjalne rezerwuary dla złóż niekonwencjonalnych typu "tight gas". Spełniają one w większości kryteria zaproponowane dla złóż typu *tight* przez Podhalańską i in. (2016). Utwory górnego karbonu charakteryzują się w pewnych odcinkach miąższymi pakietami piaskowców o średniej porowatości i kiepskiej przepuszczalności. Takie horyzonty można traktować jako piaskowce typu zwiezłego (tight sand). Podejście do utworów górnego karbonu jak do pułapek typu hybrydowego wynika ze zróżnicowanej miaższości interwałów piaskowcowych i mułowcowych, które były rezultatem m.in. rozwoju fluwialnego środowiska sedymentacji. W otworze Strzeżewo 1 wykonano opróbowanie próbnikiem złożowym, gdzie otrzymano przypływ zgazowanej wody złożowej (Fig. 2.15).

W przypadku potraktowania utworów górnego karbonu jako potencjalnych horyzontów dla występowania złóż typu "*tight*" modelu hybrydowego sugeruje się wykonanie otworów kierunkowych/horyzontalnych. Następnie, w interwałach piaskowcowo-mułowcowych, powinno się przewidzieć perforację interesujących interwałów oraz zabiegi szczelinowania hydraulicznego.

Fig. 2.13. Stratygrafia, litologia i środowiska sedymentacji karbonu Pomorza Zachodniego (Matyja, 2006, 2008; zmodyfikowane). Ramki oznaczone z przerywaną linią określają zidentyfikowane (czerwony i niebieski) i hipotetyczne (zielony) jednostki litostratygraficzne rozpoznane za pomocą otworów wiertniczych na obszarze przetargowym "Gryfice".

Fig. 2.14. A. Porowatość pierwotna (Pp) i wtórna (strzałka) powstała w efekcie rozpuszczania kwarcu autigenicznego (Qa) na ziarnach kwarcu (Qd). Próbka impregnowana niebieską żywicą; otwór Wrzosowo 8, głęb. 3185,9 m; obraz PL, bez analizatora. B. Ziarno skalenia potasowego (Sk) przeobrażane w kaolinit (KI); otwór Wrzosowo 3, głęb. 3158,4 m; obraz PL, nikole skrzyżowane. C. Kaolinit/dickit blokowy (Kl/Di); otwór Strzeżewo 1, głęb. 3821,2 m; obraz SEI. D. Illit włóknisty (It) i kryształy kwarcu autigenicznego (Qa); otwór Wrzosowo 3, głęb. 3129,8 m; obraz SEI. E. Cement kalcytowy (Ka) w piaskowcu; kalcyt (strzałka) zastępuje ziarna kwarcu (Q); otwór Wrzosowo 8, głęb. 3193,6 m; obraz PL, nikole skrzyżowane. F. Kuliste formy hematytu (He) pomiędzy kryształami kaolinitu (KI), obrastane illitem włóknistym (It); otwór Strzeżewo 1, głęb. 3724,2 m; obraz SEI.

Fig. 2.15. Profil litologiczno-geofizyczny utworów górnego karbonu z otworu Strzeżewo 1 (Kombrink i in., 2010; zmodyfikowane). Z dokumentacji otworowej zestawiono jedno opróbowanie próbnikiem złożowym oraz jedną z analiz gazu (Ryba i Szewc, 1978).

2.3.3. PERM – CZERWONY SPĄGOWIEC

Rozprzestrzenienie i miąższość

Utwory czerwonego spągowca nawiercono w 19 otworach wiertniczych, na głębokościach:

- Benice 1: 3150,0–3247,0 m,
- Brojce IG-1: 3609,5–3674,5 m,
- Gostyń 2: 3262,5–3314,0 m,
- Gryfice 1: 3340,5–3367,0 m,
- Gryfice 2: 3391,0–3415,0 m,
- Jarszewo 1: 2915,0–2998,7 m,
- Kaleń 1: inf. jest własnością inwestora,
- Kamień Pomorski 7: 2707,5-3230,0 m,
- Kamień Pomorski 13: 2658,5-2672,0 m,
- Laska 2: 3091,5–3456,0 m,
- Rekowo 2: 3014,5–3141,5 m,
- Strzeżewo 1: 3109,0–3199,0 m,
- Świerzno 1: 3084,5–3103,0 m,
- Świerzno 4: 3156,0–3195,0 m,
- Wrzosowo 1: 3077,0–3081,5 m,
- Wrzosowo 2: 3055,5–3059,5 m,
- Wrzosowo 3: 3073,0–3101,0 m,
- Wrzosowo 8: 3075,0–3077,5 m,
- Wrzosowo 9: 3060,5–3084,5 m.

Spośród nich, w 12 otworach przewiercono skały czerwonego spągowca i dowiercono się, bezpośrednio pod nimi, do utworów dewonu (2 otwory) lub karbonu (10 otworów). Otwory nawiercające lub przewiercające czerwony spągowiec są rozmieszczone na całym obszarze przetargowym (Fig. 2.18, Fig. 2.21–2.22). Najwięcej otworów wiertniczych występuje w jego zachodniej części (15 otworów), we wschodniej zaś – jedynie kilka.

Sumaryczna miąższość utworów czerwonego spągowca, rozpoznana otworami wiertniczym, jest zróżnicowana i waha się od 2,5 m do 522,5 m. W większości otworów z obszaru przetargowego "Gryfice" jego miąższość meści się w przedziale 20–100 m.

Litologia i stratygrafia – ogólny zarys stratygrafii

Obecnie dla utworów czerwonego spągowca funkcjonują dwa podziały stratygraficzne, które opierają się na różnych kryteriach wyróżniania jednostek. Nieformalny podział, zaporoponowany przez Pokorskiego (1981, 1988, 1997; Fig. 2.16), noszący cechy allostratygrafii i tektonostratygrafii, umożliwia korelację z osadami z basenu północnoniemieckiego (Hoffmann i in., 1997). Dodatkowo, w utworach górnego czerwonego spągowca, Kiersnowski (1997, 1998) wydzielił sekwencje depozycyjne (1–8b), na podstawie których opracowano szczegółowe następstwo cykli dla północno-zachodniej części Polski i północno-wschodniej części Niemiec (Kiersnowski i Buniak, 2006; Fig. 2.19).

Na obszarze przetargowym "Gryfice" profil czerwonego spągowca jest zredukowany do dolnej i środkowej części grupy Odry oraz górnej części grupy Warty.

Litologia i stratygrafia – dolny czerwony spągowiec

Spągowa część profilu czerwonego spągowca składa się z cykli piaskowcowo-mułowcowych z przewarstwieniami zlepieńców. Dybova-Jachowicz i Pokorski (1984) oraz Pokorski (1987) utwory te wyróżniają jako formację Świńca (Fig. 2.16). Osady formacji były deponowane w środowiskach fluwialnych i limnicznych regresywnych zbiorników śródlądowych. Przyjmuje się, że formacja Świńca jest wieku najwyższego karbonu (stefan C) i najniższego czerwonego spągowca (Pokorski, 1987; Fig. 2.16). Utwory formacji Świńca zostały rozpoznane na obszarze przetargowym "Gryfice" w następujących otworach: Strzeżewo 1, Wrzosowo 2, 3, 8, 9. Ich współczesne występowanie ogranicza się jedynie do zachodniej i północno-zachodniej części obszaru przetargowego.

Na utworach osadowych formacji Świńca zalegają utwory wulkaniczne i piroklastyczne wielkopolskiej formacji wulkanogenicznej (Fig. 2.16). Skały piroklastyczne składają się z tufów i tufitów, przewarstwiających się z piaskowcami oraz mułowcami (Dybova-Jachowicz i Pokorski, 1984). Osiągają one nawet do 58 m miąższości – w otworze Strzeżewo 1 (*op. cit.*). Utwory wulkaniczne wielkopolskiej formacji wulkanogenicznej reprezentują kwaśne i obojętne skały wylewne, opisywane przez Rykę (1968, 1978) jako ryolity. Ich powstanie wiązało się z skorupowym wulkanizmem, który w wyniku wzrostu temperatury oraz stopnia geotermicznego doprowadzał do tworzenia się intruzji oraz inicjacji cykli wulkanicznych (Ryka, 1978). Pokrywa wulkaniczna wielkopolskiej formacji wulkanogenicznej występuje na całym obszarze przetargowym "Gryfice" (Fig. 2.17–2.18). Największa jej miąższość występuje w jego południowo-zachodniej części i osiąga około 520 m w otworze Kamień Pomorski 7 (Fig. 2.18). W kierunku północnym i zachodnim grubość pokrywy wulkanicznej się zmniejsza (Fig. 2.18).

Litologia i stratygrafia – górny czerwony spągowiec

Działalność tektoniki dysjunktywnej i intensywna erozja między utworami dolnego i górnego czerwonego spągowca spowodowała peneplenizację pokrywy wulkanicznej bądź jej zdarcie, a także zapisała się w formie luki stratygraficznej, liczącej co najmniej 10 mln lat (Nawrocki, 1995) lub nawet 20 mln lat (inf. ustna: H. Kiersnowski, 2021). Depozycja utworów górnego czerwonego spagowca zapoczątkowała nowy etap w ewolucji basenów sedymentacyjnych - powstanie basenu późnopermsko-mezozoicznego. Jego powstanie było związane z silnymi impulsami subsydencji tektonicznej, ze znacznym udziałem subsydencji termicznej (Wagner, 1994; Dadlez i in., 1998)

W północno-zachodniej części Polski, trakcie trwania górnego czerwonego spągowca, zachodziła depozycja osadów formacji Drawy i Noteci (Fig. 2.16). Pod względem litologicznym nie wykazują one większego zróżnicowania (Pokorski, 1987). Utwory formacji Drawy i Noteci składają się z całej gamy osadów klastycznych, które były deponowane w różnorodnych środowiskach sedymentacji (m.in. Kiersnowski, 1997, 1998; Kiersnowski i Buniak, 2006).

W trakcie sedymentacji osadów dolnej części formacji Drawy, obszar przetargowy "Gryfice" stanowił obszar alimentacyjny dla basenu, znajdującego się na południu (Fig. 2.19). Dopiero w górnej części formacji Drawy sedymentacja ograniczała się jedynie do południowej i południowo-zachodniej części omawianego obszaru (Fig. 2.19–2.20). Deponowane były osady zlepieńców aluwialnych i piaskowców fluwialnych (cyklu AL II; Kiersnowski i Buniak, 2006; Fig. 2.19), a także fluwialne piaskowce i drobnoziarniste zlepieńce z wkładkami mułowców, jak również w lokalnych obniżeniach mułowce plai (cykl P-L III; Fig. 2.19).

Utwory formacji Drawy i Noteci są rozdzielone regionalną powierzchnią nieciągłości, która powstała w wyniku erozji i akumulacji kolejnego cyklu depozycyjnego (Kiersnowski i Buniak, 2006). Dolna część formacji Noteci na obszarze przetargowym "Gryfice" występuje w jego południowo-zachodniej części (Fig. 2.19). Składa się ona z zlepieńców i piaskowców deponowanych w formie stożków oraz równin aluwialnych (cykl AL. III; Fig. 2.19). Kolejny cykl depozycyjny zalega przekraczająco na wcześniej zdeponowanych osadach oraz charakteryzuje się rozszerzeniem swojego zasięgu w kierunku północnym (Fig. 2.19). Od północno-zachodniej do południowo-wschodniej części obszaru przetargowego występują małej miąższości osady zlepieńców i piaskowców aluwialnych, które są zastępowane w kierunku południowym przez fluwialne piaskowce oraz mułowce (P-L.IV; Fig. 2.19). Osady górnej części formacji Noteci zajmują obszar, którego zasięg jest przybliżony do obecnie rozpoznanego układu facjalnego (Fig. 2.19-2.21). Jedynie w północno-wschodniej i niewielkim odcinku zachodniej części obszaru przetargowego występuje obszar źródłowy dla materiału klastycznego. W pozostałej jego części występuje pas piaskowców fluwialnych, przechodzących w kierunku południowo-zachodnim w mułowce z wkładkami piaskowców oraz utwory piaskowcowo-mułowcowe. charakteryzujące się cyklami prostymi (P-L.V; Fig. 2.19–2.21).

Najwyższe partie górnego czerwonego spągowca (w większości otworów obszaru przetargowego "Gryfice") charakteryzują się białą lub szarą barwą. Są to osady które zostały odbarwione bądź przerobione przez wody morskie, w wyniku ingresji morza cechsztyńskiego.

Miąższość utworów górnego czerwonego spągowca na obszarze przetargowym (osiągająca do 200 m) nie wykazuje dużego zróżnicowania (Fig. 2.22). Najmniejsza miąższość występuje w północnej części omawianego obszaru, zwiększa się zaś w kierunku południowym (Fig. 2.22). Jest to spowodowane tym, że m.in północna część obszaru przetargowego, przez bardzo długi czas, stanowiła obszar alimentacyjny dla centralnego basenu sedymentacyjnego czerwonego spągowca (Fig. 2.19). Jedynie w najbardziej skrajnej części południowej (okolice otworu wiertniczego Benice 1) obserwuje się nagły wzrost miąższości, wywołany działalnością synsedymentacyjną uskoku Adler – Kamień Pomorski, który doprowadził do powstania rowu Samlino – Resko (Fig. 2.20).

Petrografia czerwonego spągowca – zarys ogólny problematyki

Wyniki badań petrograficznych, prowadzonych bezpośrednio na obszarze przetargowym "Gryfice" oraz w bezpośrednim sąsiedztwie tego obszaru, można pozyskać z licznych publikacji (m. in.: Buniak i Solarska, 2004; Jackowicz, 1997; Kuberska i in., 2007, 2008; Kuberska, 2008; Maliszewska i Kuberska, 1996, 2008, 2009; Maliszewska i in., 1998, 2016; Rusek i in., 2005) oraz z dokumentacji wynikowych sporządzonych dla otworów wiertniczych: Benice 1, Brojce IG-1, Gostyń 2, Gryfice 1, 2, Jarszewo 1, Kaleń 1, Kam. Pomorski 7, 13, Laska 2, Rekowo 2, Strzeżewo 1, Świerzno 1, 4, Wrzosowo 1, 2, 3, 8, 9. Poniżej przedstawiono wyniki badań skał silikoklastycznych, które występują pomiędzy formacją Regi a utworami wielkopolskiej formacji wulkanogenicznej. Niższa ich część reprezentuje (według Żelichowskiego, 1987) osady westfalu D i autunu (formacja Dziwny), a wyższa odpowiada najwyższemu stefanowi i najniższej części autunu (formacja Świńca; Pokorski, 1987). Ponadto przedstawiono wyniki badań skał permu należących do czerwonego spągowca dolnego i górnego. W badaniach skał stosowano zmodyfikowaną klasyfikację Dotta (Pettijohn i in., 1972).

Petrografia czerwonego spągowca – pogranicze karbonu i permu

Osady przejściowe karbonu i permu są reprezentowane przez czerwonobrunatne iłowce i mułowce z wkładkami piaskowców, zlepieńce zaś notuje się sporadycznie (Maliszewska i in., 2016). Litofacja zlepieńcowa. Zlepieńce są reprezentowane przez odmiany drobnookruchowe. zwięzłe, barwy szarej. Dostrzeżono je w profilach z otworów Strzeżewo 1 i Wrzosowo 2. Wszystkie zaliczono do mikrolitofacji rudytów kwarcowych, przy czym większość, to parazlepieńce o zawartości ziarn żwiru od 50,0% do 85,0%. Frakcja psefitowa jest reprezentowana głównie przez półobtoczone ziarna kwarcu polikrystalicznego. Sporadycznie występują także jasnobrunatne okruchy skał wylewnych. Frakcja psamitowa ma również skład mało urozmaicony. Występują tu ziarna kwarcu, sporadycznie odnotowuje sie skalenie potasowe w ilości około 1% obj. Litoklasty, oprócz tych, zaliczanych do kwarcu polikrystalicznego, są reprezentowane przez fragmenty skał wylewnych oraz kwarcowołupków łyszczykowych krystalicznych. Wśród minerałów akcesorycznych zauważono obecność cyrkonu i turmalinu.

Głównymi składnikami spoiwa zlepieńców są: kwarc autigeniczny, kaolinit, chloryt, podrzędnie hematyt, illit, minerały węglanowe i anhydryt. Poza autigenicznymi minerałami ilastymi, występują również minerały allogeniczne, pochodzące z roztarcia fragmentów skał ilastych dostarczonych do zbiornika sedymentacyjnego. Powstałe w ten sposób spoiwo pelityczne określono jako "pseudomatriks" (Dickinson, 1970). Występuje ono jednak w bardzo nieznacznych ilościach.

Litofacja piaskowcowa. Piaskowce stanowią głównie wkładki wśród czerwonobrunatnych iłowców i mułowców. Jedynie ku stropowi formacji Dziwny w ujęciu Żelichowskiego (1987) zawartość piaskowców wzrasta. Najczęściej wyróżniano arenity kwarcowe, podrzednie waki kwarcowe. W otworze wiertniczym Wrzosowo 8 zauważono wśród wak odmiany sublityczne, ze zwiększonym udziałem (>5% obj.) okruchów skalnych, głównie pochodzenia osadowego. Głównymi składnikami ich spoiw są minerały ilaste (illit, kaolinit, dickit) i kwarc autigeniczny, natomiast węglany i siarczany występują podrzędnie. Wszystkie piaskowce poddane były procesom diagenetycznym, które zachodziły w różnych warunkach pogrzebania osadu, w dwóch etapach - eo- i mezodiagenezy. Piaskowce pogranicza karbonu i permu, na podstawie dostępnych danych, poddane były temperaturom przekraczającym nieco 100°C, natomiast analiza materiału organicznego wskazuje na warunki paleotermiczne w granicach 120–130°C (Kuberska, 2008). Porowatość mierzona metodą komputerowej analizy obrazu w wybranych próbkach piaskowców waha się od 4,91% do 9,26%, natomiast pomierzona planimetrycznie od 5,1% do 14,8%. W opisywanych piaskowcach zachowała się porowatość pierwotna (Fig. 2.23). Często jednak mamy do czynienia z wtórną porowatością międzykrystaliczną w kaolinicie (Fig. 2.23). We wszystkich przypadkach przepuszczalność osadów jest niska (Kuberska i in., 2007).

Litofacja mułowcowa. Mułowce najczęściej odznaczają się barwą czerwonobrunatną, niekiedy brunatną. Należą one do odmian kwarcowych. Wykazują zwięzłą budowę, ich tekstura często ma charakter zaburzony lub kierunkowy podkreślony równoległym ułożeniem minerałów blaszkowych. Głównym składnikiem szkieletu ziarnowego mułowców sa nieobtoczone lub półobtoczone ziarna kwarcu, podrzędnie występują skalenie, częściowo zserycytyzowane. Mułowce zawierają liczne blaszki łyszczyków, przeważnie muskowitu, rzadziej biotytu. Obserwuje się także drobne skupienia tlenków żelaza, wpryśnięcia pirytu i leukoksenu. Materiał detrytyczny w mułowcach jest scementowany substancją ilasto-żelazistą. Rozróżnienie poszczególnych składników nie jest możliwe, częściowo jednak metodami mikroskopowymi udaje się zidentyfikować obecność hematytu oraz wodorotlenków żelaza impregnujących mułowce.

Litofacja iłowcowa. Iłowce to skały barwy brunatnej lub szarej. Są reprezentowane przez odmiany illitowo-chlorytowo-kwarcowe, najczęściej żelaziste. Tekstura iłowców jest świadectwem sedymentacji niespokojnej i wielokrotnie zaburzonej. Iłowce z otworu Wrzosowo 2 mają charakter zlepieńców ilastych, gdzie w brunatnych iłowcach żelazistych tkwią okruchy iłowców jasnych.

Petrografia czerwonego spągowca – seria wulkaniczna

Serię wulkaniczną reprezentują ryolity i dacyty. Występują także skały piroklastyczne, reprezentowane przez spieczone tufy, oraz skały wulkanogenicze (piroklastyczno-epiklastyczne i epiklastyczno-piroklastyczne), których dokładną charakterystykę można znaleźć w monografii skał permu dolnego (Maliszewska i in., 2016).

Petrografia czerwonego spągowca – górny czerwony spągowiec

Litofacja zlepieńcowa. Zlepieńce są skałami zwięzłymi, barwy szarobrunatnej, czerwonobrunatnej lub szarej. Najczęściej reprezentuja utwory stożków aluwialnych, wykazujac strukturę psefitowo-psamitową. Bywają przewarstwione piaskowcami zlepieńcowatymi lub gruboziarnistymi. Większość zlepieńców należy do odmian drobnookruchowych. Występują tu zarówno bogate w materiał psefitowy ortozlepieńce, złożone z gesto upakowanych okruchów żwiru, jak i parazlepieńce, uboższe w żwir, a bogatsze w masę wypełniającą. Skład materiału detrytycznego zlepieńców jest zawsze związany z obszarem sedymentacji, jego paleogeografia i tektonika. Na obszarze przetargowym występują zlepieńce, określane jako wulkaniczne (oligomiktyczne), jak również polimiktyczne złożone częściowo z okruchów skał wulkanicznych (ryolitów, dacytów), częściowo z fragmentów skał osadowych (piaskowców, wapieni). Zawierają one także pojedyncze okruchy skał metamorficznych. W spoiwie występują minerały ilaste, wodorotlenki żelaza, węglany, kwarc autigeniczny i anhydryt (Fig. 2.24).

Zlepieńce czerwonego spągowca górnego należą do skał bardzo zwięzłych, lecz niekiedy bywają spękane. Ich porowatość (Maliszewska i in., 2016) zwykle wynosi w granicach kilku procent.

Litofacja piaskowcowa. Piaskowce są barwy czerwonobrunatnej lub szaroróżowej, rzadziej – szarej. Najczęściej są one drobno- lub średniouziarnione, nieco rzadziej występują piaskowce zlepieńcowate. Materiał detrytyczny jest wysortowany w dość słabym stopniu, ponadto odznacza się słabym stopniem obto-

czenia ziaren. Z uwagi na skład mineralny detrvtu wvróżniono mikrolitofacje arenitów sublitycznych i litycznych. Niektóre próbki sublitycznoarenitów należą do skał subarkozowych. Oprócz arenitów wyróżniono także waki sublityczne, lityczne i kwarcowe. Niemal wszystkie badane próbki reprezentuja skały zwięzłe o teksturze równoległej, rzadziej - o teksturze bezładnej. Głównym składnikiem piaskowców są ziarna kwarcu, skaleni (niezbliźniaczone skalenie potasowe i polisyntetycznie zbliźniaczony mikroklin), litoklasty (głównie okruchy skał wulkanicznych: szare i brunatne ryolity i dacyty o strukturze afirowej, rzadziej - porfirowej i mikrofelsytowej lub mikropoikilitowej strukturze ich ciasta skalnego). Niektóre okruchy moga reprezentować ignimbryty lub niespieczone tufy popiołowe. Najrzadziej obserwowano klasty trachyandezytów i trachybazaltów, ponadto drobnoziarnistych piaskowców, mułowców i wapieni. Występujące miejscami okruchy brunatnych iłowców uznano za intraklasty. Podrzędnie w materiale detrytycznym piaskowców występuja blaszki muskowitu i biotytu oraz ziarna minerałów ciężkich. Opisany materiał detrytyczny jest spojony mułkowo-ilasto-żelazistą masą wypełniającą oraz minerałami ortochemicznymi, określanymi jako cementy.

W grupie autigenicznych minerałów ilastych wyróżniono illit, kaolinit, chloryty oraz seladonit. Illit występuje w postaci łuseczek oraz włókien. Oznaczenie wieku K-Ar wzrostu illitu w próbce piaskowca np. z otworu Karsk 1 wykazało, że wykrystalizował on w toarku (180,5 mln lat; Maliszewska i Kuberska, 2009). Wydaje się, że prekursorami illitu były ziarna skaleni potasowych, lecz mógł on również krystalizować z wód formacyjnych, co w osadach czerwonego spagowca Niemiec opisali Zwingmann i in. (1998). Kaolinit obserwowano w postaci pseudoheksagonalnych płytek, tworzacych robakowate skupienia o strukturze książeczkowatej (Maliszewska i Kuberska, 2009). Źródłami glinu i krzemionki dla utworzenia kaolinitu mogły być ziarna skaleni i łuseczki łyszczyków. Chloryty występują w postaci blaszek, często tworzących agregaty wachlarzowe lub o strukturze komórkowej (Fig. 2.24). Utworzyły się

one głównie wskutek przeobrażenia ciasta skalnego okruchów wulkanicznych.

Cementy kwarcowe najczęściej występują tu w postaci syntaksjalnych obwódek regeneracyjnych na ziarnach kwarcu lub w postaci izolowanych słupków o symetrii heksagonalnej. Badania inkluzji fluidalnych dostrzeżonych przez Jarmołowicz-Szulc (2009) w kwarcowych obwódkach regeneracyjnych na ziarnach z piaskowców (m. in. Brojce IG-1, Wysoka Kamieńska 2) wykazały temperatury homogenizacji w granicach 131–165°C oraz zasolenie eq. NaCl w granicach 2–9%.

Minerały węglanowe w badanych piaskowcach są reprezentowane głównie przez kalcyt i dolomit (Fig. 2.24), wyjątkowo przez ankeryt. Niemal wyłącznym reprezentantem grupy siarczanów w analizowanych piaskowcach jest anhydryt. Występuje on w postaci cementów porowych, złożonych z pojedynczych tabliczek i ich skupień, a niekiedy tworzy także cementy poikiloklastyczne. Autigeniczne związki żelaza w piaskowcach są reprezentowane przez hematyt i wodorotlenki Fe. W piaskowcach z otworu Brojce IG-1 (przystropowa część profilu) dostrzeżono drobne skupienia pirytu.

Jak wykazały badania petrofizyczne piaskowców, najczęściej odznaczają się one niską porowatością (niekiedy tylko około 20,0%) oraz przepuszczalnością poniżej 0,1 mD, wyjątkowo około 300 mD. Procesami, które najsilniej wpłynęły na ograniczenie pierwotnej, znacznej porowatości świeżo zdeponowanych osadów były: kompakcja mechaniczna i cementacja. Częsta obecność włóknistego illitu w badanych piaskowcach jest niewątpliwie jedną z głównych przyczyn ich niskiej lub zerowej przepuszczalności. Główna przyczyna obecnej porowatości piaskowców jest rozwój mezodiagenetycznych procesów rozpuszczania, które obejmowało zarówno ziarna detrytyczne, jak i składniki cementów.

Litofacja mułowcowa. Mułowce są skałami brunatnymi, zwięzłymi, o teksturze równoległej. Skały te odznaczają się słabym wysortowaniem materiału detrytycznego, stąd obok mułowców właściwych obecność odmian piaszczystych i ilastych. Mułowce często zawierają laminy i soczewki piaszczyste oraz

intraklasty iłowców żelazistych. Miejscami obserwuje sie w nich nodule anhvdrvtowe lub kalcytowe. Najpospolitszym składnikiem detrytycznym mułowców jest ostrokrawędzisty pył kwarcowy. W drobnych ilościach notuje się tu ziarna skaleni i blaszki łyszczyków (głównie muskowitu). Do głównych składników spoiwa mułowców, podobnie jak w piaskowcach, należą minerały ilaste: illit, chloryt i kaolinit. Większość z nich to minerały allogeniczne. Można sądzić, że występują tu również autigeniczne fazy mineralne, lecz nie zostały one dostrzeżone z powodu silnej impregnacji pelitu ciemnymi wodorotlenkami żelaza. Rzadziej, niż w piaskowcach występują kalcyt i dolomit, częściej natomiast - anhydryt. Kwarc autigeniczny pojawia się rzadko.

Litofacja iłowcowa. Iłowce występują w postaci skał ciemnobrunatnych, zwięzłych, odznaczających się teksturą równoległą. Często bywają mułowcowe lub piaszczyste. Podobnie, jak mułowce są one nieporowate i nieprzepuszczalne. Iłowce są złożone głównie z drobnych łuseczek minerałów ilastych impregnowanych wodorotlenkami żelaza. Występują tu rozproszone drobne ziarna kwarcu, skaleni oraz łuseczki łyszczyków. Niekiedy widoczne są skupienia anhydrytu lub kalcytu.

Petrografia czerwonego spągowca – podsumowanie

1. Osady z pogranicza karbonu i permu oraz permu dolnego sa reprezentowane przez piaskowce, mułowce i iłowce; zlepieńce często występują w profilach górnego czerwonego spągowca i miejscami w utworach przygranicznych górnego karbonu i dolnego czerwonego spągowca. Piaskowce z utworów przygranicznych karbonu i permu (formacje z Dziwny i Świńca) są reprezentowane głównie przez arenity i waki kwarcowe, a wiec zawierają mało litoklastów. Z kolei piaskowce górnego czerwonego spągowca w większości są osadami sublitycznymi, zawierającymi liczne okruchy skał wulkanicznych. Ostatnie z wymienionych piaskowców były skałami najbardziej podatnymi na przemiany diagenetyczne i z tego względu w ich obrębie upatruje się warstw o wyraźnych cechach kolektorskich.

2. Piaskowce z utworów najwyższego karbonu i najniższego permu wykazały porowatość w granicach 0,7–8,0%. Porowatość pierwotna została zachowana jedynie w niewielkim stopniu. Najczęściej występuje tu międzykrystaliczna porowatość wtórna, dostrzegana w obrębie agregatów kaolinitowych. Niska przepuszczalność piaskowców jest spowodowana mikroporowym wykształceniem przestrzeni międzyziarnowych, nikłą ilością połączeń między porami oraz bardzo nierównomiernym ich rozmieszczeniem. Nie dostrzeżono warstw o dobrych własnościach zbiornikowych.

3. Piaskowce górnego czerwonego spagowca najczęściej wykazują niską porowatość, lecz dostrzegano warstwy o porowatości 16,0-21,0%, szczególnie w otworach wiertniczych położonych w pobliżu obszaru przetargowego "Gryfice". Międzyziarnową porowatość pierwotną obserwowano rzadko. Najczęściej dostrzegano śródziarnową i międzykrystaliczną porowatość wtórną, utworzoną wskutek rozpuszczania diagenetycznego składników mineralnych, głównie ziaren skaleni i cementów węglanowych. Słaba przepuszczalność większości zbadanych piaskowców wynika z ich niskiej porowatości, a często stanowi efekt zajęcia przestrzeni porowych przez diagenetyczny illit wykształcony w postaci włókien. Krystalizacja illitu rozpoczęła się we wczesnej jurze, a mogła kontynuować się także w jurze środkowej, późnej i kredzie.

4. Osady formacji Dziwny i Świńca oraz czerwonego spągowca górnego zawierają bardzo ubogi materiał organiczny, reprezentowany przez reliktowe formy macerałów witrynitu (składniki witrynitopodobne) oraz inertynit. Brak materii organicznej w wymienionych osadach był spowodowany silnymi warunkami utleniajacymi. Materiał organiczny z osadów formacji Dziwny i Świńca wykazuje znaczną dojrzałość termiczną, odpowiadającą późnej fazie generacji ropy naftowej (1,27-1,31% Ro), wskazując na paleotemperatury w granicach 120-130°C. Należy zaznaczyć, iż znaczny wpływ na transformację substancji organicznej w osadach formacji Dziwny i Świńca oraz górnego czerwonego spagowca miały silnie utleniające warunki sedymentacji i diagenezy.

Koncepcja poszukiwawcza w utworach czerwonego spągowca

Budowa geologiczna czerwonego spągowca na obszarze przetargowym jest słabo rozpoznana. Z powodu różnej jakości danych sejsmicznych i trudności w jednoznacznej interpretacji horyzontu Z1', sugerujemy reprocessing zdjęć sejsmicznych 2D i 3D oparty na sekwencji opracowanej przez INiG–PIB (Bajewski i in., 2019, 2020). Dla zwiększenia lepszej czytelności oraz jednoznaczności horyzontów podcechsztyńskich zalecamy również odwzorowanie poprawnych pól prędkości dla podłoża cechsztynu.

Kluczowym horyzontem poszukiwawczym w utworach czerwonego spągowca jest jego górna część (górny czerwony spągowiec/ formacja Noteci; Fig. 2.16). Występuje ona na

całym obszarze przetargowym z wyłączeniem rejonów północno-wschodniego oraz niewielkim stopniu w północno-zachodniego. Najwiekszych perspektyw poszukiwawczych należy doszukiwać się w południowym pasie aluwialnych piaskowców i zlepieńców. Istnieje szansa, że zostały one rozcięte przez facje fluwialne osadów korytowych, charakteryzujących się dobrymi własnościami petrofizycznymi. Dodatkowo, w południowej części obszaru przetargowego, występują liczne powierzchnie dyslokacyjne (Fig. 2.6). Część z nich mogła zostać reaktywowana w trakcie późniejszych ruchów tektonicznych, dzieki czemu istniała możliwość migracji węglowodorów i ich akumulacja w nowych pułapkach typu strukturalno-tektonicznego.

GRYFICE

Fig. 2.16. Stratygrafia czerwonego spągowca w rejonie polskiej części basenu południowopermskiego (Kiersnowski, w: Maliszewska i in., 2003; zmodyfikowane). Czerwoną linią przerywaną zaznaczono jednostki litostratygraficzne (*sensu* Pokorski, 1981, 1988, 1997), które rozpoznano otworami wiertniczymi na obszarze przetargowym "Gryfice".

GRYFICE

Fig. 2.17. Mapa zasięgu i miąższości wulkanitów wulkanitów formacji wielkopolskiej (Pokorski, materiały rękopiśmienne).

Fig. 2.18. Mapa miąższości serii wulkanicznej dolnego czerwonego spągowca wraz z lokalizacją obszaru przetargowego "Gryfice (Wagner i in., 2008; zmodyfikowane).

Fig. 2.19. Zasięgi litofacji następujących po sobie cykli depozycyjnych górnego czerwonego spągowca w północnozachodniej części Polski (Kiersnowski i Buniak, 2006; zmodyfikowane). Ciąg dalszy na nastęnej stronie.

Fig. 2.19. c.d.

GRYFICE

Fig. 2.20. Schematyczny przekrój litofacjalny utworów górnego czerwonego spągowca północno-zachodniej części Polski. Czerwoną przerywaną linią zaznaczono przybliżoną pozycję obszaru przetargowego "Gryfice" (Kiersnowski i Buniak, 2006; zmodyfikowane).

Fig. 2.21. Mapa litofacjalno-paleogeograficzna stropowej części osadów górnego czerwonego spągowca, tuż przed transgresją morza cechsztyńskiego (Kiersnowski i in., 2020; zmodyfikowane).

Fig. 2.22. Mapa miąższości utworów górnego czerwonego spągowca (saksonu; Wagner i in., 2008; zmodyfikowane).

Fig. 2.23. Arenit kwarcowy. Widoczna porowatość pierwotna (Pp) i wtórna międzykrystaliczna (Pm) pomiędzy krystalitami kaolinitu. Otwór wiertniczy Wrzosowo 8, głęb. 3145,6 m; zdjęcie wykonane w mikroskopie polaryzacyjnym, bez analizatora; próbka nasączona niebiesko zabarwioną żywicą.

Fig. 2.24. Cement anhydrytowy (Ah) w ortozlepieńcu drobnookruchowym. Widoczna porowatość wtórna (strzałki) po częściowym rozpuszczeniu cementu. Otwór wiertniczy Brojce IG-1, głęb. 3611,8 m; zdjęcie wykonane w mikroskopie polaryzacyjnym, nikole skrzyżowane.

2.3.4. PERM – CECHSZTYN

Rozprzestrzenienie i miąższość

Na obszarze przetargowym "Gryfice" utwory cechsztynu zostały nawiercone w 35 otworach wiertniczych, na głębokościach:

- Benice 1: 2374,5–3150,0 m,
- Benice 2: 2504,0–2916,0 m,
- Benice 3: 2367,5–2842,0 m,
- Benice 4K: 2234,5–2752,0 m,
- Brojce IG-1: 2853,0–3609,5 m,
- Chomino 1: 2331,0–2752,0 m,
- Dobropole 1: 2316,0–2883,0 m,

Fig. 2.26. Grubokrystaliczny chloryt i kryształ dolomitu (Do) w przestrzeni porowej piaskowca; widoczne efekty częściowego rozpuszczania dolomitu (strzałki). Otwór wiertniczy Brojce IG-1, głęb. 3608,5 m; zdjęcie wykonane w mikroskopie polaryzacyjnym, nikole skrzyżowane.

- Dusin 1: 2205,0–2662,5 m,
- Gostyń 2: 2578,0–3262,0 m,
- Gryfice 1: 2611,0–3340,5 m,
- Gryfice 2: 2512,0–3391,0 m,
- Gryfice 3: 2697,0–3190,0 m,
- Jarszewo 1: 2165,0–2915,0 m,
- Kaleń 1: dane własności inwestora
- Kamień Pomorski 3: 1995,5–2405,0 m,
- Kamień Pomorski 7: 2026,0–2707,5 m,
- Kamień Pomorski 13: 2034,0–2658,5 m,
- Laska 2: 2067,0–3091,5 m,

- Rekowo 1: 2102,0–2667,0 m,
- Rekowo 2: 2126,5–3014,5 m,
- Rekowo 3: 2121,5–2697,0 m,
- Rekowo 4: 2111,5–2736,0 m,
- Rekowo 6: 2035,5–2746,0 m,
- Skarchowo 1: 2189,5–2667,0 m,
- Strzeżewo 1: 2495,0–3109,0 m,
- Świerzno 1: 2300,0–3084,5 m,
- Świerzno 2: 2354,0–2772,2 m,
- Świerzno 4: 2338,0–3156,0 m,
- Świerzno 5: 2290,0–2883,6 m,
- Świerzno 9: 2247,5–2774,7 m,
- Wrzosowo 1: 2299,0–3077,0 m,
- Wrzosowo 2: 2262,0–3055,5 m,
- Wrzosowo 3: 2239,5–3073,0 m,
- Wrzosowo 8: 2258,0–3075,0 m,
- Wrzosowo 9: 2271,0–3060,5 m.

Spośród nich, 19 otworów przewierciło skały cechsztynu, dowiercając się bezpośrednio pod nimi do utworów dewonu, karbonu, dolnego i górnego czerwonego spągowca. 31 otworów przewierciło utwory dolomitu głównego, tj. sukcesje cyklotemów PZ2, PZ3 i PZ4, dowiercając się do utworów anhydrytu górnego (A1g), a jedynie 4 je nawierciły. Znaczna większość otworów wiertniczych nawiercających bądź przewiercających utwory cechsztynu jest położona w północno-zachodniej oraz zachodniej części obszaru przetargowego, (Fig. 2.3; Fig. 2.31–2.32).

Sumaryczna miąższość cechsztynu jest mocno zróżnicowana, waha się od 409,5 m (Kamień Pomorski 3) do 1024,5 m (Laska 2 – diapir solny przebijający częściowo utwory mezozoiku). W większości otworów miąższość cechsztynu waha się od 450 do 850 m. Zgodnie z sumaryczną mapą miąższości cechsztynu Wagnera i in. (2008), na obszarze przetargowym obserwuje się pasowy układ wzrostu miąższości ku centralnej części basenu permskiego (Fig. 2.25).

Litologia i stratygrafia

Założenia schematu stratygraficznego cechsztynu zostały zaadoptowane przez Tokarskiego (1958) i Poborskiego (1960) dla polskiej części basenu permskiego. W ciągu następnych lat schemat ten był modyfikowany (Wagner i in., 1978) i uzupełniany, zwłaszcza w swej najwyższej części (m.in. Wagner, 1987, 1988, 1994).

W obowiązującym podziale litostratygraficznym cechsztynu dolna granica została ustanowiona w spągu łupka miedzionośnego (T1), a w przypadku jego braku, w spągu wapienia cechsztyńskiego (Ca1; m.in. Wagner i in., 1978). Wśród skał górnopermskich wyróżniono 4 cyklotemy: PZ1, PZ2, PZ3 i PZ4 (Fig. 2.26). Cyklotemy PZ1-PZ3 składają się sekwencji weglanowo-ewaporatowych. Z Cykliczność ich sedymentacji spowodowana była cyklami transgresywno-regresywnymi (Wagner, 1994; Wagner i Peryt, 1997, 1998). Ostatni cyklotem cechsztynu PZ4 składa się terygeniczno-ewaporatowych Z sekwencji (Fig. 2.26), których powstanie wiązało się z cyklicznymi zmianami klimatu od suchego do wilgotnego (Wagner, 1994). Dla północnozachodniej części Polski (w tym obszaru przetargowego "Gryfice") granica między cechsztynem a pstrym piaskowcem występuje w stropie formacji rewalskiej (Szyperko-Teller, 1980; Wagner, 1994)

Cyklotem **PZ1**. Najstarszymi osadami cechsztynu są utwory łupka miedzionośnego T1 (Fig. 2.26; Wagner, 1987, 1994; Wagner i Peryt, 1997). Składają się one z szaroczarnych łupków wapnistych, poziomo laminowanych, bitumicznych, z występującymi szczątkami ryb. Miąższość łupka miedzionośnego waha się od 0,2 do 0,8 m, rzadko przekracza 1,0 m (np.: Benice 1 i Laska 2). Osady te były deponowane poniżej sztormowej podstawy falowania, w warunkach anaerobowych, a w płytszych częściach zbiornika – pomiędzy normalną a sztormową podstawą falowania, w warunkach od dysaerobowych do aerobowych (Oszczepalski i Rydzewski, 1987).

Na utworach T1 zalega poziom skał węglanowych wapienia cechsztyńskiego Ca1 (Fig. 2.26–2.27). Zasięg morza cechsztyńskiego osiągnął swoje maksimum, tworząc jednocześnie basen o urozmaiconej linii brzegowej (Wagner, 1994). W profilach wapienia cechsztyńskiego obserwuje się występowanie trzech asymetrycznych cykli (Peryt, 1984; 1986), związanych z sekwencją transgresywno-regresywną (Peryt, 1986). W morzu cechsztyńskim wyróżniono trzy główne strefy paleogeograficzne: brzeżną platformę węglanową, stok platformy węglanowej i równie basenowa. Na obszarze przetargowym "Gryfice" utwory wapienia cechsztyńskiego występują w strefie równi basenowej (Fig. 2.27). W wyniku zróżnicowanej paleogeomorfologii dna basenu, osady weglanowe były deponowane na wyniesionym obszarze, na którym powstała tzw. płycizna gryficka (Peryt i in., 1978; Wagner, 1987). W dolnej części profilu dominują mikryty ilaste, a w górnej występują skały pochodzenia glonowego, głównie onkolitowe, z dwoma poziomami stromatolitowymi. Osady węglanowe wapienia cechsztyńskiego powstawały w płytkim morzu, w zasięgu strefy fotycznej. Miąższość tych utworów wynosi od kilku do prawie 10 m (Fig. 2.27). W końcowej fazie depozycji wapienia cechsztyńskiego wody w zbiorniku morskim uległy radykalnemu obniżeniu. Proces ten doprowadził do wynurzenia obszarów platform weglanowych i równi basenowych, a zdeponowane w nich osady uległy intensywnym przemianom diagenetycznym (Peryt i Piatkowski, 1976, 1977; Peryt, 1984).

Kolejna ingresja wód morskich w trakcie trwania cyklotemu PZ1 doprowadziła do rozwoju sekwencji ewaporatowej na obszarze całego basenu sedymentacyjnego. Jej zasięg był jednak mniejszy niż zasięg wapienia cechsztyńskiego. W dolnej części sekwencji ewaporatowej występują utwory anhydrytu dolnego A1d (Fig. 2.28). Wykazują one charakterystyczne następstwo transgresywne (Peryt, 1990; Wagner, 1994). W niższych częściach profilu A1d występują skrajnie płytkowodne anhydryty gruzłowe i mozaikowe, przechodzące ku górze w bardziej głębokowodne nieregularnie warstwowane, aż do względnie głębokowodnych anhydrytów laminowanych (Kłapciński, 1991). Na obszarze przetargowym "Gryfice", w południowej części, występuje platforma siarczanowa, która jest obrzeżona strefą pogranicza platformy. W zależności od pozycji paleogeograficznej, miąższości sukcesji Ald występują w przedziale od 30 do 70 m dla stref pozaplatformowych oraz do ponad 250 m w strefach platformowych. Wyżej, na utworach Ald, zalegają utwory najstarszej soli kamiennej Na1 (Fig. 2.26). W strefach płytszych sól kamienna wypełniała obniżenia utworzone

56

w wyniku sedymentacji A1d (op. cit.). Ograniczały je bariery anhydrytowe, które spełniały rolę pułapek chemicznych, uniemożliwiając odpływ ciężkich, nasyconych solanek. Dzięki nim powstał system izolowanych lagun i panwi solnych (Czapowski, 1983; Czapowski i Tomassi-Morawiec, 1985; Czapowski i in., 1993). We wszystkich otworach przewiercających najstarszy cyklotem cechsztynu (PZ1) występują utwory soli kamiennej. Ich miąższości są zróżnicowane, a wynoszą od kilku m do ponad 100 m. Jednakże, w przypadku północno-zachodniej części obszaru przetargowego "Gryfice" (Jarszewo – Wrzosowo - Gostyń), utwory Na1 sa rozdzielone przez utwory anhydrytu środkowego A1s (Fig. 2.29). Analogiczny przypadek został rozpoznany i szczegółowo opracowany przez Dyjaczyńskiego i Peryta (2014) w SW części Polski, na obszarze wyniesienia wolsztyńskiego (Fig. 2.29). Ostatnia część sekwencji cyklotemu PZ1 jest reprezentowana przez utwory anhydrytu górnego A1g (Fig. 2.26). Ich powstanie wiązało się z ponowną ingresją wód na obszar basenu. Zasięg Alg jest najprawdopodobniej nieco większy niż Ald i charakteryzuje się sekwencją transgresywną (Peryt, 1990). W strefie przejścia od basenu głębokowodnego do płytkowodnego występują często platformy Alg, których miąższości osiągają do nawet 300 m. Rozpoznano je m.in. na obszarze zatoki pomorskiej (Wagner, 1987). Część utworów Alg, znajdujących się na obszarze "Gryfice", powstawała na obszarze platformy. Świadczyć o tym mogą duże miaższości opisywanych powyżej skał, które osiągają od poniżej 80 m (Laska 2) do 240 m (Gryfice 2). Wraz z końcem etapu sedymentacji osadów weglanowo-siarczanowo-ewaporatowych PZ1, wieksza cześć platform weglanowych Cal była odsłonięta, co bezpośrednio wiązało się z ich erozją i przemianami diagenetycznymi. Na pozostałym obszarze trwała sedymentacja anhydrytu górnego, pod którymi kryły się platformy anhydrytu dolnego i liczne brzeżne izolowane baseny solne, a także płytkowodne otwarte baseny solne (Wagner, 1994).

Sumaryczna miąższość całego cyklotemu PZ1 na obszarze przetargowym "Gryfice" jest znaczna i osiąga ponad 300 m (Fig. 2.30). Jedynie w krawędziowych częściach, NW, NE i SW, utwory PZ1 mają poniżej 300 m miąższości.

Cyklotem PZ2. Kolejna ingresja wód morza cechsztyńskiego na obszar polskiej części basenu permskiego doprowadziła do sedymentacji utworów dolomitu głównego Ca2. Osady te maja charakter transgresywnoregresywny (Wagner, 1994). Bezpośredni wpływ na układ paleogeograficzny dolomitu głównego ma morfologia podłoża anhydrytu górnego. Na obszarze przetargowym "Gryfice" dominującym elementem paleogeograficznym jest platforma węglanowa Kamienia Pomorskiego (Fig. 2.31-2.32). Składa się ona z przykrawędziowej strefy bariery, niskoenergetycznej równi platformowej oraz zasolonej laguny. W południowo-zachodniej i wschodniej części obszaru przetargowego rozpoznano systemy depozycyjne skłonu platformy oraz płytszej równi basenowej (Fig. 2.31-2.32). Zewnętrzna część platformy węglanowej Kamienia Pomorskiego składa się z osadów wysokoenergetycznych, głównie onkolitów i oolitów (Fig. 2.31-2.32). Występują również liczne struktury mikrobialne, których pojawienie było uzależnione od aktywności hydrodynamicznej wód. Osady bariery okalają prawie całą platformę węglanową Kamienia Pomorskiego, oddzielając jej wewnętrzną lagunę od otwartego zbiornika morskiego (Fig. 2.31–2.32). Na obszarze przetargowym "Gryfice" wiele otworów nawierciło lub przewierciło przykrawędziowe osady bariery platformy węglanowej (m.in. Dusin 1, Gryfice 3, Świerzno 4; Tab. 2.1). Ich miąższość osiąga zazwyczaj do około 40 m, jednakże, w przypadku rejonu Rekowo - Benice, mogą one mieć znacznie większą wartość (74,0 m otwór Benice 3; Fig. 2.31 i Tab. 2.1). W wewnętrznej części platformy weglanowej Kamienia Pomorskiego rozwinęła się rozległa, płytka laguna o charakterze saliny (Fig. 2.31-2.32). Osady te składają się głównie z bandstonów i mat mikrobialnych z podrzędnym udziałem onkolitów. Pośród powyższych utworów pojawiają się liczne konkrecje i spoiwa anhydrytowe, miejscami również przewarstwienia anhydrytów. Miąższość wewnętrznej części platformy Kamienia Pomorskiego wykazuje małe zróżnicowanie. Zazwyczaj waha się ona między 20 a 30 m (Fig.

2.31). Na obszarze przetargowym omawiane osady rozpoznano kilkoma otworami wiertniczymi (np.: Kamień Pomorski 7, Jarszewo 1; Tab. 2.1). Wokół platformy węglanowej Kamienia Pomorskiego rozwinęła się strefa stoku platformy (Tab. 2.1). Miąższość oraz typy deponowanych osadów są uzależnione od kąta nachylenia platformy, uzależnionej od morfologii oraz siły prądów morskich przemieszczających się równolegle do stoku. Osady stoku platformy węglanowej można podzielić na trzy części: górną, środkową i dolną. Górna część stoku składa się głownie z wakstonów i madstonów warstwowanych nieregularnie. Pojawiaja się także osady redeponowane ze środowisk wysokoenergetycznych barier m.in. greinstony ooidowe, peloidy, jak również lokalnie brekcje i debryty. Środkowy stok charakteryzuje się bardziej spokojną sedymentacją. Jego osady są reprezentowane przez madstony warstwowane regularnie i laminowane bandstony glonowe. W przypadku zwiększonego kąta nachylenia stoku pojawiają się struktury spływów grawitacyjnych, o różnej intensywności (od fałdów do lekkiego zbrekcjonowania). Osady dolnej części stoku były deponowane w środowisku niskoenergetycznym i składają się z warstwowanych madstonów i lamiowanych bandstonów glonowych. Szerokość stoku platformy węglanowej Kamienia Pomorskiego na obszarze przetargowym "Gryfice" jest zmienna (Fig. 2.31). Najmniejszy jej zasięg występuje w jego południowo-zachodniej części, gdzie miąższość osiąga do ponad 20 m (otwory Rekowo 2 i Rekowo 4; Fig. 2.31; Tab. 2.1). Nieco szerszy stok platformy węglanowej występuje w wschodniej i północno-wschodniej części obszaru przetargowego. Północna jego cześć osiaga znacznie wieksza miaższość (otwór Strzeżewo 1; Tab. 2.1) w porównaniu do części wschodniej (Fig. 2.31-2.32). Najszerszy i bardziej miąższy stok platformy węglanowej znajduje się w południowej części obszaru przetargowego. Strefa ta charakteryzuje się dużą miąższość, mogącą osiągać nawet ponad 80 m (Tab. 2.1). Ostatnim elemenpaleogeograficznym, tem rozpoznanym w utworach dolomitu głównego, jest równia basenowa. Charakteryzuje się ona niskoenergetycznym środowiskiem sedymentacji, poniżej podstawy falowania. Osady równi basenowej można podzielić dodatkowo, w zależności od głębokości ich położenia w trakcie sedymentacji, na część płytszą i głębszą. Na obszarze przetargowym występują jedynie płytsze części równi basenowej (Fig. 2.31– 2.32). Składają się one z wapiennych laminowanych mudstonów, ale w niższej części profilu mogą pojawić się przewarstwienia glonowych bandstonów. Ich miąższość wynosi od poniżej 5,0 do maksymalnie 10 m (otwory Dobropole 1 i Laska 2; Tab. 2.1).

Na utworach Ca2, na całym obszarze przetargowym "Gryfice", zalegają utwory anhydrytu podstawowego A2 (Fig. 2.26). Granica między tymi wydzieleniami litostratygraficznymi ma charakter ciągłego przejścia (Wagner, 1987, 1994). Na platformach weglanowych dominują płytkowodne anhydryty masywne o miąższości wahającej się od kilku do 30 m (Wagner, 1994). W lokalnych przypadkach obserwuje się wzrost miąższości utworów A2 nawet do 50 m, gdy ich depozycja odbywała się w miejscach występujących przy stromych stokach platformy węglanowej Ca2. Najmniejszą miąższość A2 osiąga w głębszej części basenu. Waha się ona od 2,0 do 4,0 m; anhydryt podstawowy to anhydryty laminowane oraz warstwowane. W otworach wiertniczych przewiercających A2, ich miąższość wynosi od 3,5 m (Wrzosowo 3) do 53,0 m (Rekowo 2). Najczęściej jednakże występuje w przedziale 5-10 m.

Dla całego basenu, zasięg starszej soli kamiennej Na2 jest mniejszy niż A2. Środowisko sedymentacji było tu płytkowodne (Czapowski i in., 1991). Odtworzenie pierwotnej miąższości Na1 jest bardzo trudne z powodu silnego rozwoju późniejszej tektoniki solnej (Wagner, 1994). W przypadku obszaru przetargowego "Gryfice" utwory Na2 występują na całym jego obszarze, osiągając od 35,0 m (Kamień Pomorski 7) do 784 m (Laska 2) miąższości, najczęściej jednak waha się ona w granicach od 50 do 150 m.

W górnej części Na2 utworzyły się, w płytkowodnych salinach, szeroko rozprzestrzenione sole potasowo-magnezowe K2 (Fig. 2.26). Utwory K2 składają się z mieszaniny halitu, sylwinitu i kizerytu. Utwory K2 na obszarze przetargowym "Gryfice" występują lokalnie. Najczęściej jednak były nawiercane w zachodniej jego części. Miąższość K2 jest zróżnicowana i wynosi od 1,5 m (Świerzno 1) do 42,0 m (Rekowo 6).

Sedymentację cyklu ewaporatowego PZ2 kończą cienkie poziomy starszych soli kamiennych kryjących Na2r (Fig. 2.26) oraz anhydrytu kryjącego A2r (Fig. 2.26). Osady te także tworzyły się w środowiskach płytkowodnych, a ich zasięgi pokrywają się z zasięgami Na2.

W większości przypadków, na obszarze przetargowym "Gryfice", nad utworami K2 występują utwory Na2r (Fig. 2.26). Ich miąższość waha się od 3,0 m do (Jarszewo 1) do 26,5 m (Rekowo 2). Utwory A2r obszaru przetargowego "Gryfice" zostały nawiercone w większości otworów wiertniczych. W zależności od ich lokalizacji, która jest uzależniona od rozkładu paleogeograficznego starszych poziomów litostratygraficznych cechsztynu, zalegają one na utworach Na2, K2 bądź Na2r. Miąższość A2r jest niewielka, wynosi, w większości przypadków, od 1,0 m do ponad 5,0 m. Tylko w jednym otworze wiertniczym udało się udokumentować ich większe nagromadzenie (Wrzosowo 8).

Według Wagnera (1994): "W końcowym etapie rozwoju basenu cyklotemu PZ2, w całym zbiorniku panowały warunki skrajnie płytkowodne. Centralny basen sedymentacyjny został wypełniony osadami soli kamiennych i potasowych. Przybrzeżne części platform węglanowych zostały odsłonięte i trwała tu niezbyt intensywna sedymentacja terygeniczna, Erozja i sedymentacja klastyków nie były silne, ponieważ panował w tym czasie skrajnie suchy klimat".

Miąższość sukcesji węglanowo-ewaporatowej cyklotemu PZ2 na obszarze przetargowym "Gryfice" osiąga wartość w przedziale 100–200 m. (Fig. 2.33). Jedynie w SW jego części miąższość przekracza 200 m (Fig. 2.33).

Cyklotem PZ3. Zróżnicowany paleorelief, jaki występował w poprzednich cyklach sedymentacyjnych, został ostatecznie wyrównany przez ewaporaty cyklotemu PZ2 (Wagner, 1994). Kolejna transgresja zapoczątkowała depozycję osadów trzeciego cyklotemu. Rozpoczyna się ona utworami szarego iłu solnego T3 (Fig. 2.26). Jego miąższość nie przekracza 5 m. Na utworach T3 zalegają utwory dolomitu płytowego Ca3 (Fig. 2.26). Są one głównie reprezentowane przez ilaste dolomity mikrytowe, których miąższość nie przekracza kilku metrów (Wagner, 1990). Górna część cyklotemu PZ3 składa się z utworów anhydrytu głównego A3 (Fig. 2.26) i młodszej soli kamiennej Na3 (Fig. 2.26) z lokalnie występującą młodszą solą potasowo-magnezową K3 (Fig. 2.26). W wyniku zwilgotnienia klimatu, w utworach Na3 zaznacza się obecność materiału terygenicznego. Zmiana charakteru deponowanych osadów w górnej części cyklotemu PZ3 była zwiazana ze zmiana klimatu w basenie cechsztyńskim, która wiązała się z tendencją do zwiększenia wilgotności (Wagner, 1994).

Na obszarze przetargowym "Gryfice" sumaryczne miąższości utworów cyklotemu PZ3 wahają się w granicach od powyżej 100 m do poniżej 200 m (Fig. 2.34).

Cyklotem PZ4. Pod koniec sedymentacji Na3 rozpoczęła się regresja, która postępowała sukcesywnie w trakcie sedymentacji osadów cyklotemu PZ4 (Wagner, 1990). W następujących po sobie ogniwach cyklotemu PZ4 zasięgi ewaporatów zmniejszają się na rzecz postępującej progradacji osadów terygenicznych do basenu ewaporatowego (Wagner, 1994; Wagner i Peryt, 1997). Miąższość soli kamiennych subcyklotemu PZ4a wynosi od 10 do 20 m, natomiast soli kamiennych subcyklotemu PZ4b waha się od kilku do 10 m (Wagner, 1990). Miąższość skał terygenicznych wynosi 10–20 m (*op. cit.*).

Nad ewaporatami cechsztynu różnych subcyklotemów PZ4 leży terygeniczna formacja rewalska (Fig. 2.26). Składa się ona z czerwonych mułowców, wśród których występują liczne konkrecje anhydrytowe. W stropowej części dodatkowo pojawiają się przewarstwienia piaszczyste. Utwory formacji rewalskiej osiągają do 88 m miąższości (Wagner, 1990). Zasięg deponowanych osadów omawianej formacji może być porównywalny do maksymalnego zasięgu basenu cechsztyńskiego (Wagner, 1990).

Miąższość cyklotemu PZ4 na obszarze przetargowym osiąga przeważnie do 100 m (Fig. 2.35). Jedynie w kierunku południowym i południowo-wschodnim omawianego rejonu, zwiększa się ona i wynosi między 100 m a 200 m (Fig. 2.35).

Petrografia utworów dolomitu głównego

Zdecydowana większość otworów nawiercających i przewiercających utwory dolomitu głównego Ca2 na obszarze "Gryfice" została wykonana w latach 70-tych minionego wieku, kilka – w latach 80-tych oraz jedynie dwa później (odpowiednio Kaleń 1 w 2000 r. i Chomino 1 w 2014 r.). Wyniki badań petrograficznych z tych ostatnich dwóch otworów są całkowicie (Kaleń 1) lub częściowo (Chomino 1) niedostępne.

Opisy petrograficzne utworów dolomitu głównego, zawarte w dokumentacjach wynikowych z wierceń z lat 70-tych i 80-tych XX wieku, dalece odbiegają od współczesnych standardów, np. praktycznie brak informacji o diagenezie, a opisy wykształcenia mikrofacjalnego są bardzo niejasne. Z opisów zamieszczonych w powyżej wymienionych źródłach można wnosić, że utwory Ca2 na platformie Kamienia Pomorskiego to w większości zdolomityzowane utwory ziarniste - greinstony i pakstony onkoidowe/ooidowe i peloidowe. Miejscami ważnym składnikiem są także utwory mikrobialne. Porowatość i przepuszczalność jest generalnie słaba, co jest spowodowane intensywną cementacją (cementy dolomitowe i anhydrytowe). Należy podkreślić, iż w prawie wszystkich tych otworach z utworów Ca2 wykonano dużą liczbę płytek cienkich, które można by obecnie wykorzystać do badań petrograficznych. Bardziej szczegółowe dane są dostępne jedynie dla trzech otworów wiertniczych: Chomino 1, Benice 3 i Brojce IG-1.

W otworze Chomino 1, zlokalizowanym w obrębie przykrawędziowej bariery oolitowo-onkolitowej, jak wynika z krótkiego opisu zamieszczonego w dokumentacji prac geologicznych niekończących się udokumentowaniem zasobów złoża na koncesji "Kaleń" (Chruścińska i Płatek, 2016), utwory Ca2 są wykształcone głównie jako osady ziarniste (greinstony i pakstony ooidowe i peloidowe z domieszką bikolastów, wadoidów i intraklastów). Zawierają one nieliczne laminy/przewarstwienia utworów mikrobialnych. Utwory te charakteryzują się obecnie generalnie bardzo słabą porowatością i przepuszczalnością.

Przemiany diagenetyczne oraz związany z nimi rozwój przestrzeni porowej zachodziły wieloetapowo. Procesy diagenetyczne doprowadziły miejscami do zatarcia pierwotnych cech strukturalno-teksturalnych. W poziomach utworów ziarnistych (pakstony, greinstony), które powinny charakteryzować się wysokimi porowatościami, praktycznie całość porowatości międzyziarnowej i wewnątrzziarnowej wypełnia cement anhydrytowy (Chruścińska i Płatek, 2016). Obok anhydrytu występuje tu także halit, dolomit oraz sellait. Obserwowana miejscami porowatość, dochodząca do 10,0%, to mikroporowatość (międzykrystaliczna, związana z dolomityzacją), która nie wpływa istotnie na wzrost przepuszczalności. Na poprawę przepuszczalności wpływają jedynie drożne mikroszczeliny, które stwierdzono w pojedynczych próbkach.

W otworze Benice 3, zlokalizowanym, podobnie jak otwór omówiony wyżej, w obrębie bariery, utwory Ca2 są reprezentowane również głównie przez zdolomityzowane greinstony i pakstony oolitowe (Słowakiewicz i in., 2010; Fig. 2.37). Biogeniczne bandstony są rzadkie i występują w środkowej (bindstony/laminity mikrobialne) i górnej (framstony/stromatolity) części profilu. W spągu Ca2 spotyka się floatstony zbudowane z intraklastów utworów ziarnistych i biogenicznych o rozmiarze od 4 do 60 mm. Ziarna nieszkieletowe są najczęściej reprezentowane przez ooidy i wadoidy; peloidy, ziarna złożone, onkoidy i pizoidy są rzadkie. Miedzyziarnowa przestrzeń porowa w omawianych osadach została wypełniona cementem dolomitowym (Fig. 2.37) i anhydrytowym (Fig. 2.38). Osady te uległy kompakcji chemicznej, czego objawem są dobrze wykształcone stylolity (Fig. 2.37).

Badania mikrotermometryczne inkluzji fluidalnych w cemencie anhydrytowym z otworu Benice 3 wykazały, że roztwory mineralizujące były solankami H₂O-CO₂-NaCl-CaCl₂ (Słowakiewicz i in., 2010, Słowakiewicz i Poprawa, 2010). Obliczone temperatury i ciśnienia krystalizacji wahają się odpowiednio w przedziale 94–110°C i 270–330 barów. Przeciętny skład solanki wynosi 3,9% wagowych równoważnika NaCl, co sugeruje, że anhydryt w utworach Ca2 powstał z warunkach płytkiego i średniego pogrzebania. Miało to miejsce w okresie wczesnej jury po dolomityzacji i migracji roztworów niosących weglowodory.

W otworze Brojce IG-1, położonym w strefie basenowej, według Piątkowskiego (1986) w osadach Ca2 (miąższość 8,5 m, prawdopodobnie tektonicznie zredukowana) można wyróżnić trzy kompleksy mikrofacjalne. W najniższej części profilu występują silnie zanhydrytyzowane laminowane dolosparyty i dolomikryty (madstony). Laminacja jest podkreślona skupieniami i smugami substancji ilasto-bitumicznej. Ponadto stwierdzono tutaj horyzontalne stylolity. Podobne osady stwierdzono także w najwyższej części profilu - silnie zanhydrytyzowane dolomikryty (madstony) o horyzontalnej laminacji, zawierające rozproszony pył kwarcowy. W środkowej części profilu występuje natomiast prawie 4-m miaższości warstwa pakstonów peloidowych i peloidowo-bikolastycznych z przewarstwieniami madstonów. Wśród bioklastów dominują fragmenty cienkoskorupowych małżów i ślimaków.

Podsumowując, można generalnie stwierdzić, iż, tak jak zauważyli to już Mikołajewski i Słowakiewicz (2008), opisując podobnie wykształcone utwory Ca2 na półwyspie Grotowa (południowe obrzeżu basenu), przeobrażenia diagenetyczne oraz rozwój przestrzeni porowej zachodziły wielostopniowo i związane były zarówno z etapem depozycyjnodiagenetycznym, jak również z etapem pogrzebania. Niektóre z nich przyczyniły się do obniżenia potencjału zbiornikowego (kompakcja, cementacja), inne w znacznym stopniu mogły go poprawić (rozpuszczanie, szczelinowatość). Najbardziej niekorzystnie na zabudowe przestrzeni porowej wpłyneła cementacja dolomitowa i anhydrytowa. Według Słowakiewicza i in. (2010), w utworach Ca2 na platformie Kamienia Pomorskiego można wyróżnić dwa etapy diagenezy, które wpłynęły na ich własności zbiornikowe, doprowadzając do ich pogorszenia. Na etapie wczesnej diagenezy doszło w osadach barierowych, wśród których dominują greinstony i pakstony, do niewielkiej redukcji pierwotnie bardzo dużej porowatości. Na etapie późniejszej diagenezy, w warunkach stopniowego coraz głębszego pogrzebania, doszło do silnego pogorszenia własności zbiornikowych. Za obniżenie potencjału zbiornikowego odpowiadają przede wszystkim zróżnicowane procesy cementacji oraz kompakcja chemiczna. Z kolei zeszczelinowacenie i stylolityzacja, które stwierdzono w niektórych miejscach, może prowadzić do powstania potencjalnych szlaków migracji węglowodorów i roztworów mineralizujących.

Koncepcja poszukiwawcza w utworach dolomitu głównego

Pod względem rozpoznania geologicznego, dolomit główny obszaru przetargowego "Gryfice" należy uznać za obszar stosunkowo średnio bądź dobrze rozpoznany. Większość otworów wiertniczych jest położona wśród przykrawędziowych barier oolitowych oraz w rowie Trzebieszowa – Koplina. Podobnie jak w przypadku opisywanych wcześniej koncepcji poszukiwawczych (górny karbon i górny czerwony spągowiec), sugerujemy ponowny reprocessing istniejących zdjęć sejsmicznych 2D i 3D oraz wykorzystanie sekwencji przetwarzania opracowanej przez INiG-PIB (Bajewski i in., 2019, 2020).

Własności petrofizyczne dla utworów dolomitu głównego są niekorzystne. Cechują się one niską wartością porowatości i bardzo słaba przepuszczalnościa. Najlepszymi parametrami kolektorskimi powinny charakteryzować się strefy przykrawędziowych barier oolitowych, które jako deponowane osady posiadały pierwotnie dobre własności petrofizyczne oraz dodatkowo były poddane w trakcie depozycji Ca2 subaeralnej ekspozycji (Peryt i in., 1989). Jednakże, w wyniku działalności późniejszych procesów diagenetycznych, własności kolektorskie tych osadów zostały zredukowane. Badania mikrotermicznych inkluzji fluidalnych cementów anhydrytowych i historii pogrzebania, wykonane w otworach reprezentujących osady barier oolitowych, wskazują, że początek procesów anhydrytyzacji utworów węglanowych nastąpił we wczesnej jurze (Słowakiewicz i Poprawa, 2010: Słowakiewicz i in., 2010). Działanie powyższego procesu nastąpiło po wcześniejszej dolomityzacji osadów barier oolitowych i w trakcie migracji węglowodorów. Jednakże, dodatkowym, a zarazem kluczowym czynnikiem poprawiającym własności kolektorskie omawianych utworów, jest działalność tektoniczna, tworząca liczne systemy porowoszczelinowe. Powstały one w wyniku ruchów transtensyjnych podłoża paleozoicznego, dzięki którym tworzyły się prostopadłe do regionalnych powierzchni dyslokacyjnych rowy mezozoiczne typu "horse-tail" (Bobek i in., 2021), a zarazem skały dolomitu głównego ulegały w pewnym stopniu dezintegracji. Wśród osadów bariery oolitowej, która posiada system porowo-szczelinowy, odkryto i udokumentowano złoże Rekowo, stanowiące analog dla tej koncepcji poszukiwawczej.

W przypadku stref przykrawędziowych barier oolitowych na obszarze przetargowym "Gryfice" najmniej rozpoznanym jest rejon Grądy – Rybokarty N – Gryfice. Sugerujemy wykonanie na nim, w omawianych osadach, krzywionych, horyzontalnych otworów, dzięki którym, w przypadku występowania medium złożowego, będzie możliwy większy i bardziej ekonomiczny jego uzysk.

Perspektywiczne również wydają się być obszary stoku platformy węglanowej znajdujące się w pobliżu rowów mezozoicznych. Utwory dolomitu głównego w tych strefach charakteryzują się system porowo-szczelinowym, a pułapki mają charakter strukturalno-tektoniczny. Ich powstanie i własności kolektorskie wiązały się prawdopodobnie z transtensyjnymi ruchami przesuwczymi, które doprowadziły do spękania skał dolomitu głównego oraz powstania rowów mezozoicznych. Analogiczne struktury występują na południe od obszaru przetargowego i zostały w nich odkryte ekonomiczne nagromadzenia weglowodorów: złoża Wysoka Kamieńska i Błotno.

Fig. 2.25. Mapa miąższości cechsztynu wraz z likalizacją obszaru przetargowego "Gryfice" (Wagner, 1998; zmodyfikowane). Białym konturem zaznaczono granice obszaru przetargowego, niebieska linia – zasięg cyklotemu PZ2 (stassfurt); zielona linia – zasięg cyklometu PZ3 (leine); czerwona linia – zasięg cyklotemu PZ4 (aller).

GRYFICE

Fig. 2.26. Stratygrafia cechsztynu w Polsce. Podział litostratygraficzny jest oparty na pracach Wagnera (1987, 1988, 1994; za Słowakiewiczem i Mikołajewskim, 2009; zmodyfikowane).

Fig. 2.27. Mapa paleogeograficzno-miąższościowa wapienia cechsztyńskiego – Ca1 wraz z lokalizacja obszaru przetargowego "Gryfice" (Buniak i in., 2013a; zmodyfikowane).

Fig. 2.28. Mapa paleogeograficzno-miąższościowa wapienia cechsztyńskiego – Ca1 wraz z lokalizacja obszaru przetargowego "Gryfice" (Wagner, 1998; zmodyfikowane).

Fig. 2.29. Stratygrafia cyklu PZ1 w rejonie wyniesienia brandenbursko-wolsztyńsko-pogorzelskiego (według Dyjaczyńskiego i Peryta, 2014; zmodyfikowane).

Fig. 2.30. Mapa paleogeograficzno-miąższościowa cyklotemu PZ1 wraz z lokalizacją obszaru przetargowego "Gryfice" (Wagner, 1998; zmodyfikowane).

Fig. 2.31. Mapa paleogeograficzno-miąższościowa dolomitu głównego - Ca2 wraz z lokalizacją obszaru przetargowego "Gryfice" (Wagner, 2012; zmodyfikowane).

Fig. 2.32. Mapa paleogeograficzno-miąższościowa dolomitu głównego - Ca2 wraz z lokalizacją obszaru przetargowego "Gryfice" (Buniak i in., 2013b; zmodyfikowane).

Nazwa otworu	Strop Ca2 [m]	Spąg Ca2 [m]	Miąższości [m]	
Benice 1	2739,0	2793,0	54,0	
Benice 2	2836,0	2881,0	45,0	
Benice 3	2731,0	2805,0	74,0	
Benice 4K	2611,5	2688,5	77,0	
Brojce IG-1	3235,0	3243,5	8,5	
Chomino 1	2685,5	2728,0	39,0	
Dobropole 1	2850,5	2868,0	17,5	
Dusin 1	2583,5	2643,0	59,5	
Gostyń 2	2916,5	2945,5	29,0	
Gryfice 1	2984,0	3012,5	28,5	
Gryfice 2	3006,0	3035,0	29,0	
Gryfice 3	3136,5	3170,0	33,5	
Jarszewo 1	2525,0	2548,0	23,0	
Kaleń 1		dane są własnościa inwestora		
Kamień Pomorski 3	2352,0	2384,0	32,0	
Kamień Pomorski 7	2360,0	2390,0	30,0	
Kamień Pomorski 13	2326,5	2356,0	29,5	
Laska 2	2855,0	2873,0	18,0	
Rekowo 1*	2666,0	2667,0	1,0	
Rekowo 2	2705,0	2727,0	22,0	
Rekowo 3	2645,0	2667,0	22,0	

Rekowo 4	2680,0	2710,0	30,0
Rekowo 6	2700,0	2720,0	20,0
Skarchowo 1	2590,0	2647,0	57,0
Strzeżewo 1	2768,0	2823,0	55,0
Świerzno 1	2687,5	2714,5	27,0
Świerzno 2*	2748,0	2772,2	24,2
Świerzno 4	2777,5	2811,5	34,0
Świerzno 5	2840,0	2872,0	32,0
Świerzno 9*	2769,0	2774,7	5,7
Wrzosowo 1	2742,5	2785,0	42,5
Wrzosowo 2	2675,0	2720,0	45,0
Wrzosowo 3	2696,0	2739,0	43,0
Wrzosowo 8	2735,0	2770,0	35,0
Wrzosowo 9	2714,5	2758,0	43,5

Tab. 2.1. Otwory przewiercające dolomit główny. *otwory nawiercające dolomit główny.

Fig. 2.33. Mapa paleogeograficzno-miąższościowa cyklotemu PZ2 wraz z lokalizacją obszaru przetargowego "Gryfice" (Wagner, 1998; zmodyfikowane).

Fig. 2.34. Mapa paleogeograficzno-miąższościowa cyklotemu PZ3 wraz z lokalizacją obszaru przetargowego "Gryfice" (Wagner, 1998; zmodyfikowane)

Fig. 2.35. Mapa paleogeograficzno-miąższościowa cyklotemu PZ4 wraz z lokalizacją obszaru przetargowego "Gryfice" (Wagner, 1998; zmodyfikowane)

Fig. 2.37. Objaśnienia do map paleogeograficznych (Wagner, 1998).

Fig. 2.38. A. Zdolomityzowamy greinston oolitowy przecięty szwem stylolitowym, porowatość międzyziarnową wypełnia dolosparytowy cement; światło przechodzące, skrzyżowane nikole. **B.** Ten sam obraz jak A w katodolumine-scencji (CL). W szwie stylolitowym widoczne: sellait (jasne świecenie), dolomit (pomarańczowy) i materia organiczna (czarna). Otwór Benice 3, próbka z głębokości 2735,5 m (Słowakiewicz i in., 2010).

Fig. 2.39. Cement anhydrytowy, widoczna mikroporowatość międzykrystaliczna, obraz SEM. Otwór Benice 3, próbka z głębokości 2777,5 m (Słowakiewicz i in., 2010).

2.3.5. TRIAS

Rozprzestrzenienie i miąższość

Utwory triasu na obszarze przetargowym "Gryfice" przewiercono w 36 otworach wiertniczych, w 2 zaś jedynie je nawiercono, odpowiednio na głębokościach:

- Benice 1: 1018,0–2374,0 m,
- Benice 2: 1103,0–2504,0 m,
- Benice 3: 1034,0–2367,5 m,
- Benice 4K: 1495,0–2178,0 m,
- Brojce IG-1: 1156,0–2853,0 m,
- Chomino 1: 1055,0–2331,0 m,
- Dobropole 1: 1179,0–2316,0 m,
- Dusin 1: 959,0–2205,0 m,
- Gostyń 2: 1217,0–2578,0 m,
- Gostyń IG-1: 1276,0–2133,4 m,
- Gryfice 1: 954,0–2611,0 m,
- Gryfice 2: 868,0–2512,0 m,
- Gryfice 3: 995,0–2697,0 m,
- Jarszewo 1: 856,0–2165,0 m,
- Kaleń 1: dane są własnością inwestora
- Kamień Pomorski 3: 655,0–1995,5 m,
- Kamień Pomorski 7: 686,0–2026,0 m,
- Kamień Pomorski 13: 658,0–2034,0 m,
- Laska 2: 1428,0–2067,0 m,
- Mechowo IG-1: 1130,0–1347,0 m, (nieprzewiercono)
- Rekowo 1: 917,0–2102,0 m,
- Rekowo 2: 914,0–2126,5 m,
- Rekowo 3: 936,0–2121,5 m,
- Rekowo 4: 936,0–2111,5 m,

- Rekowo 6: 957,0–2035,5 m,
- Skarchowo 1: 890,0–2189,5 m,
- Strzeżewo 1: 930,0–2495,0 m,
- Świerzno 1: 776,0–2300 m,
- Świerzno 2: 819,0–2354,0 m,
- Świerzno 4: 837,0–2338,0 m,
- Świerzno 5: 830,0–2290,0 m,
- Świerzno 9: 815,0–2247,5 m,
- Trzęsacz GT-1: 1208,0–1224,5 m, (nieprzewiercono)
- Wrzosowo 1: 840,5–2299,0 m,
- Wrzosowo 2: 820,0–2262,0 m,
- Wrzosowo 3: 817,5–2239,5 m,
- Wrzosowo 8: 852,0–2258,0 m,
- Wrzosowo 9: 811,0–2271,0 m.

Miąższość triasu jest zróżnicowana. Wynosi ona od 639,0 m (Laska 2) do 1702,0 m (Gryfice 3).

Litologia i stratygrafia

Utwory dolnego triasu na obszarze przetargowym "Gryfice" można podzielić na trzy części. Dolna część składa się z iłowców i mułowców (formacja bałtycka; Szyperko-Teller, 1979). Środkowa partia dolnego triasu jest reprezentowana przez sukcesję oolitowopiaskowcową oraz skały bardzo drobnoi drobnoklastyczne (formacja pomorska; Szyperko-Teller, 1982), które są zastępowane przez piaskowce (formacja połczyńska). Ostatnia, górna część dolnego triasu składa
się w ponad 80% z skał klastycznych (formacja barwicka), wśród których pojawiają się dwa charakterystyczne kompleksy regionalne (ogniwa). W dolnym kompleksie występują iłowce (ogniwo iłowców z Czaplinka), w górnym zaś iłowce z przewarstwieniami węglanowymi (ogniwo sicińskie).

Utwory środkowego triasu (wapień muszlowy) w większości swojego profilu składają się z typowych skał weglanowych (wapienie i dolomity), wśród których występują także margle, iłowce i przewarstwienia anhydrytowe (m.in. Gajewska, 1997a). Jedynie w jego najwyższej części dochodzi do wyraźnej zmiany litologicznej i sukcesja węglanowa zostaje zastąpiona przez sukcesję klastycznoweglanowa. Zbudowana jest ona z szarych, czerwonych i pstrych iłowców z przewarstwieniami mułowców, piaskowców, wapieni, dolomitów i margli (warstwy sulechowskie; Gajewska, 1997b). Często wśród tych skał pojawiają się zwęglone szczątki roślinne, tworzące cienkie warstewki węgla brunatnego.

W dolnej części profilu górnego triasu występują dwa miąższe kompleksy czerwonych

skał ilasto-mułowcowych, z czego w dolnym pojawiają się przewarstwienia siarczanowoewaporatowe (warstwy gipsowe dolne; Gajewska, 1997b), w górnym zaś udział warstw anhydrytowych, dolomitowych i piaskowcowych jest minimalny (warstwy gipsowe górne). Powyższe kompleksy są rozdzielone sukcesją piaskowcową, z bardzo nielicznym udziałem śladów szczątków flory lub ilastomułowcowa, charakteryzującą się bardzo licznymi szczątkami roślinnymi (piaskowiec trzcinowy). Następnie w profilu górnego triasu występują czerwone i wiśniowe iłowce i mułowce węglanowe, a czasem pojawiają się iłowce z anhydrytem, piaskowce i zlepieńce (warstwy zbąszyneckie i jarkowskie; Deczkowski, 1997). W najwyższej części profilu górnego triasu dochodzi do zmiany barwy skał, z czerwonej na szara. Wśród tych skał widać ich dwudzielność. Dolna część składa się głównie z piaskowców z przewarstwieniami mułowców, górna zaś jest zdominowana przez mułowce i iłowce z licznymi szczątkami zwęglonej flory (warstwy wielichowskie).

2.3.6. JURA

Rozprzestrzenienie i miąższość

Na obszarze przetargowym "Gryfice" aż 38 otworów wiertniczych przewierciło utwory jury, tylko zaś w jednym przypadku są one "jedynie" nawiercone (otwór Kamień Pomorski). Sumaryczna miąższość kompleksu jurajskiego wynosi od 553,2 m (Kamień Pomorski) do 1484,5 m (Benice 4K). Poniżej zestawiono otwory nawiercające/przewiwrcające jurę, odpowiednio na głębokościach:

- Benice 1: 28.0–1018.0 m,
- Benice 2: 54,0–1103,0 m,
- Benice 3: 18,0–1034,0 m,
- Benice 4K: 19,5–1504.0 m,
- Brojce IG-1: 31,0–1156,0 m,
- Chomino 1: 46,5–1055,0 m,
- Dobropole 1: 44,5–1179,0 m,
- Dusin 1: 16,0–959,0 m,
- Gostyń 2: 54,0–1217,0 m,
- Gostyń IG-1: 46,0–1276,0 m,

- Gryfice 1: 70,0–954,0 m,
- Gryfice 2: 39,0–868,0 m,
- Gryfice 3: 79,0–995,0 m,
- Jarszewo 1: 35,0–856,0 m,
- Kaleń 1: dane są własnością inwestora
- Kamień Pomorski: 26,8–580,0 m,
- Kamień Pomorski 3: 40,0-655,0 m,
- Kamień Pomorski 7: 44,0–686,0 m,
- Kamień Pomorski 13: 30,0-658,0 m,
- Laska 2: 104,0–1428,0 m,
- Mechowo IG-1: 120,0–1130,0 m,
- Rekowo 1: 70,0–917,0 m,
- Rekowo 2: 64,0–914,0 m,
- Rekowo 3: 87,0–932,5 m,
- Rekowo 4: 49,5–936,0 m,
- Rekowo 6: 67,0–957,0 m,
- Skarchowo 1: 24,0–890 m,
- Strzeżewo 1: 45,0–930,0 m,
- Świerzno 1: 54,0–776,0 m,
- Świerzno 2: 70,0–819,0 m,

- Świerzno 4: 54,0–837,0 m,
- Świerzno 5: 46,0–830,0 m,
- Świerzno 9: 69,0–815,0 m,
- Trzęsacz GT-1: 94,0–1208,0 m,
- Wrzosowo 1: 55,0–840,5 m,
- Wrzosowo 2: 34,0–820,0 m,
- Wrzosowo 3: 40,0–817,5 m,
- Wrzosowo 8: 52,0–852,0 m,
- Wrzosowo 9: 42,0–811,0 m.

Pod kenozoikiem na obszarze "Gryfice" występują różne wychodnie systemu jurajskiego (Fig. 2.4). Na prawie całym obszarze przetargowym dominują głównie utwory środkowej jury (Fig. 2.4). W jego NW i SE części występują skały dolnej jury, w najbardziej zaś brzeżnych rejonach pojawiają się wychodnie górnej jury (Fig. 2.4). Powyższy układ strukturalny powstał w wyniku działalności erozyjnej, która była efektem inwersji bruzdy śródpolskiej oraz ruchów blokowych wzdłuż stref rozłamowych w jurze (m.in. Dadlez i in., 2000).

Litologia i stratygrafia

Profil dolnej jury na obszarze przetargowym "Gryfice" składa się głównie z kompleksów

iłowcowo-mułowcowych i piaskowcowych. Ich miąższość wynosi od 800 m w północnej jego części do 900 m w części południowej. Szczególnie istotny dla badań sedymentologiczno-petrologicznych (m.in. Maliszewska, 1997; Pieńkowski, 1997) utworów dolnej jury jest otwór Mechowo IG-1, charakteryzujący się bardzo dużym uzyskiem rdzenia z omawianego interwału stratygraficznego.

Utwory środkowej jury są reprezentowane przez ciemnoszare i brunatne mułowce z fauną, z przewarstwieniami jasnoszarych mułowców, drobnoziarniste piaskowce, miejscami oolitów żelaziste oraz syderyty. Ich miąższość wynosi od 300 do 500 m (Dadlez i in., 1998).

Utwory górnej jury na obszarze przetargowym "Gryfice", ze względu na erozję przedeoceńską, zachowały się jedynie w brzegowych częściach wału pomorskiego (Brochwicz-Lewiński, 1987). Zostały one przewiercone w trzech otworach wiertniczych (Dobropole 1, Laska 2 i Trzęsacz GT-1). Utwory górnej jury składają się z szarych wapieni z marglami (dolna część) oraz szarych wapieni, wapieni mułowcowych z wkładkami mułowców oraz iłowców (górna część).

2.3.7. KREDA

Rozprzestrzenienie i miąższość

W najbardziej północno-wschodniej krawędzi i wschodniej części obszaru przetargowego "Gryfice" występują utwory kredy (Fig. 2.4). Zachowały się one w formie izolowanego obniżenia, które strukturalnie występuje jako synklina Trzebiatowa. Jej północno-wschodnie skrzydło charakteryzuje się stromym zapadaniem, południowo-zachodnie zaś łagodnym (Fig. 2.4). Centralna część osi synkliny Trzebiatowa rozciąga się w kierunku NW-SE, która jest równoległa z kierunkiem centralnej osi antyklinorium śródpolskiego.

Na obszarze przetargowym "Gryfice", tylko w jednym głębokim otworze wiertniczym przewiercono utwory dolnej i górnej kredy – Trzęsacz GT-1. Osiągają one sumarycznie 46 m miąższości.

Litologia i stratygrafia

Na obszarze przetargowym "Gryfice" utwory dolnej kredy, które zostały przewiercone otworem Trzebusz GT-1, składają się z ciemnoszarych i czarnych mułowców oraz, w mniejszej ilości, z ciemnoszarych iłowców. Na tych utworach zalegają szare piaskowce kwarcowe, różnoziarniste, o spoiwie ilastym, charakteryzujące się słabą zwięzłością. Pośród piaskowców występują wkładki ciemnoszarych mułowców ze zwęgloną substancją roślinną. Przewiercone utwory dolnej kredy na obszarze przetargowym "Gryfice" osiągają 26,0 m miąższości.

Na utworach dolnej kredy zalegają skały górnej kredy. Są one reprezentowane przez jasnoszare margle słabo piaszczyste. W ich spągu zaznacza się niewielkiej miąższości wkładka ciemnoszarych i czarnych iłowców. Przewiercone utwory górnej kredy na obszarze "Gryfice" osiągają 20 m miąższości. Na podstawie analizy mapy strukturalnej spągu górnej kredy Jaskowiak-Schoeneichowej i Po-

2.3.8. KENOZOIK

Rozprzestrzenienie i miąższość

Na obszarze przetargowym "Gryfice" utwory miocenu występują jedynie w pobliżu miejscowości Pobierowo, w formie fragmentarycznie zachowanego płata pokrywy neogeńskiej, rozwiniętej na utworach mezozoiku (Dobracka i in., 1977). Zostały one przewiercone jednym płytkim otworem na głębokości 58,4 – 89,0 m (*op. cit.*).

Utwory czwartorzędu pokrywają całkowicie obszar przetargowy "Gryfice". Zalegają one bezpośrednio na wychodniach dolnej, środkowej i górnej jury, jak również, w jego północno-wschodniej krawędzi i w wschodniej części, na utworach dolnej i górnej kredy. Utwory czwartorzędowe osiągają zróżnicowaną miąższość od 10,5 m do 199,0 m (Dobracka, 2013; Dobracka i in., 1977).

Litologia i stratygrafia

Najstarszymi udokumentowanymi utworami kenozoicznymi na obszarze przetargowym "Gryfice" są osady miocenu. Składają się one z piasków kwarcowych, pośród których występuje detrytus roślinny, a także pojawiają się przewarstwienia mułków. Ze względu na niejednoznaczne wyniki analizy palinologicznej (Dobracka i in., 1977), brak mikroskamieniałości w osadzie, jedynym czynnikiem umożliwiającym określenie ich pozycji stratygraficznej było wykształcenie litologiczne, analogiczne do utworów miocenu występujących w okolicach Koszalina (Dobracka i in., 1977).

Jeśli chodzi o czwartorzęd, w zachodniej części obszaru przetargowego "Gryfice" wyróżniono 8 poziomów lodowcowych (Dobracka, 2013), we wschodniej zaś jego części – 7 (Dobracki, 2016), które odpowiadają dwóm żaryskiego (1979), obserwuje się zwiększenie głębokości położenia omawianej powierzchni w kierunku centralnej części synkliny Trzebiatowa. Czynnik ten bezpośrednio wpływa na zwiększenie miąższości przewiercanych skał górnej kredy.

lub trzem zlodowaceniom południowopolskim (nidy, sanu 1, sanu 2), trzem środkowopolskim (odry, warty – stadiał dolny i środkowy) i jednemu zlodowaceniu północnopolskiego (wisły). W obrębie najmłodszego zlodowacenia wisły wydzielono stadiał górny z, odpowiadającymi mu, dwoma poziomami glin zwałowych, należących do faz leszczyńsko-poznańskiej i pomorskiej (Dobracka, 2013).

Zlodowacenie południowopolskie składa się z trzech poziomów glin zwałowych, rozdzielonych osadami zastoiskowymi w zachodniej części obszaru przetargowego "Gryfice". Występują one w najgłębszej części rowu Ciećmierza. W wschodniej części obszaru przetargowego zlodowacenie południowopolskie składa się z dwóch poziomów glin zwałowych, które również są rozdzielone osadami zastoiskowymi, zdeponowanymi w rowie Bądkowa. Następnie, w trakcie interglacjału wielkiego, zachodziły silne procesy erozji rzecznej i denudacji, które przy jednoczesnych ruchach wynoszących powodowały powstanie licznych rynien w starszych utworach i dolin, wypełnianych osadami rzecznymi. Na nich zalegają utwory zlodowacenia środkowopolskiego. Składają się z trzech poziomów glin zwałowych, charakteryzujących się dużą miąższością. Osady te reprezentują zlodowacenie odry oraz stadiał dolny i górny zlodowacenia warty. Poziomy glin zwałowych zlodowacenia środkowopolskiego rozdzielone są osadami zastoiskowymi i wodnolodowcowymi. Po ustąpieniu lądolodu zlodowacenia warty, na speneplenizowanym obszarze, w trakcie interglacjału eemskiego, miała miejsce akumulacja osadów fluwialnych, jak również w rowie Ciećmierza obserwuje się wpływy ingresji morskiej - osady jeziornomorskie. Kolejny etap wiązał się z erozja cześci dolin z interglacjału eemskiego w wyniku nasuwającego sią lądolodu zlodowacenia wisły i wypełnienia ich wodnolodowcowymi osadami piaszczysto-żwirowymi. Transgresję lądolodu stadiału górnego (fazy leszczyńskopoznańskiej) poprzedziła akumulacja wodnolodowcowa typu sandrowego i zastoiskowego. Na całym obszarze przetargowym lądolód fazy leszczyńsko-poznańskiej pozostawił poziomy glin zwałowych, które charakteryzują się dużymi miąższościami. Po wycofaniu się tego lądolodu w pewnych częściach obszaru przetargowego doszło do powstania niewielkich zbiorników zastoiskowych, w rynnach zaś subglacjalnych zachodziła erozja wodnolodowcowa. Najmłodszym glacjalnym poziomem stratygraficznym są gliny zwałowe fazy pomorskiej, które wraz z całym zespołem syngenetycznych i postgenetycznych form reprezentuje zanik lądolodu. W okresie postglacjalnym i holocenie nastąpiła depozycja osadów eolicznych, fluwialnych oraz jeziornych.

2.4. HYDROGEOLOGIA

Regionalizacja hydrogeologiczna

Obszar przetargowy "Gryfice", o łącznej powierzchni 747,96 km², jest położony, według regionalizacji hydrogeologicznej zawartej w Atlasie hydrogeologicznym Polski (Paczyński, 1995), w regionie pomorskim (V), subregionie przymorskim (V1), rejonie gryficko-drawskim (V1B). W regionalizacji wód zwykłych (Paczyński i Sadurski, 2007) wyznaczony obszar przynależy do prowincji wybrzeża i pobrzeża Bałtyku, regionu zachodniopomorskiego (RZP). Regionalizacja ta została oparta o wydzielone jednostki jednolitych części wód podziemnych. Obszar należy do JCWPd nr 5, 6 i 8 (Fig. 2.40). W kolejnej regionalizacji hydrogeologicznej według AHP, omawiany obszar jest położony w prowincji niżowej, regionie pomorskim, subregionie nadmorskim. Biorac pod uwage podziały związane z gospodarką wodną kraju, obszar przetargowy "Gryfice" jest położony w regionie wodnym Dolnej Odry i Przymorza Zachodniego i obejmuje trzy obszary bilansowe wód podziemnych, będące w jurysdykcji RZGW w Szczecinie. Obszarami tymi są: S-XII (Rega i Przymorze) – 28% powierzchni obszaru przetargowego, S-XI (Dziwna i Przymorze) - 71% obszaru przetargowego oraz S-III (Wolin bez części zachodniej) – 1% obszaru przetargowego.

Warunki hydrogeologiczne

Wody podziemne występują w wielopiętrowym systemie wodonośnym, w obrębie trzech pięter wodonośnych: czwartorzędowego, kredowego oraz jurajskiego. Rozpoznanie warunków hydrogeologicznych zostało przedstawione na Mapie hydrogeologicznej Polski w skali 1 : 50 000 (MhP) – arkusz Dziwnów (76), Wolin (114), Kamień Pomorski (115), Gryfice (116), Brójce (117).

Pietro czwartorzędowe. Najpowszechniej na omawianym obszarze występują poziomy wodonośne piętra czwartorzędowego. Wody podziemne tego piętra występują w obrębie trzech poziomów: przypowierzchniowego, międzyglinowego i podglinowego. Poziomy te są często nieciągłe, stanowią przewarstwienia i soczewki, pomimo tego piętro to stanowi istotne znaczenie użytkowe. Pokrywa wodonośnych utworów czwartorzędowych wynosi do kilku do 100 m. Utwory te stanowią głównie piaski różnej granulacji i żwiry wodnolodowcowe oraz fluwioglacjalne, związane ze strukturami takimi jak doliny rzeczne, doliny kopalne (pogrzebane) sandry, kemy. Poziom przypowierzchniowy występuje głównie w obrębie dolin rzecznych, lokalnie na wysoczyźnie, nie mając regionalnego rozprzestrzenienia. Budują go fluwioglacjalne osady zlodowacenia wisły. Często poziom ten stanowi pierwszy poziom wodonośny (PPW), który opadami atmosferycznymi. zasilany jest Zwierciadło wód jest swobodne, lokalnie napięte. Jego miąższość na obszarze arkusza Mapy hydrogeologicznej Polski (1:50000) Kamień Pomorski (Frankiewicz i Wiśniowski, 2000) wynosi od 4 do 30 m. Wydajności jed-

nostkowe studzien wierconych ujmujących ten właśnie poziom w rejonie Kamienia Pomorskiego i Dobropola wynoszą od 0,1 do 12,9 m³/h/1mS. Poziom międzyglinowy jest rozprzestrzeniony regionalnie i stanowi główny użytkowy poziom wodonośny. Często stanowi go kilka warstw połączonych hydraulicznie. Poziom ten charakteryzuje się zróżnicowaną miąższością, do kilkunastu metrów. Wydajność poziomu jest również zróżnicowana od warunków litologicznych z jakich wykształcony jest poziom wodonośny a mieści się przedziale Q= $6,6-243 \text{ m}^3/\text{h}$. Zwierciadło wód ma charakter napiety, zasilanie poziomu odbywa się na drodze przesączania międzypoziomowego. Najgłębszy poziom czwartorzędowy - podglinowy stanowią osady fluwioglacjalne zlodowaceń południowopolskich oraz osady rzeczne interglacjału mazowieckiego. Poziom ten budują piaski różnoziarniste ze żwirem i otoczaki. Co istotne poziom podglinowy bardzo często wypełnia obniżenia tektoniczne i leży bezpośrednio na utworach jurajskich, wypełniając głębokie obniżenia erozyjno-tektoniczne, powstałe na uskokach w utworach jurajskich. Zwierciadło ma również charakter napięty i stabilizuje się na wysokości do ok 20 m n.p.m. Wydajność jednostkowa waha sie od 2 do 5 $m^3/h\cdot 1mS$. a wydajność potencjalna od 30 do 120 m³/h. Poziom ten ma bezpośredni kontakt hydrauliczny z utworami jury. Zasilanie odbywa się poprzez przesączanie z poziomów nadległych. W strefach dyslokacji tektonicznych możliwa jest ascenzja wód zasolonych z podłoża (Fuszara, 2000).

Utwory budujące piętro wodonośne czwartorzędu charakteryzują się wartościami współczynnika filtracji k od kilku do około 30 m/d. Przestrzenny rozkład jego wartości jest mozaikowy. Współczynnik wodoprzewodności zmienia się od poniżej 25 m²/d do prawie 3000 m²/d. Najwyższymi wartościami a przez co najlepszymi parametrami hydrogeologicznymi charakteryzują się strefy występowania struktur kopalnych.

Piętro kredowe. Piętro wodonośne kredy występuje na południowo-zachodnim skłonie antyklinorium pomorskiego. Woda występuje głównie w utworach węglanowych. Na obszarze przetargowym poziom ten ujmowany jest w Dobropolu, gdzie warstwę wodonośną stanowią piaskowce o miąższości 4,5 m nawiercone na głębokości 13 m, podścielone iłowcami. Zwierciadło ma charakter napięty, alimentacja odbywa się przez przesączanie wód przez 3,5–10 m warstwę gliny. Wydajność potencjalna studzien wynosi 20 m³/h.

Piętro jurajskie. Tektonika obszaru ma istotny wpływ na zróżnicowanie powierzchni podczwartorzędowej, a co za tym idzie wykształcenie piętra jurajskiego. Skałami zbiornikowymi wód podziemnych są głównie piaski i piaskowce toarku, aalenu, bajosu i keloweju. Lokalnie wody zgromadzone są w wapieniach i marglach. Parametry hydrogeologiczne poziomu jurajskiego zależą głównie od wykształcenia litologicznego. Współczynnik filtracji wynosi do 50 m/d, współczynnik wodoprzewodności do 1000 m²/d. Poziom prowadzi wody o zwierciadle napiętym, lokalnie artezyjskim. Zasilanie poziomu odbywa się na przesączania międzypoziomowego drodze z nadległego piętra czwartorzędowego. Poziomy tych pięter często mają bezpośredni kontakt hydrauliczny. Wody słodkie eksploatowane są głównie z wyższych partii utworów aalenu, bajosu i keloweju o zróżnicowanej miąższości. Na większych głębokościach (Matkowska, 1992) na terenie arkusza Mapy hydrogeologicznej Polski - Kamień Pomorski, powyżej 335,3 m, a na sąsiednich terenach już od 46,8 m, w obrębie piętra jurajskiego występują wyłącznie wody o wysokiej mineralizacji i solanki. Obecność dużej ilości chlorków w tych wodach wiąże się z ługowawysadów solnych występujących niem w głębszym podłożu.

Poziomy wodonośne piętra czwartorzędowego zasilane są głównie przez infiltrację opadów atmosferycznych, natomiast piętro kredowe oraz jurajskie zasilane są na drodze przesączania z poziomów czwartorzędowych. Drenaż opisanych poziomów wodonośnych na analizowanym obszarze odbywa się przez liczne cieki powierzchniowe i kanały, tworząc lokalne ogniwo systemu krążenia wód podziemnych. Głębsze poziomy czwartorzędowe oraz poziomy kredowo-jurajskie, biorące udział w regionalnym systemie krążenia wód podziemnych, są drenowane przez Zatokę Pomorską Morza Bałtyckiego oraz przez rzekę Dziwną, odwadniającą część zachodnią obszaru, i rzekę Regę, odwadniającą część wschodnią.

W obrębie obszaru przetargowego stwierdzono występowanie obszarów pozbawionych użytkowego piętra wodonośnego. Rejony te mają różną genezę. Najwięcej obszarów zidentyfikowano w granicach arkusza MhP 115 Kamień Pomorski (Frankiewicz i Wiśniowski, 2000). W części SE wspomnianego arkusza nie stwierdzono występowania użytkowego poziomu wodonośnego do głębokości 168 m, a w jego centralnej części do głębokości 43 m. Inną genezę braku poziomów użytkowych mają obszary zlokalizowane w bezpośrednim sąsiedztwie Zalewu Kamieńskiego. Wyznaczony obszar bez poziomu wodonośnego wydzielono ze względu na bardzo duże zasolenie wód w utworach czwartorzedowych (Cl⁻ ponad 2000 mg/dm³) pochodzenia ascenzyjnego oraz z powodu przekroczenia granicznych wartości zawartości jonów Cli NH_4^+ w wodzie z ujęcia jurajskiego i braku poziomu czwartorzedowego. Obszary te zostały wskazane i oznaczone na Fig. 2.41.

Jakość wód podziemnych

Duża liczbe oznaczeń fizykochemicznych wód podziemnych wykonano na etapie prac nad Mapa hydrogeologiczna Polski w skali 1: 50 000, arkusz Kamień Pomorski. Pobrano wówczas 17 prób wody ze studni wierconych - 8 ze studni ujmujących piętro jurajskie i 9 ze studni ujmujących piętro czwartorzędowe, tym samym dając wiarygodny obraz jakości wód podziemnych. Jakość wody na badanych ujęciach była zróżnicowana, choć wody piętra czwartorzędowego i jurajskiego mają zbliżony skład. Najistotniejsze różnice dotycza zwiazków azotu, których ilość w wodach czwartorzędowych jest wyraźnie wyższa, co jest związane z wpływem antropogenicznym lub z występowaniem osadów organicznych. Wody o dobrej i bardzo dobrej jakości wystąpiły w otworach ujmujących poziom czwartorzędowy międzyglinowy i płytki poziom jurajski. Pozostałe otwory ujmowały wody średniej jakości, z przekroczoną zawartością Fe i Mn pochodzenia geogenicznego, co oznacza, że wody te nie wymagają uzdatniania lub wymagają prostego uzdatniania przez odżelazianie i odmanganianie. Występują również wody złej jakości z przekroczoną zawartością związków azotu NO₃, NO₂, HCO₃, NH₄, oraz K, Cl i Na. W ramach działania sieci obserwacyjno-badawczej wód podziemnych państwowej służby hydrogeologicznej, w rejonie obszaru przetargowego są zlokalizowane 3 punkty obserwacyjne wód podziemnych, z których, w 2019 r., pobrano próbki wody do badań fizykochemicznych (Woźnicka, 2020). Wykazy analiz zestawiono w Tab. 2.2–2.4.

Jakość wód piętra czwartorzędowego zależy od wielu czynników, np. izolacji piętra czwartorzędowego oraz kontaktów z wodami głębszego krążenia (wodami słonymi). Generalnie są to wody słodkie o suchej pozostałości średnio około 490 mg/dm³, typu HCO₃-Ca-Mg. Lokalnie występują jednak wody o podwyższonej mineralizacji, jest to związane przede wszystkim z zasoleniem typu ascenzvinego tych wód. Stężenie jonów chlorkowych osiągające 2970 mg/dm³ w międzyglinowym poziomie czwartorzedowym, było przyczyna wydzielenia obszaru o braku poziomu użytkowego na północ od Kamienia Pomorskiego (Fuszara, 2009). Wody piętra jury i kredy są wodami silnie zmineralizowanymi. Jedynie poziom wód występujących w bliskim kontakcie z wodami czwartorzędowymi jest wysłodzony. Zatem poprzez procesy ascenzji mamy do czynienia z geogenicznym pochodzeniem tak wysokich stężeń jonów chlorkowych, czasami w połączeniu z jonami potasu i sodu. Występujące w wodach podziemnych składniki zwiazków azotu takie jak NO₂, NO₃ i NH₄ są składnikami pochodzenia antropogenicznego. Ich przekroczenia notowane są w kilku rejonach, np. w rejonie Kamienia Pomorskiego, co jest związane prawdopodobnie z odpadami komunalnymi oraz produkcją rolną dobrze rozwiniętą w tej części Polski. W rejonach, gdzie ujmowane są głębokie wody z warstw jurajskich (Świerzno), występowanie jonów amonowych towarzyszy zmineralizowanym wodom migrującym ze starszych utworów i są one produktem redukcji związków azotowych.

Jak wynika z Fig. 2.41, obszar przetargowy w większości charakteryzuje się średnim stopniem zagrożenia wód podziemnych. Jedynie w części północnej, północno-zachodniej oraz w rejonie Gryfic, stopień ten jest bardzo wysoki i wysoki, co jest związane ze słabą izolacją płytkich poziomów czwartorzędowych, a także ascenzją słonych wód z niższych warstw piętra jurajskiego oraz ingresją słonych wód z Zalewu Kamieńskiego i Dziwny.

Główne zbiorniki wód podziemnych i ujęcia wód podziemnych

W obrębie analizowanego obszaru przetargowego nie występują główne zbiorniki wód podziemnych (GZWP). Tuż za zachodnią jego granicą wyznaczono główny zbiornik wód podziemnych w utworach czwartorzędowych (zbiornik porowy) nr 102 Wyspa Wolin.

Zasoby i pobór wód podziemnych

Na omawianym obszarze istnieje kilkadziesiąt ujęć wód podziemnych, które eksploatują wody wszystkich użytkowych pięter wodonośnych: czwartorzędowego, kredowego oraz jurajskiego. Na podstawie bazy danych PO-BORY w Tab. 2.5 wskazano ujęcia, które zarejestrowały w 2018 r. pobór wód podziemnych >10 000 m³/r, znajdujące się w obrębie analizowanego obszaru przetargowego.

Istotną kwestią w przypadku poborów wód podziemnych jest ich duża zmienność w skali roku, zwłaszcza w strefie brzegowej – w sezonie letnim pobór wód podziemnych jest trzykrotnie większy. Na przestrzeni lat, większość ze studni istniejących w nadmorskich miejscowościach uzdrowiskowych, w których to zazwyczaj każdy ośrodek wypoczynkowy dysponował własnym ujęciem wody, została wyłączona z eksploatacji ze względu na bardzo złą jakość wody i często małą wydajność (Oficjalska i Krawczyńska, 2000).

Część obszaru przetargowego "Gryfice" znajduje się w granicach dokumentacji zasobów dyspozycyjnych pn. "Dokumentacja hydrogeologiczna zasobów dyspozycyjnych wód podziemnych dla obszaru zlewni Dziwny" – obecnie dokumentacja jest w trakcie reambu-

wykonana lacji. Dokumentacja została w 1998 r., zatwierdzona w ramach decvzii DG/kdh/BJ/489-6221/2000. Zatwierdzone zasoby dyspozycyjne wyniosły 136902 m³/24h - moduł 115 m³/24h/km² (obszar bilansowy S-XI). Wschodnia cześć obszaru przetargowego obejmuje fragment obszaru bilansowego S-XII (28%), dla którego w dokumentacji hydrogeologicznej określającej zasoby dyspozycyjne zlewni rzeki Regi i strefy przymorskiej (decyzja KDH2/013/6022/97), zasoby te oszacowano na 499 921 m³/24h – moduł 174,8 m³/24h/km². Niewielki fragment obszaru przetargowego jest położony w granicy obszaru bilansowego S-III, dla którego zasoby dyspozycyjne określono na 31 140 m³/24h (Oficjalska i Krawczyńska, 2000).

Fig. 2.40. Położenie obszaru przetargowego "Gryfice" na tle jednostek fizycznogeograficznych, GZWP i JCWPd.

Fig. 2.41. Obszar przetargowy "Gryfice" na tle granic jednostek hydrogeologicznych.

Fig. 2.42. Przekrój hydrogeologiczny prezentujący warunki hydrogeologiczne wraz z wydzielonymi jednostkami głównych użytkowych poziomów wodonośnych na obszarze arkusza MhP Kamień Pomorski (Frankiewicz i Wiśniowski, 2000). Lokalizacja przekroji na Fig. 2.41.

Nr SOH	Nr MON- MON- BADA	NH ₄	Sb	As	NO ₃	NO ₂	Ba	Barwa	Be
II/1540/1	1641	0,15	<0,00005	<0,002	0,78	<0,01	0,096	<5	<0,00005
В	Br	Cl	Cr	CN	Sn	Zn	PEW	HPO ₄	Al
0,06	<0,10	20	<0,003	<0,003	<0,0005	<0,000	490	<0,3	0,003
PO ₄ _HPO ₄	Cd	Со	SiO ₂	Li	Mg	Mn	Cu	Мо	Ni
<0,2967	<0,00005	0,00044	15,5	0,0177	9,5	0,053	0,00054	0,00053	<0,0005
pН	Pb	K	Hg	Se	SO ₄	Na	Ag	Sr	TI
7,46	<0,00005	2,3	<0,0001	<0,002	96	8,5	<0,00005	0,346	<0,00005
TW_OG	Ti	U	V	Ca	тос	HCO ₃	Fe	Тур	Klasa jakości
276	<0,0020	<0,00005	<0,001	95	<1	220	0,71	HCO ₃ -Ca	II

Tab. 2.2. Wykaz wyników analizy fizykochemicznej wody podziemnej (mg/l) z punktu sieci obserwacyjno-badawczej wód podziemnych państwowej służby hydrogeologicznej w Gryficach – ujęty czwartorzędowy poziom wodonośny.

Nr SOH	Nr MON- MON- BADA	NH_4	Sb	As	NO ₃	NO ₂	Ba	Barwa	Be
II/1829/1	1716	0,2	<0,00005	<0,002	1,3	<0,01	0,042	<5	<0,00005
В	Br	Cl	Cr	CN	Sn	Zn	PEW	HPO ₄	Al
0,02	<0,10	50,6	<0,003	<0,003	<0,0005	<0,003	712	<0,3	0,0035
PO ₄ _HPO ₄	Cd	Со	SiO ₂	Li	Mg	Mn	Cu	Мо	Ni
<0,2967	<0,000050	0,0002	18,2	0,0047	10,9	0,256	0,00083	0,00104	<0,0005
pH	Pb	K	Hg	Se	SO ₄	Na	Ag	Sr	TI
7,5	<0,00005	1,6	<0,0001	<0,002	192	13,3	<0,00005	0,221	<0,00005
TW_OG	Ti	U	V	Ca	тос	HCO ₃	Fe	Тур	Klasa jakości
404	<0,002	<0,0005	<0,001	144	<1	210	0,74	HCO ₃ -Ca	III

Tab. 2.3. Wykaz wyników analizy fizykochemicznej wody podziemnej (mg/l) z punktu sieci obserwacyjno-badawczej wód podziemnych państwowej służby hydrogeologicznej w Karnicy – ujęty czwartorzędowy poziom wodonośny.

Nr SOH	Nr MON- BADA	NH ₄	Sb	As	NO ₃	NO ₂	Ba	Barwa	Be
II/421/1	1200	0.37	<0,00005	<0,002	0.74	<0,01	0,03	14	< 0,00005
В	Br	Cl	Cr	CN	Sn	Zn	PEW	HPO ₄	Al
0.25	<0,10	27,8	<0,003	<0,003	<0,0005	<0,003	421	<0,30	0,0013
PO ₄ _HPO ₄	Cd	Со	SiO ₂	Li	Mg	Mn	Cu	Мо	Ni
<0,2967	<0,00005	0,00008	13,9	0,0139	13,5	0,037	0,00036	0,00068	<0,0005
pН	Pb	K	Hg	Se	SO ₄	Na	Ag	Sr	Tl
7.61	<0,00005	5	<0,0001	<0,0020	20,8	8.2	<0,00005	1,951	< 0,00005
TW_OG	Ti	U	V	Ca	тос	нсоз	Fe	Тур	Klasa jakości
227	<0,002	<0,00005	<0,001	68,6	5,6	231	0,28	HCO ₃ -SO ₄ - Ca-Mg	II

Tab.	2.4. Wykaz wyników analizy fizykochemicznej wody podziemnej (mg/l) z punktu sieci obserwacyjno-badawczej
wód j	odziemnych państwowej służby hydrogeologicznej w Wysokiej Kamieńskiej – ujęty kredowy poziom wodono-
śny.	

Nazwa ujęcia/ miejscowość	Użytkownik ujęcia	Stratygrafia ujętego poziomu wodonośnego	Pobór roczny 2018 [m ³ /r.]	Pobór dobowy 2018 [m ³ /24h]
MIŁACHOWO	Przedsiębiorstwo Gospodarki Komunalnej Sp. z o.o. w Kamieniu Pomorskim	J	10 275	28,15
KALEŃ	Przedsiębiorstwo Wodociągów i Kanalizacji Sp. z o.o. Świerzno	Q	10 945	29,99
BIELIKOWO	Przedsiębiorstwo Usług Wodnych i Sanitarnych Sp. z o. o. Nowogard	Q	10 979	30,08
WICIMICE	Zakład Gospodarki Komunalnej i Mieszkaniowej Płoty	Q	11 928	32,68
RZEWNOWO	Przedsiębiorstwo Gospodarki Komunalnej Sp. z o.o. w Kamieniu Pomorskim	J	12 725	34,86
JATKI	Przedsiębiorstwo Wodociągów i Kanalizacji Sp. z o.o. Świerzno	Q	14 404	39,46
PRZYBIERNÓWKO	Zakład Usług Komunalnych w Gryficach	Q–J	15 015	41,14
GOSTYNIEC	Przedsiębiorstwo Wodociągów i Kanalizacji Sp. z o.o. Świerzno	Q	15 078	41,31
PAPROTNO	Wodociągi Zachodniopomorskie Sp. z o.o. w Goleniowie	Q	15 242	41,76
TĄPADŁY	Przedsiębiorstwo Usług Wodnych i Sanitarnych Sp. z o. o. Nowogard	Q	16 918	46,35
GÓRZYCA	Wodociągi Zachodniopomorskie Sp. z o.o. w Goleniowie	Q	18 012	49,35
BENICE	Przedsiębiorstwo Gospodarki Komunalnej Sp. z o.o. w Kamieniu Pomorskim	J	18 277	50,07
RZĘSKOWO	Wodociągi Zachodniopomorskie Sp. z o.o. w Goleniowie	Q	20 070	54,99
CIESŁAW	Przedsiębiorstwo Wodociągów i Kanalizacji Sp. z o.o. Świerzno	Q	22 392	61,35
KĘPICA	Przedsiębiorstwo Wodociągów i Kanalizacji Sp. z o.o. Świerzno	Q-J	27 301	74,80
CHOMINO	Przedsiębiorstwo Wodociągów i Kanalizacji Sp. z o.o. Świerzno	Q	28 228	77,34
PRUSINOWO	Zakład Usług Komunalnych w Gryficach	Q–J	30 815	84,42
WOŁCZYNO	Wodociągi Zachodniopomorskie Sp. z o.o. w Goleniowie	Q	30 894	84,64
BORZYSŁAW	Przedsiębiorstwo Gospodarki Komunalnej Sp. z o.o. w Kamieniu Pomorskim	J	33 206	90,98
JARSZEWO	Przedsiębiorstwo Gospodarki Komunalnej Sp. z o.o. w Kamieniu Pomorskim	Q–J	33 650	92,19

GRYFICE

Nazwa ujęcia/ miejscowość	Użytkownik ujęcia	Stratygrafia ujętego poziomu wodonośnego	Pobór roczny 2018 [m ³ /r.]	Pobór dobowy 2018 [m ³ /24h]
ŚWIERZNO	Przedsiębiorstwo Wodociągów i Kanalizacji Sp. z o.o. Świerzno	J	34 565	94,70
PRUSZCZ	Przedsiębiorstwo Usług Wodnych i Sanitarnych Sp. z o. o. Nowogard	Q	40 353	110,56
ŁUKĘCIN	Zakład Wodociągów i Kanalizacji Sp. z o.o. Dziwnów	Q	41 590	113,95
ŚWINIEC	Przedsiębiorstwo Gospodarki Komunalnej Sp. z o.o. w Kamieniu Pomorskim	J	42 185	115,58
STUCHOWO	Przedsiębiorstwo Wodociągów i Kanalizacji Sp. z o.o. Świerzno	Q	47 287	129,55
NATOLEWICE	Zakład Gospodarki Komunalnej i Mieszkaniowej Płoty	Q	48 431	132,69
GRYFICE	Samodzielny Publiczny Zespół Zakładów Opieki Zdrowotnej Gryfice	Q	54 223	148,56
GOSTYŃ	Przedsiębiorstwo Wodociągów i Kanalizacji Sp. z o.o. Świerzno	Q	71 118	194,84
BOLESŁAWIEC	Wodociągi Rewal Sp. z o.o.	J	85 787	235,03
MECHOWO	Zakład Gospodarki Komunalnej i Mieszkaniowej Płoty	Q	90 300	247,4
TRZĘSACZ	Wodociągi Rewal Sp. z o.o.	Q	95 798	262,46
ŚNIADECKICH	Zakład Usług Komunalnych w Gryficach	Q	137 222	375,95
KAMIEŃ POMORSKI	Przedsiębiorstwo Gospodarki Komunalnej Sp. z o.o. w Kamieniu Pomorskim	Q	158 901	435,35
LEŚNICZÓWKA PO- BIEROWO	Wodociągi Rewal Sp. z o.o.	J	267 769	733,61
RARWINO	Przedsiębiorstwo Gospodarki Komunalnej Sp. z o.o. w Kamieniu Pomorskim	Q	380 375	1042,12
TRZYGŁOWSKA	Zakład Usług Komunalnych w Gryficach	Q	597 200	1636,16

Tab. 2.5. Zestawienie ujęć wód podziemnych o poborze >10 000 m³/r. (2018 r.) w obrębie obszaru przetargowego "Gryfice". Q – czwartorzęd, J – jura.

3. SYSTEM NAFTOWY 3.1. OGÓLNA CHARAKTERYSTYKA NAFTOWA OBSZARU PRZETARGOWEGO

System naftowy jest określany jako zespół procesów geologicznych i naftowych prowadzący do powstania złoża węglowodorów. Do podstawowych elementów systemu naftowego zalicza się: skałę macierzystą – ze względu na zawartość kopalnej substancji organicznej stanowi źródło powstawania węglowodorów, skałę zbiornikową - której odpowiednie właściwości petrofizyczne (porowatość, przepuszczalność) i filtracyjne pozwalają na akumulację węglowodorów, oraz skałę uszczelniającą - która jest skałą nieprzepuszczalną i uniemożliwia ucieczkę medium złożowego. Ponadto nieodzownym elementem systemu naftowego w złożach konwencjonalnych jest pułapka naftowa, która ze względu na swoje strukturalne, stratygraficzno-litolocechy giczne i tektoniczne tworzy miejsce akumulacji weglowodorów. Niezbędnym do zaistnienia systemu naftowego i powstania złoża węglowodorów jest zespół procesów umiejscowionych w przestrzeni, jak również w czasie geologicznym, na które składają się: generowanie, ekspulsja, migracja i akumulacja weglowodorów oraz formowanie pułapki złożowej. Wzajemne relacje czasowe pomiędzy wspomnianymi elementami i procesami systemu naftowego pozwalają na powstanie złoża.

Budowa geologiczna obszaru przetargowego "Gryfice" oraz parametry węglowodorowe w poszczególnych piętrach strukturalnych pozwalają rozróżnić w jego obrębie dwa odrębne systemy naftowe. Są to:

- system naftowy karbońsko-dolnopemski,
- system naftowy cechsztynu (dodatkowy cel poszukiwawczy).

W karbońsko-dolnopermskim systemie naftowym głównymi skałami macierzystymi są utwory dolnego karbonu (Fig. 3.1). Równie ważną rolę jako skały macierzyste mogą pełnić utwory górnego karbonu (Fig. 3.1), jednakże jest to uzależnione od głębokości ich pogrzebania i podgrzania. Podstawowymi

skałami zbiornikowymi, charakteryzującymi się zróżnicowanymi parametrami petrofizycznymi, a przede wszystkim licznymi objawami węglowodorów, są piaskowce górnego karbonu i górnego czerwonego spagowca (Fig. 3.1). Najważniejsze uszczelnienie dla karbońskodolnopermskiego systemu naftowego stanowią ewaporaty cechsztynu, cyklotemu PZ1 (Fig. 3.1.). Dotychczas na obszarze przetargowym "Gryfice" odkryto i udokumentowano iedno złoże w utworach górnego karbonu -Wrzosowo. Wśród sasiadujących koncesji na poszukiwanie i rozpoznawanie złóż węglowodorów oraz wydobywanie węglowodorów ze złóż występują złoża gazu ziemnego w skałach górnego karbonu (m.in. Gorzysław, Dargosław) oraz górnego czerwonego spągowca (złoża Ciechnowo i Sławoborze).

W cechsztyńskim systemie naftowym, utwory dolomitu głównego są zarówno skałami macierzystymi, jak i skałami zbiornikowymi (Fig. 3.1). Obecnie za skały macierzyste uznaje się skały pochodzenia mikrobialnego i glonowego (Kotarba i Wagner, 2007), które mogą występować w dwóch odmianach: 1) zwartej - kompleksy związane z budowlami mikrobialno-glonowymi oraz warstwami madstonów, 2) rozproszonej - tworzące laminy cyjanobakteryjne, stabilizujące osad ziarnisty (Słowakiewicz i Gasiewicz, 2013; Słowakiewicz i in., 2016). Podstawowymi skałami zbiornikowymi w cechsztyńskim systemie naftowym są dolomity i wapienie, reprezentowane przez greinstony i pakstony (Fig. 3.1). Odnotowuje się wśród nich liczne objawy weglowodorów. Skałami uszczelniającymi dla utworów dolomitu głównego są ewaporaty zalegające pod (cyklotem PZ1) i nad (cyklotem PZ2) tymi skałami (Fig. 3.1). Na obszarze przetargowym "Gryfice" i jego sąsiedztwie, w omawianym horyzoncie poszukiwawczym, odkryto wiele złóż ropy naftowej, m.in. Rekowo, Kamień Pomorski i Wysoka Kamieńska.

Fig. 3.1. Schemat systemu naftowego dla obszaru przetargowego "Gryfice". Stratygrafia: D – dolny, Ś – środkowy, G – górny, CIS – cisural, GUA – gwadelup, LOP – loping, CZ Q – czwartorzęd; skały zbiornikowe: normalny kolor – konwencjonalne, rozjaśniony kolor – niekonwencjonalne; w pozostałych przypadkach: normalny kolor – pewne elementy systemu naftowego, rozjaśniony kolor – drugorzędne lub mniej prawdopodobne elementy systemu naftowego.

3.2. SKAŁY MACIERZYSTE

Karbon dolny i górny Litologia: skały węglanowe, iłowce, mułowce

Obecność znacznych akumulacji węglowodorów w karbońskich i dolnopermskich skałach zbiornikowych Pomorza Zachodniego jest związana z substancją organiczną rozproszoną w weglanowo-terygenicznych poziomach karbonu. Badania składu cząsteczkowego i izotopowego gazu pozwoliły wyróżnić produkty dwóch osobnych faz generacji (Kotarba i in., 2005). Niskotemperaturowe gazy wytworzyły się ze skał macierzystych oddalonych o niewielką lub średnią (10-20 km) odległość od pułapek. Wysokotemperaturowe gazy pochodzą z tego samego typu materii organicznej, jednak zostały wygenerowane ze skał zalegających na dużo większych głębokościach, prawdopodobnie z utworów karbonu przy

strefie uskokowej Resko – Świdwin (w kierunku południowym od granicy obszaru przetargowego; Kotarba i in., 2005). W rejonie Pomorza Zachodniego, skały macierzyste najlepszej jakości są spotykane w profilach turneju i wizenu, choć pewien potencjał generatywny mogą również wykazywać niektóre horyzonty westfalu i stefanu (Grotek i in., 1998; Matyasik, 1998; Kotarba i in., 2004, 2005; Wagner i in., 2008).

W obrębie obszaru przetargowego do skał karbonu dowiercono się kilkunastoma otworami, jednak dostępne wyniki badań geochemicznych rozproszonej materii organicznej są fragmentaryczne i ograniczają się do kilku z nich (Gostyń 2, Kamień Pomorski 7, Laska 2, Strzeżewo 1, Wrzosowo 1, 2, 3, 8, 9). Z tego względu karbońskie skały macierzyste zostały opisane w ujęciu regionalnym, na podstawie charakterystyki materii organicznej karbonu Pomorza Zachodniego opracowanej przez Wagnera i in. (2008 wraz z literaturą tam cytowaną). Zakresy parametrów macierzystości dla poszczególnych wydzieleń karbonu omawianego rejonu zestawiono w Tab. 3.1.

Pomierzona zawartość węgla organicznego (TOC) w utworach karbonu Pomorza Zachodniego waha się w szerokim zakresie (od 0,0 do 10,0%) wag. skały. Najwyższe wartości stwierdza się w utworach turneju (mediana TOC = 0,77% wag.; Tab. 3.1), gdzie ponad 65% przebadanych prób przekracza progowa wartość TOC dla skał macierzystych (dla skał weglanowych TOC = 0.3% wag.; dla skał klastycznych TOC = 0.5% wag.; Hunt, 1996). W rejonie Gryfic utwory turneju nie zostały nawiercone żadnym otworem wiertniczym, a najbliższe dane geochemiczne pochodzą z rejonu bloku Kołobrzegu. Turnej jest tam wykształcony w postaci naprzemiennie zalegających węglanów i skał iłowcowo-mułowcowych. Ponadprogowe wartości TOC obserwuje sie głównie w obrebie przewarstwień drobnoklastycznych. Mediana potencjału generatywnego (S2) tych skał jest bardzo niska i wynosi 0,51 mg HC/gSkały, z tego względu, mimo spełnionego kryterium ilościowego, utwory wizenu mają przeważnie słaby (S2 <2,5 mg HC/gSkały) lub średni (S2 = 2,5-5,0 mg HC/gSkały) potencjał węglowodorowy (Dembicki, 2017). Dobry, bardzo dobry i doskonały potencjał weglowodorowy obserwuje się w pojedynczych próbkach z otworów zlokalizowanych w rejonie Koszalina.

Wartości parametru TOC w utworach wizenu oscyluje w granicach między 0,0 a 7,0% wag. (mediana TOC = 0,59% wag.; Tab. 3.1). Próbki skał, spełniające podstawowe kryterium macierzystości, pochodzą z profili otworów zlokalizowanych w obrębie bloku Kołobrzegu. Wartości TOC powyżej 2% wag. w potencjalnych skałach macierzystych obserwowane są sporadycznie. Analogicznie do turneju, w klastyczno-węglanowych utworach wizenu, wyższa zawartość substancji organicznej wiąże się z przewarstwieniami iłowców i mułowców. Zlokalizowany na obszarze przetargowym profil wizenu w otworze Laska 2, wykształcony w formie wiśniowoceglastych wapieni oraz, podrzednie, iłowców i mułowców (Wójcik, 1980), jest bardzo ubogi w substancję organiczną (TOC <0,01% wag.) i nie posiada potencjału generacyjnego (Fig. 3.2). W ujęciu regionalnym, wartości parametru S2 jedynie miejscowo przekraczają 2,5 mg HC/gSkały, co wskazuje na słaby potencjał weglowodorowy tych utworów. W kilku przebadanych próbkach wartości parametrów TOC i S2 korelują się, wskazując na średni lub dobry potencjał węglowodorowy niektórych warstw w profilu wizenu.

W utworach westfalu, mediana TOC wynosi 0,53% wag. (Tab. 3.1). Wartości powyżej 2% wag. obserwuje się sporadycznie. Materia organiczna w obrębie profilu jest w znacznym stopniu rozproszona – skały bogate w materie organiczną współwystępują z uboższymi przewarstwieniami. Utwory westfalu w rejonie obszaru przetargowego to seria klastyczna, składająca się przede wszystkim z mułowców i iłowców przewarstwianych piaskowcami (Rvba i Szewc, 1978a). Pod katem macierzystości przebadano miąższy profil westfalu w otworze Strzeżewo 1, w którym pomierzone wartości TOC wahają się między 0.02 a 0.96% wag. (mediana TOC = 0.65%wag.; Fig. 3.2). Większość z przebadanych prób westfalu regionu północnego spełnia podstawowe kryterium dla klastycznych skał macierzystych, jednak w żadnej z nich potencjał generacyjny nie przekracza wartości progowej dla średnich lub lepszych jakościowo skał macierzystych.

Przebadane profile stefanu są bardzo ubogie w materię organiczną. Choć zawartość węgla organicznego tych profili mieści się w granicach od 0,0 do 3,0% wag., mediana tych wartości wynosi 0,01% wag. (Tab. 3.1). Omawiane wydzielenie przebadano kilkoma otworami wiertniczymi, zlokalizowanymi w obrębie obszaru przetargowego (Gostyń 2, Kamień Pomorski 7, Strzeżewo 1, Wrzosowo 2, 3, 8 i 9), spośród których jedynie w otworach Wrzosowo 2 i 8 stwierdzono obecność horyzontów, w których wartości TOC przekraczają 0,5% wag (Fig. 3.2). Maksymalna stwierdzona wartość TOC dla stefanu pochodzi z profilu otworu Wrzosowo 2. Mimo tego, ze względu na niskie wartości S2 (mediana S2 = 0,41 mg HC/gSkały), utwory tego wydzielenia w żadnym przebadanym profilu na Pomorzu Zachodnim nie stanowią perspektywicznej skały macierzystej.

Typ materii organicznej rozproszonej w utworach karbonu w rejonie Pomorza Zachodniego określono na podstawie badań pirolitycznych (Tab. 3.1), pomiarów izotopowych, analizy biomarkerów oraz obserwacji petrologicznych. We wszystkich wydzieleniach dominujacym typem kerogenu jest gazotwórczy kerogen typu III (mediana HI = 42-91 mg HC/gTOC; Tab. 3.1; Kotarba i in., 2004; Wagner i in., 2008). W utworach karbonu dolnego (turneju i wizenu) istotny udział w składzie ma również morska materia organiczna, więc zawarty w nim kerogen jest klasyfikowany jako mieszany, lądowo-morski, typu III/II, który był deponowany głównie w warunkach redukcyjnych (pristan/fitan <1). Przewaga macerałów grupy witrynitu i niewielki udział macerałów grupy liptynitu wskazuje głównie na gazotwórczy charakter tej materij organicznej. W utworach górnego karbonu (westfal i stefan) skład maceralny wskazuje na wyłączne występowanie kerogenu typu III. Warunki depozycji były najprawdopodobniej lekko utleniajace (pristan/fitan = 1; Matyasik, 1998; Kotarba i in., 2004; Wagner i in., 2008).

Skład grupowy bituminów ekstrahowanych ze skał karbonu, charakteryzuje przewaga składników niewęglowodorowych (żywice i asfalteny) nad składnikami węglowodorowymi (węglowodory nasycone i aromatyczne). Jednocześnie, w obrębie węglowodorów, w większości prób dominuje frakcja aromatyczna. Niskie wartości indeksu nasycenia ropą (OSI; Tab. 3.1) wskazują, że wspomniane bituminy są syngenetyczne z osadem, a obecność węglowodorów migracyjnych (OSI >100 mg HC/gTOC) jest lokalna i ogranicza się do niektórych próbek skał turneju.

Materia organiczna rozproszona w obrębie całego kompleksu skał karbońskich Pomorza Zachodniego znajduje się w szerokim zakresie dojrzałości termicznej między wczesnym etapem katagenezy a oknem gazowym oraz, lokalnie, metageneza (Tmax = 403–490°C; Tab. 3.1). W granicach obszaru przetargowego "Gryfice" stopień przeobrażenia rośnie w kierunku północnym oraz wraz z głębokością pogrzebania (Fig. 3.3-3.4; Wagner i in., 2008). Najniższą dojrzałością, odpowiadającą wczesnemu i środkowemu etapowi okna ropnego w tym rejonie, cechują się skały wizenu (Ro = 0.5-1.1%). Utwory westfalu mieszczą się w całym przedziale okna ropnego (Ro = 0,5-1,35%). Dojrzałość na poziomie okna gazowego wykazuje materia organiczna karbonu z rejonu Kołobrzegu, położonego na wschód od obszaru przetargowego "Gryfice". Najwyższą dojrzałość w profilu wykazują skały stefanu. Stopień maturacji tych skał oscyluje między środkowym a końcowym oknem ropnym (Ro = 0.8-1.35%), a lokalnie, w okolicach Kamienia Pomorskiego, sięga fazy generowania metanu wysokotemperaturowego (Grotek, 1998; Kotarba i in., 2005; Wagner i in., 2008, wraz z materiałem źródłowym).

Ograniczona liczba otworów przewiercających karbon oraz niereprezentatywne opróbowania uniemożliwiają jednoznaczne wydzielenie skał macierzystych karbonu w rejonie Pomorza Zachodniego. Najlepsze parametry macierzystości wykazują tu iłowce i mułowce, które występują w formie przewarstwień w utworach dolnego karbonu i te skały są najbardziej prawdopodobnym źródłem gazu ziemnego zakumulowanego w kompleksie karbońsko-dolnopermskim. Jednak, pomimo obecności warstw o stosunkowo wysokiej zawartości substancji organicznej, ich niski potencjał generacyjny powoduje, że większość skał karbonu przejawia słaby lub średni potencjał węglowodorowy, skały macierzyste dobrej, bardzo dobrej oraz doskonałej jakości stwierdza się zaś w pojedynczych warstwach w profilach turneju i wizenu. Najlepsze skały macierzyste znajdują się w rejonie Koszalin -Wierzchowo - Kołobrzeg (Wagner i in., 2008). Dominacja kerogenu typu III powoduje, że mogą one generować przede wszystkim węglowodory gazowe, jednak, z uwagi na domieszkę kerogenu typu II, omawiane skały macierzyste mogą stanowić również źródło weglowodorów ciekłych (Kotarba i in., 2004, 2005; Wagner i in., 2008).

Parametry skał	karbor	ı dolny	karbon górny		
macierzystych	turnej	wizen	westfal	stefan	
TOC	0,00-10,66	0,00-7,05	0,00–5,10	0,00–3,03	
[% wag]	(~0,77)	(~0,59)	(~0,53)	(~0,01)	
т [9С]	408–490	403-453	423–457	425–452	
$I_{max}[C]$	(~433)	(~431)	(~427)	(~428)	
S1	0,00–2,93	0,00-1,50	0,00–0,27	0,00–0,52	
[mg HC/gSkały]	(~0,07)	(~0,10)	(~0,07)	(~0,05)	
S2	0,00-32,84	0,09-8,14	0,04–1,88	0,09–5,29	
[mg HC/gSkały]	(~0,51)	(~0,58)	(~0,42)	(~0,41)	
HI	13–526	11–464	8–91	24-175	
[mg HC/gTOC]	(~72)	(~91)	(~65)	(~42)	
OSI	0-138	0-82	0–23	0–17	
[mg HC/gTOC]	(~9)	(~15)	(~2)	(~0)	
DI	0,00–0,40	0,00–0,58	0,00–0,20	0,05–0,15	
PI	(~0,10)	(~0,15)	(~0,13)	(~0,13)	
Typ kerogenu	III/II	III/II	III	III	

Tab. 3.1. Parametry macierzystości utworów karbonu Pomorza Zachodniego (Wagner i in., 2008, wraz z materiałem źródłowym).

Fig. 3.2. Mapa rozkładu TOC w utworach górnego karbonu wraz z lokalizacją obszaru przetargowego "Gryfice" (Wagner i in., 2008; zmodyfikowane).

Fig. 3.3. Mapa refleksyjności witrynitu ze spągowych partii utworów karbonu wraz z lokalizacją obszaru przetargowego "Gryfice" (Wagner i in., 2008; zmodyfikowane).

Fig. 3.4. Mapa refleksyjności witrynitu ze stropowych partii utworów karbonu wraz z lokalizacją obszaru przetargowego "Gryfice" (Wagner i in., 2008; zmodyfikowane).

Dolomit główny (Ca2) Litologia: madstony, greinstony, bandstony

Rozmieszczenie skał macierzystych dla systemu naftowego dolomitu głównego (Ca2) jest ściśle związane z jego układem paleogeograficznym i wykształceniem mikrofacjalnym. Rolę potencjalnych skał macierzystych w dolomicie głównym najlepiej spełniają utwory płytkowodnej platformy węglanowej, jak również głębokowodne utwory skłonu platformy, zatoki równi basenowej i płytkiej równi basenowej (Kotarba i in., 2003; Kosakowski i in., 2003). Obszar przetargowy obejmuje swoim zasięgiem przede wszystkim utwory platformy węglanowej Kamienia Pomorskiego oraz fragment zatoki Rewala (Wagner, 1990; Zych, 2005). W kierunku zachodnim (okolice Laska) wkracza również w rejon występowania płytkiej równi basenowej środkowej części basenu dolomitu głównego (Fig. 2.31–2.32).

Analiza geochemiczna materii organicznej zachowanej w 56 profilach dolomitu głównego w strefie Kamienia Pomorskiego (Kotarba i in., 2003; Tab. 3.2) pozwoliła wyróżnić madstony północnej i środkowej część zatoki równi basenowej (zatoki rewalskiej) jako skały o najkorzystniejszych parametrach macie-

rzystości. W otworach nawiercających zatokę rewalska (w tym Brojce IG-1) stwierdzono zawartość wegla organicznego (TOC) w zakresie od 0,01 do 5,8% wag. (Tab. 3.2), przy czym, ponad połowa z przebadanych prób spełnia kryteria węglanowej skały macierzystej (TOC >0,3% wag.). Utwory płytkiej równi basenowej, zbadane w obrębie obszaru przetargowego otworem Laska 2, są mało zasobne w substancję organiczną (TOC = 0,01-2% wag.; Tab. 3.2) i przeważają w nich wartości poniżej 0,3% wag. Najlepsze cechy macierzystości w omawianym rejonie paleogeograficznym posiadają madstony z okolic Międzyzdrojów i Wapnicy, położone na zachód od granicy obszaru przetargowego. Analizy mikrofacjalne i geochemiczne utworów stoku platformy węglanowej (przewierconej m.in. otworami Gryfice 1, 2, Rekowo 4 i Dobropole 1) wykazały, że dominującym typem litologicznym są madstony, których zawartość wegla organicznego waha się od 0,0 do 1,36% wag. (Tab. 3.2), z przewagą próbek nieprzekraczających wartości granicznych dla skał macierzystych. Najlepsze parametry macierzystości w obrębie stoku stwierdzono w otworze Strzeżewo 1 (północna część obszaru przetargowego). W obrębie samej platformy węglanowej wydzielono trzy podstrefy: przykrawędziową barierę oolitową, salinę oraz właściwą platformę węglanową (Fig. 2.31-2.32). Wykształcenie litologiczne zarówno przykrawędziowej bariery oolitowej (przewierconej m. in. otworami Benice 1, 2, 3, 4K, Dusin 1, Gryfice 3, Skarchowo 1, Strzeżewo 1, Świerzno 4, 5, Wrzosowo 1 i 8), jak i lagun (przewierconej m. in. otworami Jarszewo 1 i Kamień Pomorski 7), to w głównej mierze greinstony i bandstony (Fig. 3.5). Wartości parametru TOC w strefie barierowej oscylują między 0,0 a 1,2% wag. (Tab. 3.2) z przewagą wartości poniżej 0,3%. Kryterium macierzystości, zarówno ilościowe, jak i jakościowe (S2 >2,5 mg HC/gSkały) spełniają m. in. niektóre horyzonty dolomitu głównego w otworach Wrzosowo 8 oraz Strzeżewo 1 (Fig. 3.5). W utworach salin zawartość substancji organicznej w żadnym miejscu nie przekracza wspomnianej wartości granicznej co najprawdopodobniej wiąże się z wyczerpaniem pierwotnego potencjału węglowodorowego kerogenu w tych skałach (Kotarba i in., 2003). Według Kosakowskiego i in. (2003), pierwotna średnia wartość TOC salin wynosiła około 0,4% wag., a ze względu na wysoki stopień transformacji skał macierzystych, kerogen sczerpał swój potencjał generacyjny w 70% (Kamień Pomorski 7). Podobny lub wyższy stopień transformacji wykazują utwory przykrawędziowej bariery oolitowej (Strzeżewo 1, Laska 2, Wrzosowo 8), których pierwotna średnia zawartość TOC mogła siegać 1% wag. skały. Macierzystość skał właściwej części platformy węglanowej zbadano za pośrednictwem materiału rdzeniowego pochodzącego z otworu Chomino 1, w którym wydzielono około 2-metrowy interwał średniej jakości skał macierzystych, o maksymalnej zawartości TOC wynoszącej 0,64% wag. skały (Chruścińska i Płatek, 2016).

Kerogen, pochodzący ze wszystkich rejonów paleogeograficznych strefy Kamienia Pomorskiego, jest klasyfikowany do typu II (HI = 82–386 mg HC/gTOC). Lokalnie stwierdza się też domieszki kerogenów typu I i III (według dokumentacji wynikowej otworu Chomino 1; Kotarba i in., 2003). Na morskie pochodzenie rozproszonej materii organicznej wskazuje również analiza składu bituminów, w których przeważają krótkołańcuchowe n-alkany, a stosunek pristanu do fitanu (Pr/Ph) wykazuje wartości poniżej jedności (Chruścińska i Płatek, 2016; Kotarba i in., 2003).

W obrębie dolomitu głównego, w rejonie obszaru przetargowego "Gryfice", spotyka się zarówno węglowodory syngenetyczne, jak i weglowodory epigenetyczne, świadczące o lokalnej migracji węglowodorów ciekłych. Skład grupowy jest stosunkowo wyrównany i poza pojedynczymi analizami, nie różni się znacząco między otworami, co sugeruje ich powinowactwo genetyczne. Wyraźny jest mniej więcej równy udział węglowodorów (weglowodory alifatyczne i aromatyczne) heterozwiązków (żywice i asfalteny). i W większości prób stosunek wagowy frakcji alifatycznej (15-39% wag. ekstraktu) oraz asfaltenów (13-49% wag. ekstraktu) jest podobny i te dwie frakcje mają największy udział w składzie. Zawartość frakcji aromatycznej jest zazwyczaj nieco niższy i waha

się od 10 do 32% wag., a zazwyczaj oscyluje wokół 20% wag. Podobnie, udział żywic waha się w granicach między 8 a 34% wag., choć zazwyczaj wynosi około 20% wag. (Chruścińska i Płatek, 2016; Kotarba i in., 2003). Dojrzałość termiczna dolomitu głównego w strefie Kamienia Pomorskiego, wyrażona wartościami parametru Tmax (412-447°C) kształtuje się na granicy końcowego etapu diagenezy i niskotemperaturowego etapu katagenezy. Wartości wskaźnika CPI (ang. carbon preference index), zbliżona do liczby 1, wskazuje na stopień przeobrażenia termicznego, umożliwiający generację węglowodorów ciekłych (Kotarba i in., 2003). Pomiary refleksyjności witrynitu w otworze Chomino 1 (Ro = 0,69-0,72%; Chruścińska i Płatek, 2016) a także w otworze Brojce IG-1 (Ro = 0,92%; Kosakowski i in., 2003) odpowiadają wczesnemu i środkowemu oknu ropnego.

Skały macierzyste występują w formie mało miąższych, izolowanych warstw ściśle związanych z wykształceniem paleogeograficznym i mikrofacjalnym dolomitu głównego. Wiekszość przebadanych w obrebie obszaru przetargowego skał jest uboga w substancję organiczną (TOC <0,3%). W rejonie zatoki Rewala występują skały macierzyste w zakresie od średniej do bardzo dobrej jakości. Średnią jakość stwierdzono w pozostałych rejonach paleogeograficznych, w których obecne są skały macierzyste (Kotarba i in., 2003). Według modelowań ropotwórczości dobre i bardzo dobre cechy macierzystości przejawiały pierwotnie madstony, greinstony i bandstony lagun i stref barierowych platformy weglanowej oraz jej stoku, a w rejonie równi basenowej pierwotny potencjał macierzystości był w przeważającej mierze dobry (Kosakowski i in., 2003). Miąższość efektywna skał macierzystych w tym rejonie waha sie od 5 m w otworach Kamień Pomorski 7 i Wrzosowo 8 do 23,0 m w otworze Strzeżewo 1. Z uwagi na obecność ropotwórczego kerogenu typu II i stopień dojrzałości termicznej odpowiadający oknu ropnemu, generowane z tych skał mogły być przede wszystkim weglowodory płynne.

	тос	(% wag.)		HI (mg HC/g TOC)		PI			Tmax (°C)			
Mikrofacje <i>Microfacies</i>	zakres zmienności <i>range</i>	wartość średnia <i>mean</i>	n	zakres zmienności <i>range</i>	wartość średnia <i>mean</i>	n	zakres zmienności <i>range</i>	wartość średnia <i>mean</i>	n	zakres zmienności <i>range</i>	wartość średnia <i>mean</i>	n
Plytsza część równi basenowej Shallower part of basinal plain (Bp)												
Bandston boundstone (B)	0,01-0,10	0,07	9									
Greinston grainstone (G)	0,09-1,99	0,58	5	287-361	319	4	0,07-0,35	0,22	4	426-429	428	4
Madston mudstone (M)	0,01-1,36	0,27	122	169-371	366	83	0,09-0,35	0,26	83	412-434	427	83
Wakston wackestone (W)	0,01-0,16	0,09	3	331		1	0,38		1	422		1
Dolomit zrekrystalizowany <i>Cristalline dolomite</i> (CC)	0,01-1,29	0,35	5	300-386	349	3	0,16-0,31	0,24	3	421-428	426	3
Zatoka równi basenowej Bay of basinal plain (Bz)												
Madston mudstone (M)	0,01-5,81	0,87	55	82-300	165	36	0,03-0,38	0,30	36	426-444	437	36
		Stok pl	atform	y węglanowe	j <u>Slope o</u>	f carbo	nate platforn	<u>n (Sp)</u>				
Bandston boundstone (B)	0,05-0,47	0,16	16	117-191	151	4	0,29-0,38	0,32	4	427-440	434	4
Greinston grainstone (G)	0,06-0,81	0,27	15	165-229	200	7	0,29-0,36	0,32	7	427-431	429	7
Madston mudstone (M)	0,00-1,36	0,23	135	83-356	184	79	0,21-0,39	0,31	79	416-447	431	75
Pakston packstone (P)	0,08-0,14	0,11	6									
Wakston wackestone (W)	0,18-0,29	0,24	2	231		1	0,31		1	426		1
Dolomit zrekrystalizowany <i>Cristalline dolomite</i> (CC)	0,07-0,48	0,18	4	110		1	0,38		1	442		1
		Prz	ykraw	ędziowa bari	era oolito	wa B	<i>arrier reef</i> (P	b)				
Bandston boundstone (B)	0,01-0,30	0,15	5	308-353	331	2	0,23	0,23	2	435-437	436	2
Greinston grainstone (G)	0,00-1,20	0,12	98	145-283	221	13	0,18-0,40	0,27	13	427-442	437	13
		Salina pl	atforn	<u>iy węglanow</u>	ej Saline	of car	bonate platfo	rm (Ps)				
Bandston boundstone (B)	0,00-0,27	0,07	37	167-288	200	4	0,27-0,40	0,34	4	431-436	434	2
Greinston grainstone (G)	0,01-0,30	0,08	22	230-252	241	2	0,31-0,36	0,33	2	432-433	432	2
Dolomit zrekrystalizowany <i>Cristalline dolomite</i> (CC)	0,05-0,08	0,06	3									

Tab. 3.2. Parametry i wskaźniki z analizy pirolitycznej Rock Eval dla próbek dolomitu głównego ze strefy Kamienia Pomorskiego niezawierających węglowodorów epigenetycznych (Kotarba i in., 2003). TOC – całkowita zawartość węgla organicznego, HI – wskaźnik wodorowy, PI – wskaźnik produkcyjności, Tmax – temperatura maksimum piku S2, n – liczba próbek.

GRYFICE

Fig. 3.5. Profile geochemiczno-sedymentologiczne z wybranych otworów zlokalizowanych na obszarze przetargowym "Gryfice", wykorzystanych do analizy generacyjnej (Kosakowski i in., 2003). TOC - całkowita zawartość węgla organicznego, S2 - zawartość węglowodorów rezydualnych, HC - węglowodory, Hl - wskaźnik wodorowy, Ol wskaźnik tlenowy, CPI - wskaźnik preferencji n-alkanów nieparzystoweglowych nad parzystoweglowymi, Pr/Ph pristan/fitan, PI – wskaźnik produkcyjności.

3.3. SKAŁY ZBIORNIKOWE

Karbon górny Litologia: arenity i waki kwarcowe, najczęściej drobno- i średnioziarniste

Głębokość stropu:

Kamień Pomorski 7: 3230,0 m, Strzeżewo 1: 3199,0 m, Gostyń 2: 3314,0 m.

Skały zbiornikowe górnego karbonu położone na obszarze Kamienia Pomorskiego - Trzebiatowa charakteryzują się porowatością wynoszącą ok 10%, a w niektórych przypadkach nawet do 20% (Kozłowski, 2007). W badanych próbkach dominuje porowatość pierwotna, tylko lokalnie występuje porowatość wtórna. Ta ostatnia jest efektem rozpuszczania ziaren litoklastów i skaleni potasowych oraz lokalnie łyszczyków i stanowi niewielki procent całkowitej porowatości piaskowców. W badanych próbkach utworów górnego karbonu dominującymi procesami diagenetycznymi jest kompakcja i cementacja (Kozłowski, 2007). W przypadku piaskowców, w których dominuje wczesny cement kwarcowy, usztywniający skałę, wpływ kompakcji był mniejszy i w efekcie została zachowana część porowatości pierwotnej (Kozłowski, 2007).

Na podstawie laboratoryjnych badań próbek z rdzeni wiertniczych określono właściwości fizyczno-chemiczne dla utworów górnego karbonu. Wykonane analizy porowatości przedstawiają zróżnicowane ich wartości w zakresie 0,1-17,29% (Tab. 3.3). Dla całego badanego interwału stratygraficznego średnia porowatość skał wynosi około 5,1%. Utwory górnego karbonu w większości przypadków charakteryzują się bardzo niskimi i niskimi przepuszczalnościami, osiągającymi do kilku mD (Tab. 3.3). Jednakże, wśród tych skał zdarzają się również przypadki występowania dobrych przepuszczalności (np. Wrzosowo 2 - 10,5 mD; Tab. 3.3). Pomierzone zawartości bituminów występują w śladowych ilościach do maksymalnie 0,03% (Tab. 3.3).

Uzyskane wyniki analiz składu cząsteczkowego i izotopowego gazów (Tab. 3.4) wskazują, że wszystkie gazy tworzyły się w procesach termogenicznych, głównie z kerogenu III typu, z niewielką składową kerogenu II typu (Kotarba i in., 1999; 2005). W pierwszym etapie termogenicznym, niskotemperaturowym (karbońsko-dolnopermski epizod termiczny), przy stopniu przeobrażenia substancji organicznej 0,6–0,8%, został wytworzony metan i wyższe weglowodory (etan, propan itd.) Podczas trwania drugiego etapu termogenicznego, wysokotemperaturowego (mezozoiczno-kenozoiczny epizod termiczny), przy stopniu przeobrażenia 1,4-1,8%, został wygenerowany wyłącznie metan (Kotarba i in., 2005). Dwutlenek wegla występujący w niewielkich stężeniach w składzie bazowych gazów wytworzył się wyłącznie w wyniku przeobrażeń termogenicznych, natomiast azot najprawdopodobniej powstał w końcowym etapie termokatalicznych przeobrażeń karbońskiej substancji organicznej (Kotarba i in., 2005). Nie można jednak wykluczyć, że jego część jest abiogeniczna i związana z obecnością dolnopermskich skał wylewnych.

W utworach górnego karbonu wykonano jedynie 4 analizy wód złożowych (Tab. 3.5). Są to od 19,0% do 30,0% solanki chlorkowowapniowo-sodowe lub chlorkowo-sodowowapniowe.

Na obszarze przetargowym "Gryfice" i w jego sądziedztwie, w utworach górnego karbonu oraz najwyższego karbonu i najniższego czerwonego spągowca (najprawdopodobniej formacja Świńca), udokumentowano 5 złóż gazu ziemnego. Są to: Dargosław, Gorzysław N, Gorzysław S, Trzebusz i Wrzosowo. Ich szczegółową charakterystykę przedstawiono w rozdziale 4.

Otwór wiertniczy	Interwał [m] (stratygrafia)	llość prób porowatość/ przepuszczalność/ bituminy	Porowatość [%] (średnia)	Przepuszczalność (średnia)	Zawartość bituminów [%] (średnia)
Gostyń 2	3342,0–3400,0 karbon górny	26/26/26	0,72–9,19 (5,91)	9,17–4800,5 [nm ²] (5,83)	0,008–0,393 (0,11)
Kamień Pomorski 7	3296,55–3363,45 karbon górny	4/4/4	0,21–7,11 (3,93)	0,01–0,83 [mD]	ślady-0,022
Strzeżewo 1	3199,0–3890,0 karbon górny	129/0/58	0,1–11,4 (3,7)	_	ślady-0,024
Wrzosowo 1	3081,75–3246,45 karbon górny	34/21/34	1,44–13,43 (5,64)	0,024–2,247 [mD] (0,345)	0,004–0,017 (0,0098)
Wrzosowo 2	3059,55–3121,55 karbon górny	73/68/44	0,49–15,41 (8,20)	nieprzepuszczalne– 10,50 [mD]	0,002–0,036 (0,0151)
Wrzosowo 3	3107,45–3242,35 karbon górny	93/79/93	0,19–10,00 (4,79)	0,01–1,87 [mD] (0,126)	ślady–0,017
Wrzosowo 8	3078,05–3239,15 karbon górny	78/35/78	0,84–17,29 (5,67)	nieprzepuszczalne– 0,68 [mD]	ślady–0,030
Wrzosowo 9	3084,5–3198,0 karbon górny	8/8/0	1,81–7,52 (3,65)	nieprzepuszczalne– 0,73 [mD]	_

Tab. 3.3. Wyniki badań własności petrofizycznych utworów górnego karbonu na obszarze przetargowym "Gryfice" na podstawie dokumentacji wynikowych otworów wiertniczych.

Fig. 3.6. Diagram przedstawiający wpływ kompakcji i cementacji na porowatość piaskowców w wybranych otworach wiertniczych z Pomorza Zachodniego (według Houseknechta, 1987). C – pole o przewadze cementacji nad kompkacją, K – pole o przewadze kompakcji nad cementacją (Kuberska i in., 2007).

Otwór wiertniczy	Interwał [m] (stratygrafia)	Analizy gazu [% obi.]	Uwagi
Gostyń 2	3388,0–3447,0 (karbon górny)	$\begin{array}{c} CH_{4}{-}20,62\\ C_{2}H_{6}{-}0,05\\ C_{3}H_{8}{-}0,01\\ N_{2}{-}77,51\\ He{-}0,28 \end{array}$	Gaz pobrany z przewodu po opróbowaniu
Kamień Pomorski 7	3293,0–3305,0 (karbon górny)	$\begin{array}{c} \mathrm{CH_{4}}{-28,78} \\ \mathrm{C_{2}H_{6}}{-0,02} \\ \mathrm{N_{2}}{-68,33} \\ \mathrm{H_{2}}{-2,09} \end{array}$	Pobrano próbnikiem złoża, analiza w czystym gazie
Strzeżewo 1	3450,0–3524,0 (karbon górny)	$\begin{array}{c} CH_4\!\!-\!\!17,\!\!41\\ C_2H_6\!\!-\!\!0,\!02\\ C_3H_8\!\!-\!\!0,\!002\\ N_2\!\!-\!\!81,\!27\\ H_2\!\!-\!\!0,\!594\\ He\!\!-\!\!0,\!701 \end{array}$	Pobrano próbnikiem złoża, analiza w czystym gazie
	3083,7–3085,2 (karbon)	$\begin{array}{c} CH_4-0.76\\ N_2-99,17\\ CO_2-\text{``slady}\\ H_2-0.07\end{array}$	Po degazacji rdzenia, po przeliczeniu na sumę węglowodorów
Wrzosowo 1	3142,0–3195,0 (karbon)	$\begin{array}{c} CH_4-25,59\\ C_2H_6-0,53\\ N_2-70,56\\ O_2-2,89\\ H_2-0,32\\ Ar-0,11\end{array}$	Pobrano próbnikiem złoża, analiza w czystym gazie
Wrzosowo 2	3044,2–3122,2 (wapień cechsztyński, czerwony spągowiec, karbon)	$\begin{array}{c} CH_4-42,65\\ C_2H_6-1,64\\ C_3H_8-0,50\\ N_2-54,72\\ O_2-brak\\ He-0,20\\ Ar-0,035\\ \end{array}$	Bezpośrednio z rur wydobywczych, analiza w czystym gazie
Wrzosowo 8	3226,0 (karbon)	$\begin{array}{c} CH_4 \!\!-\!\! 39,\! 42 \\ C_2H_6 \!\!-\!\! 0,\! 16 \\ C_3H_8 \!\!-\!\! 0,\! 004 \\ N_2 \!\!-\!\! 58,\! 39 \\ H_2 \!\!-\!\! 0,\! 75 \\ He \!\!-\!\! 1,\! 81 \\ Ar \!\!-\!\! 0,\! 04 \end{array}$	Pobrano próbnikiem złoża, analiza w czystym gazie
Wrzosowo 9	3205,5–3210,0 (karbon)	$\begin{array}{c} CH_4-8,23\\ C_2H_6-0,38\\ C_3H_8-0,47\\ N_2-90,55\\ O_2-brak\\ H_2-0,35 \end{array}$	Po degazacji rdzenia, analiza w czystym gazie

Tab. 3.4. Wybrane wyniki analiz gazu dla interwałów górnego karbonu w otworach wiertniczych z obszaru przetargowego "Gryfice" na podstawie dokumentacji wynikowych.

	T () []	A 1º 1	
Otwór wiertniczy	Interwał [m]	Analizy wody	Uwagi
	(Su atygi alla)	C^{1} 152 74	
		$C_{1}=132,74$ $C_{2}=43.33$	
Goství 2	3388,0-3447,0	$M_{g}^{+}=2.01$	Solanka około 24,6%
Göstyli 2	(karbon)	$N_{1}g^{+}=45.40$	chlorkowo-sodowa-wapniowa
		pH-5.9	
_		Cl ⁻ -117.89	
		Br-0.85	
	2525.0.2507.5	Fe ⁺ -0,28	
Strzeżewo 1	3535,0–3587,5 (karbon górny)	Ca ⁺ -34,61	Solanka około 19,1%
		$Mg^{+}-1,60$	chlorkowo-sodowa-waphiowa
		$Na^{+}-34,15$	
		pH-5,7	
		Cl ⁻ -48,93	
	2075 0 2140 2	Br ⁻ –brak	
Wrzosowo 1	5075,0-5145,5	Ca ⁺ -1,91	
WIZOSOWO I	(czerwony spągowiec, karbon górny)	Mg ⁺ –brak	
	karoon gonry)	Na ⁺ -30,12	
		pH–6,77	
		Cl ⁻ -155,49	
		Br-0,52	
Wrzosowo 8	3180,0–3226,0	Ca ⁺ -36,65	Solanka około 25,0%
W12050W0 8	(karbon)	Mg ⁺ -3,13	chlorkowo-sodowa-wapniowa
		$Na/K^{+}-52,73$	
		pH–5,76	

Tab. 3.5. Wybrane wyniki analiz wody złożowej dla interwałów górnego karbonu w otworach wiertniczych z obszaru przetargowego "Gryfice" na podstawie dokumentacji wynikowych.

Czerwony spągowiec górny Litologia: arenity kwarcowe sublityczne i lityczne

Miąższość:

od 50,0 m w północnej części do ponad 100,0 m w południowo-zachodniej, południowej i południowo-wschodniej części obszaru przetargowego.

Głębokość stropu:

Świerzno 1: 3084,5 m, Rekowo 2: 3014,5 m, Benice 1: 3150,0 m,

Gryfice 1: 3340,5 m.

Własności petrofizyczne (porowatość i przepuszczalność) skał zbiornikowych górnego czerwonego spągowca są zróżnicowane. Ich wartości są uzależnione od środowiska sedymentacji, w których osady górnego czerwonego spągowca były deponowane. Porowatości oznaczone na podstawie komputerowej analizy obrazu wahają się w granicach 2,17– 17,44% (Kuberska i in., 2007). W przypadku przepuszczalności osiągają one wartości od <0,01 mD do około 30,0 mD.

Piaskowce górnego czerwonego spągowca posiadają niewielką porowatość pierwotną

(z wyjątkiem obszarów złożowych, np. Ciechnowo; Kuberska i in., 2007). Najczęściej dostrzegano śródziarnową i międzykrystaliczną porowatość wtórną, będącą efektem rozpuszczania ziaren skaleni oraz cementów węglanowych. Procesami które najsilniej zredukowały pierwotne porowatości osadów górnego czerwonego spągowca, były kompakcja mechaniczna i cementacja (Kuberska i Maliszewska, 2007). W wyniku ich działalności, w pierwszym przypadku porowatość zmniejszyła się o około 5–60%, cementacja zaś ograniczyła ją od 12% do 86%.

Próbki posiadające progową średnicę porów nieprzekraczających 4 µm charakteryzują się bardzo słabymi własnościami filtracyjnymi (Kuberska i Maliszewska, 2007). Duże różnice wartości efektu histerezy (23–80%) wskazują na chaotyczne wykształcenie przestrzeni międzyziarnowej, która w większości próbek ma formę mikroporów, o czym świadczy wielkość średniej kapilary (0,05– 0,36 µm). Procentowa zawartość średnicy porów powyżej 1 µm wynosi od 9 do 79%. Na podstawie porównania wybranych wielkości porów można przypuszczać, że mają one kształt izometryczny, a długość i szerokość w większości przypadków ma wymiar około 0,01 mm. Głównym czynnikiem ograniczającym przepuszczalność w skałach zbiornikowych górnego czerwonego spągowca była krystalizacja illitu włóknistego (Kuberska i Maliszewska, 2007). Na podstawie badań inkluzji fluidalnych wykonanych w kryształach autigenicznego kwarcu, szacuje się, że powstawały one w temperaturach 131–165°C, co odpowiada temperaturze krystalizacji illitu włóknistego. Za pomocą metody K-Ar określono, że ich powstanie nastąpiło we wczesnej jurze i na początku środkowej jury (Maliszewska i Kuberska, 2009).

Zestawione wyniki analiz właściwości fizykochemicznych, określonych na podstawie laboratoryjnych badań próbek z rdzeni wiertniczych, obejmują utwory dolnego i górnego czerwonego spągowca (*sensu* Pokorski, 1988). Porowatość tych skał waha się od 1,42% do 9,83% (Tab. 3.6). Średnia porowatość dla wszystkich zbadanych odcinków czerwonego spągowca to 3,93%. Wyniki analiz przepuszczalności w większości przypadków są bardzo niskie, nieprzekraczające 1 mD (Tab. 3.6). Zawartość bituminów waha się w przedziale od śladowych jego ilości do maksymalnie 0,034% (Tab. 3.6).

Na obszarze przetargowym wykonano analizy gazu w 7 otworach wiertniczych (Tab. 3.7) oraz wody w 2 otworach wiertniczych (Tab. 3.8). Na obszarze "Gryfice" nie udokumentowanego żadnego złoża w utworach górnego czerwonego spągowca. Najbliższymi złożami zakumulowanymi w omawianym horyzoncie są Ciechnowo i Sławoborze, które znajdują się w kierunku SE od obszaru przetargowego.

Otwór wiertniczy	Interwał [m] (stratygrafia)	llość prób porowatość/ przepuszczalność/ bituminy	Porowatość [%] (średnia)	Przepuszczalność [mD] (średnia)	Zawartość bituminów [%] (średnia)
Benice 1	3150,0–3166,6 (cz. spągowiec)	46/46/46	2,3–8,93 (4,39)	od b. słabej–0,730	ślady
Brojce IG-1	3609,5–3666,6 (cz. spągowiec)	12/12/0	0,74–3,33	0,1	_
Gryfice 1	3345,0–3362,5 (cz. spągowiec)	23/23/23	1,42–6,47 (2,51)	<0,01–0,06	ślady–0,034
Jarszewo 1	2928,0–2945,0 (cz. spągowiec)	18/18/18	4,09–7,07 (5,33)	0,028–0,734 (0,165)	0,0039–0,0066 (0,0052)
Świerzno 4	3156,0–3160,75 (cz. spągowiec)	11/10/11	2,09–3,34 (2,83)	0,146–0,023 (0,211)	ślady–0,005
Świerzno 1	3085,0-3102,95 (cz. spągowiec)	19/19/19	2,31–9,83 (6,33)	b. słaba–0,302	ślady–0,0078
Wrzosowo 1	3078,85–3081,25 (cz. spągowiec)	6/6/6	4,49–8,00 (6,03)	0,622–1,926 (1,393)	0,004–0,023 (0,0113)
Wrzosowo 2	3043,05–3059,25 (cz. spągowiec)	2/2/2	1,65 i 1,92	0,01 i 0,05	0,012 i 0,015
Wrzosowo 8	3075,55–3077,55 (cz. spągowiec)	5/5/0	1,05–2,04 (1,50)	0,0–0,56 (0,19)	_
Wrzosowo 9	3060,5–3084,5 (cz. spągowiec)	2/1/2	1,54 i 3,13	0,22	0,007 i 0,009

Tab. 3.6. Wybrane wyniki badań własności petrofizyczne utworów czerwonego spągowca w otworach wiertniczych z obszaru przetargowego "Gryfice" na podstawie dokumentacji wynikowych.

Otwór wiertniczy	Interwał [m] (stratygrafia)	Analizy gazu [% obj.]	Uwagi
Benice 1	3126,0–3169,1 (spąg cechsztynu, cz. spągowiec)	CH ₄ -0,86 CO ₂ -0,13 N ₂ -98,56 He -0,45	Z próbnika złożowego, po przeliczeniu na sumę węglowodorów
Brojce IG-1	3596,0–3642,0 (spąg cechsztynu)	$\begin{array}{c} {\rm CH_{4}-0,67} \\ {\rm C_{2}H_{6}-0,01} \\ {\rm C_{3}H_{8}-$$ilady} \\ {\rm N_{2}-85,38} \\ {\rm H_{2}-12,59} \end{array}$	Zbadano za pomocą próbnika złoża
Jarszewo 1	2930,3–2938,0 (cz. spągowiec)	$ ext{CH}_4 ext{-slady} \ ext{N}_2 ext{-92,90} \ ext{Ar-1,05} \ ext{H}_2 ext{-4,80} \ ext{He} ext{-slady} ext{He}$	Po degazacji rdzenia, po przeliczeniu na sumę węglowodo- rów
Laska 2	3078,0–3115,0 (spąg cechsztynu i strop cz. spą- gowca)	$\begin{array}{c} CH_4-11,36\\ C_2H_6-0,02\\ C_3H_8-0,014\\ N_2-83,96\\ H_2-2,20\\ He-1,19\\ Ar-0,04\\ \end{array}$	Pobrano próbnikiem złoża, analiza w czystym gazie
Świerzno 4	3149,0–3155,0 (wapień cechsz- tyński, łupek miedziono- śny, czerwony spągo- wiec górny)	$\begin{array}{c} CH_4 \mathchar`= \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	Po degazacji rdzenia, po przeliczeniu na sumę węglowodorów
Wrzosowo 1	3075,0–3149,3 (cz. spągowiec)	$\begin{array}{c} CH_4-44,00\\ C_2H_6-1,97\\ C_3H_8-0,61\\ N_2-53,42\\ He\text{$\$lady} \end{array}$	Podczas syfonowania otworu, analiza w czystym gazie
Wrzosowo 2	3044,2–3122,2 (wapień podsta- wowy, cz. spągo- wiec, karbon)	$\begin{array}{c} CH_4-42,66\\ C_2H_6-1,66\\ C_3H_8-0,51\\ N_2-54,72\\ He-0,20\\ Ar-0,035 \end{array}$	Bezpośrednio z rur wydobywczych, analiza w czystym gazie

Tab. 3.7. Wybrane wyniki analiz gazu dla interwałów czerwonego spągowca w otworach wiertniczych z obszaru przetargowego "Gryfice" na podstawie dokumentacji wynikowych.

Otwór wiertniczy	Interwał [m] (stratygrafia)	Analizy wody [g/litr]	Uwagi
Laska 2	3072,0–3115,0 (spąg cechsztynu, cz. spągowiec)	Cl ⁻ -164,24 Br ⁻ -0,64 Ca ⁺ -28,59 Mg ⁺ -0,47 Na ⁺ -73,29 pH-6,47	Solanka okło27,25% chlorkowo-sodowa-wapniowa
	3429,0–3475,0 (cz. spągowiec, dewon)	Br ⁻ -0,57 Ca ⁺ -26,06 Na ⁺ -74,22 pH-6,42	Solanka około 26,50% chlorkowo-sodowa-wapniowa, mocno zanieczyszczona płuczką
Wrzosowo 1	3077,0–3082,0 (cz. spągowiec, karbon)	Cl ⁻ -48,93 Ca ⁺ -1,91 Mg ⁺ -brak Na ⁺ -30,12 pH-6,77	

Tab. 3.8. Wybrane wyniki analiz wody złożowej dla interwałów czerwonego spągowca w otworach wiertniczych z obszaru przetargowego "Gryfice" na podstawie dokumentacji wynikowych.

Dolomit główny (Ca2) Litologia: dolomity i wapienie

Miąższość:

od 10,0 m w najbardziej krawędziowej, południowo-zachodniej i wschodniej części obszaru przetargowego do 80,0 m w części południowej.

Głębokość stropu:

Kamień Pomorski 13: 2326,5 m, Benice 4K: 2611,5 m,

Gryfice 1: 2984,0 m.

Skały zbiornikowe dolomitu głównego występują w różnych strefach facjalnych. Horyzonty, w których są zakumulowane węglowodory, rozpoznano w wewnętrznych i zewnętrznych strefach barier węglanowych oraz na skłonach platform i ich podnóżach zazębiających się z równią basenową. Te pierwsze są reprezentowane najliczniej przez piaszczyste facje węglanowe, natomiast w pozostałych strefach występują facje mułowe. Rozkład porowatości i przepuszczalności w badanych próbkach jest mało zróżnicowany, a ich podział petrofizyczny jest słabo zaznaczony (Protas, 1981; Gąsiewicz i Wichrowska, 1996; Gąsiewicz i in., 1998).

Według klasyfikacji Lucii (1995) w węglanowych facjach piaszczystych występują trzy typy próżni skalnych: 1) międzyziarnowe i międzykrystaliczne, 2) rozdzielone – głównie formowe i wewnątrzziarnowe, 3) połączone – szczelinowe, powstałe z rozpuszczania, natomiast w facjach mułowcowych występują tylko typ pierwszy i drugi (Gąsiewicz i Wichrowska, 1996; Gąsiewicz i in., 1998). Porowatość utworów dolomitu głównego powstawała na różnych etapach diagenezy i była związana przede wszystkim z wpływem wód meteorycznych, dolomityzacją i dedolomityzacją oraz szczelinowaceniem zrębu skalnego (*op. cit.*) Porowatość pierwotna w zdecydowanej większości została silnie (lub całkowicie) zredukowana wskutek wypełnienia próżni późnymi stadiami utworów siarczanowych (anhydrytu).

W profilach dolomitu głównego platformy Kamienia Pomorskiego i okolic obserwuje się duże zróżnicowanie porowatości, sięgające od 1,0 do 22,0% (Fig. 3.7). Wyraźnie większe wartości porowatości występują w węglanowych facjach ziarnistych, a występowanie znacznych porowatości wtórnych w facjach mułowych wskazuje na silny wpływ czynników diagenetycznych. Badania petrograficzne wykazały, że niskie wartości porowatości dolomitów są związane z późnodiagenetycznym wypełnianiem pierwotnych i wtórnych porów anhydrytem. W efekcie decydujące znaczenie dla porowatości mają spękania, które lokalnie występują bardzo obficie.

Próbki pobrane z obszaru m.in. platformy Kamienia Pomorskiego i okolic badane przez Gąsiewicza i in. (1998) w większości posiadają niskie przepuszczalności, nie przekraczające 10 mD (Fig. 3.7). Pośród skał nisko prze-

puszczalnych mikropory powyżej 1 µm stanowia od 3,0% do 97,0%. W wiekszości jednak badanych próbek stanowia one 50%, wykazując częściową zależność od wykształcenia litologicznego (op. cit.). Większość badanych próbek w wymienionym powyżej przedziale przepuszczalności wiąże się z facjami ziarnistymi. Z analizy wielkości kryształów występujących w powyższych facjach i ich ułożenia (stopień krystaliczności) wynika, że na obserwowany rozkład przepuszczalności nie miały istotnego wpływu na oryginalne tekstury osadowe, jednakże miały wpływ na charakter przestrzeni porowej, uwarunkowanej różnymi czynnikami diagenetycznymi (op. cit.)

Wyniki badań petrofizycznych (porowatości, przepuszczalności i średnicy progowej) wykazały, że utwory dolomitu głównego są skałami posiadającymi lepsze własności zbiornikowe niż filtracyjne (Darłak i in., 1998). Próbki posiadające nawet duże wartości porowatości i średnice progowe charakteryzują się bardzo małą przepuszczalnością. Układ ten ma bezpośredni wpływ na własności hydrodynamiczne skał dolomitu głównego. Transport płynów złożowych odbywał się systemem szczelin i złoża mają charakter porowo-szczelinowy (*op. cit.*)

Podstawowe badania laboratoryjne próbek pobranych z rdzeni wiertniczych pozwoliły na określenie własności fizyczno-chemicznych dolomitu głównego. Ich porowatość wynosi od 0,07% do 19,93% (Tab. 3.9). Skały dolomitu głównego w większość przypadków charakteryzują się bardzo niską przepuszczalnością, osiągającą do kilku mD (Tab. 3.9). W pojedynczych otworach zdarza się bardzo dobra przepuszczalność, sięgająca powyżej 10 mD (Tab. 3.9). Pomierzone wartości bituminów wahają się od ich śladowych ilości do 1,13% (Tab. 3.9).

W utworach dolomitu głównego na obszarze platformy Kamienia Pomorskiego oraz w jego sąsiedztwie odkryto dotychczas kilka ekonomicznych akumulacji ropy naftowej. Analizowane ropy naftowe nie uległy wtórnym procesom biodegradacji, jak również ich skład węglowodorowy nie został zubożony procesami wymywania wodą, utleniania lub frakcyjnego odparowania w pułapce złożowej (Mikołajewski i in., 2012). Stwierdzono także, że nie nastąpił kraking termiczny rop naftowych, co świadczy o ich zachowanym pierwotnym składzie węglowodorowym, który jest efektem procesów generowania i ekspulsji ze skały macierzystej (Kotarba i in., 1998).

W utworach dolomitu głównego na obszarze przetargowym "Gryfice", a także w rejonach z nim sąsiadujących, oprócz ekonomicznych akumulacji ropy naftowej i jej objawów w wielu otworach wiertniczych, występują także domieszki gazu ziemnego (Tab. 3.10). Badania wskaźników geochemicznych (Kotarba i in., 1998) i izotopów trwałych na wybranych komponentach gazu ziemnego (Mikołajewski i in., 2012), potwierdzają genetyczne powiązanie z ropą naftową, co świadczy, że gaz został wygenerowany z ropotwórczego kerogenu II typu. Główna część etanu i propanu, jak również część metanu, powstała we wczesnej fazie niskotemperaturowych procesów termogenicznych, jednakże badania składu izotopów trwałych wykazały, że pewna część metanu została również wytworzona na etapie przeobrażeń mikrobialnych (Kotarba i in., 1998). Gaz takiego pochodzenia został rozpoznany m.in. w złożu Rekowo (Mikołajewski i in., 2012).

W utworach dolomitu głównego w 18 otworach wiertniczych wykonano w analizy wody złożowej (Tab. 3.11). Są to 12-33% solanki chlorkowo-sodowe, w niektórych przypadkach ze zróżnicowaną ilością magnezu lub Większość dotychczas odkrytych wapnia. złóż w północno-zachodniej części Polski występuje na obszarze platformy Kamienia Pomorskiego, jej stoku, oraz strefy sasiadującego z nim płytkiego szelfu (Mikołajewski i in., 2012). W granicach obszaru przetargowego "Gryfice", w jego wewnętrznym konturze, odkryto złoże Rekowo, a w jego zachodnim i południowym sasiedztwie - złoża Kamień Pomorski i Wysoka Kamieńska. Ich szczegółową charakterystykę można znaleźć w rozdziale 4.

Fig. 3.7. Wykres porowatości względem przepuszczalności w wybranych utworach barierowych dolomitu głównego na Pomorzu Zachodnim (Słowakiewicz i in., 2008).

Otwór wiertniczy	Interwał [m] (stratygrafia)	llość prób porowatość/ przepuszczalność/ bituminy	Porowatość [%] (średnia)	Przepuszczalność (średnia)	Zawartość bituminów [%] (średnia)
Benice 1	2748,3–2792,8 (dolomit główny)	92/92/92	0,07–7,81 (2,65)	od b. słabej–0,265 [mD]	0,0055–0,0409 (0,0186)
Benice 2	2835,5–2887,3 (dolomit główny)	92/92/92	0,07–10,25 (3,0)	od b. słabej–1,786 [mD]	0,009–0,062 (0,021)
Benice 3		163/155/163	0,06–12,78 (3,3)	0,01–185,1 [mD]	brak–0,151 (0,019)
Benice 4K		154/113/154	0,07–22,52 (3,70)	1–2003 [nm ²] (83)	0,0006–0,033 (0,015)
Chomino1	2687,1–2721,8 (dolomit główny)	71/71/0	0,19–10,57 (2,43)	<0,0001–0,1020 [mD] (0,03)	_
Dobropole 1	2851,05–2860,55 (dolomit główny)	20/10/20	1,09–10,86 (3,35)	1–2182 [nm ²] (116,0)	0,038–0,139 (0,084)
Dusin 1	2584,0–2643,0 (dolomit główny)	116/116/116	0,07–19,93 (5,48)	większość prób nie wykazuje żadnych własności kolektor- skich	0,005–0,467 (0,060)

Gostyń 2	2919,0–2959,0 (dolomit główny)	69/b.d./b.d.	0,14-6,2	0,53–7873,23 [nm ²]	0,008-0,110
	(dololint glowily)		(1,)+)	(3,+7)	(0,2)
	2985,0-5020,0	51/42/51	0,07–3,3		0,006-0,085
Gryfice I	(dolomit główny,	51/43/51	(0.884)	<0,01–2,31 [mD]	(0.024)
	anhydryt górny)		(0,001)		(*,*=*)
	3013,3-3048,0		0.21.4.00		0.0046 0.0246
Gryfice 2	(dolomit główny,	44/b.d./b.d.	0,51-4,60	do 0,014 [mD]	0,0040-0,0340
5	anhvdrvt górny)		(1,38)		(0,024)
	3136 55 3160 85		0.20, 0.30		
Gryfice 3	(1-1-1)	51/47/?	$(2,2)^{-9}$	b. słaba–0,219 [mD]	ślady-0,151
			(2,52)		
	2518,5-2547,9		0.14-5.73		0.0032-0.0276
Jarszewo I	(a. podstawowy,	53/53/53	(1.33)	b. słaba–0,200 [mD]	(0.0055)
	dolomit główny)		(1,55)		(0,0055)
Kamień	2353,8-2357,4	6/h d /h d	0,35-6,16	h states 0.225 [mD]	0,0265-0,1204
Pomorski 3	(dolomit główny)	0/0.0./0.0.	(1,88)	0. staba=0,223 [IIID]	(0,0773)
	2356.75-2384.25				
Kamień	(a podstawowy	57/55/57	0,07–12,88	<0.01-0.62 [mD]	0,010–0,058
Pomorski 7	(a. pousia non y, dolomit główny)	51155151	(11,24)	(0,01 0,02 [mb]	(0,025)
<i>'</i>	001011111 g10w11y)		0.14.4.65		0.0074.0.0556
Kamien	2327,75-2351,45	29/29/29	0,14-4,65	b. słaba–0.3393 [mD]	0,0074-0,0556
Pomorski 13	(dolomit główny)		(0,911)		(0,0253)
	2705,5-2741,5		0 14-7 59		0.003_0.087
Rekowo 2	(dolomit główny,	39/b.d./b.d.	(1, 22)	b. słaba–0,405 [mD]	(0.022)
	anhydryt górny)		(1,22)		(0,025)
	2650.55-2669.05				
Rekowo 3	(dolomit główny	53/h d /h d	0,07–5,94	h_słaba_0.333 [mD]	0,007–0,466
Rekowo 5	anhydryt górny)	55/0. d ./0. d .	(1,85)	0. slaba 0,555 [IIID]	(0,077)
			0.07 10.29		0.020.0.499
Rekowo 4	2081,95-2705,05	58/b.d./b.d.	0,07-10,58	b. słaba–55,74	0,020-0,488
	(dolomit głowny)		(1,39)	, 	(0,097)
Rekowo 6	2701,75–2721,55	39/h d /h d	1,09–28,80	0,013–2,147 [mD]	0,01–1,131
KCK0W0 0	(dolomit główny)	5770.d.70.d.	(10,15)	(0,451)	(0,478)
	(a. podstawowy,		0.21 17.27	0.0.020 [mD]	0.002.0.160
Skarchowo 1	dolomit główny,	118/102/117	0,21-17,57	0,0–0,20 [IIID]	0,002-0,100
	anhvdrvt górny)		(3,614)	(w tym 93 probki = 0)	(0,038)
,	2748 55-2766 85		0.07-1.1		0.0152-0.0323
Świerzno 2	(dolomit główny)	20/b.d./b.d.	(0.34)	b. słaba–0,980 [mD]	(0.0226)
	(uototint growny)		(0,34)		(0,0220)
á ·	2778,5-2811,0	17115115	0,07-6,22		0,003-0,066
Swierzno 4	(dolomit główny,	47/45/46	(1.35)	b. słaba–0,138 [mD]	(0.0138)
	anhydryt górny)		(1,00)		(0,0100)
Świerzna 5	2845,0-2872,0		0,22-11,05	h slaba 7 502 [mD]	0,006-0,037
Swieizho 5	(dolomit główny)	12/12/12	(2,48)	0.81a0a - 7,502 [IIID]	(0,023)
	2769,1-2774,7		1.00.4.5		0.014.0.041
Świerzno 9	(a podstawowy	11/11/11	1,23–4,5	b_słaba_0.049 [mD]	0,014–0,041
	dolomit główny)		(2,96)		(0,023)
	2850 55 2872 55		0.27.5.17	0.22 + 1.20 [mD]	0.043 0.416
Laska 2	(1-1-1)	21/14/b.d.	0,27-3,17	(0,22-1,29 [IIID]	0,043-0,410
	(dolomit growny)		(2,55)	(0,24)	(0,158)
Strzeżewo 1	2768,0-2823,0	98/-/30	0,054–6,164	_	0,015–0,249
Sulleeno I	(dolomit główny)	201120	(1,040)		(0,074)
	2741,75–2787,63		0.36 11.75		0.015 0.050
Wrzosowo 1	(dolomit główny,	94/74/94	0,30-11,73	b. słaba–1,169 [mD]	0,015-0,039
	anhydryt górny)		(3,10)		(0,0296)
	2676.05-2715.25	_	0.28-13.03	0.0-0.26 [mD]	0.011-0.058
Wrzosowo 2	(dolomit główny)	75/65/75	(3 51)	44 próby = 0	(0.0264)
	2727 72 2771 0F		(3,31)		(0,0207)
Wasser		COLEDICO	0,21–14,60	nieprzepuszczalne-	0,05–0,040
wrzosowo 8	(dolomit głowny,	08/39/68	(5.39)	0.81 [mD]	(0.019)
	anhydryt gorny)			, L J	
Wrzosowo 0	2714,5-2758,0	91/80/01	0,07–9,92	nieprzepuszczalne-	0,008–0,074
1112030WU 2	(dolomit główny)	J1/0J/71	(3,82)	1,30 [mD]	(0,22)

Tab. 3.9. Wybrane wyniki badań własności petrofizycznych utworów dolomitu głównego w otworach wiertniczych z obszaru przetargowego "Gryfice" na podstawie dokumentacji wynikowych.

Otwór wiertniczy	Interwał [m] (stratygrafia)	Analizy gazu [%]obj.	Uwagi
Benice 1	2775,0–2784,0 (dolomit główny)	$\begin{array}{c} {\rm CH_4} \ -0.83 \\ {\rm C_2H_6} \ -0.27 \\ {\rm N_2} \ -98.49 \\ {\rm H_2} \ -0.41 \end{array}$	Po degazacji, w przeliczeniu na sumę węglowodorów
Benice 2	2833,5–2838,5 (a. podstawowy, dolomit główny)	CH_4 -ślady CO_2 -ślady O_2 -20,30 N_2 -79,61	Gaz z rdzeniu
	2867,8–2870,8 (dolomit główny)	$\begin{array}{c} {\rm CH_{4}-8,06} \\ {\rm C_{2}H_{6}-0,61} \\ {\rm C_{3}H_{8}-{\rm \acute{s}lady}} \\ {\rm CO_{2}-1,54} \\ {\rm N_{2}-89,79} \end{array}$	Po degazacji rdzenia, węglowodory i inne
Durin 2	2731,5–2804,5 (dolomit główny)	$\begin{array}{c} CH_4 \!\!-\!\!39,\!08 \\ C_2H_6 \!\!-\!\!0,\!94 \\ C_3H_8 \!\!-\!\!0,\!20 \\ N_2 \!\!-\!\!13,\!10 \\ H_2S \!\!-\!\!44,\!85 \end{array}$	W czystym gazie, gaz bezgazolinowo-siarkowodorowy
Benice 5	2730,5–2750,0 (dolomit główny)	$\begin{array}{c} CH_4-24,51\\ C_2H_6-4,80\\ C_3H_8-2,41\\ N_2-66,09\\ H_2S-brak \end{array}$	Po degazacji rdzenia
Benice 4K	2658,5–2696,0 (dolomit główny, anhydryt górny)	$CH_4-73,74$ $C_2H_6-3,68$ $C_3H_8-1,98$ $N_2-17,88$ H_2S -brak	W czystym gazie
Dusin 1	2613,6–2622,3 (dolomit główny)	$\begin{array}{c} {\rm CH_{4}-19,58} \\ {\rm C_{2}H_{6}-7,83} \\ {\rm C_{3}H_{8}-11,09} \\ {\rm N_{2}-50,04} \\ {\rm He-$$ flady} \end{array}$	Po degazacji, w czystym gazie
Gryfice 1	2897,0–3014,0 (dolomit główny, anhydryt górny)	$\begin{array}{c} CH_4-76,69\\ C_2H_6-7,03\\ C_3H_8-2,71\\ N_2-10,72\\ H_2-0,81\\ He-0,06\\ \end{array}$	Zbadano za pomocą próbnika złoża, w czystym gazie
	3015,0–3018,3 (dolomit główny)	$\begin{array}{c} CH_4-15,70\\ C_2H_6-2,67\\ C_3H_8-0,87\\ N_2-56,33\\ H_2-21,01\\ He-0,12 \end{array}$	Po degazacji rdzenia, w przeliczeniu na sumę węglowodorów
Gryfice 2	3029,8–3030,3 (dolomit główny)	$\begin{array}{c} CH_4-67,86\\ C_2H_6-9,25\\ C_3H_8-2,67\\ N_2-18,99\\ H_2-0,48\\ He-\$lady\\ Ar-0,25\\ \end{array}$	Po degazacji rdzenia, w przeliczeniu na sumę węglowodorów
Gryfice 3	3139,5–3143,3 (a. podstawowy, dolomit główny)	$\begin{array}{c} {\rm CH_{4}-1,01}\\ {\rm CO_{2}-0,06}\\ {\rm N_{2}-97,65}\\ {\rm H_{2}-1,28} \end{array}$	Po degazacji, w przeliczeniu na sumę węglowodorów
Kamień Pomorski 3	2357,4 (dolomit główny)	CO ₂ –5,05 N ₂ –94,95 nie stwierdzono obecności wę- glowodorów	Po degazacji płuczki, po przeliczeniu na sumę węglowodorów

	2353,8–2357,4 (dolomit główny)	$\begin{array}{c} CH_4-13,31\\ C_2H_6-1,93\\ C_3H_8-0,77\\ N_2-66,81\\ H_2-9,38\\ H_2S-brak \end{array}$	Po degazacji rdzenia, węglowodory i inne
	2353,5–2405,0 (dolomit główny, anhydryt górny)	$\begin{array}{c} CH_4-69,25\\ C_2H_6-2,34\\ C_3H_8-0,02\\ N_2-16,25\\ H_2-11,38\\ H_2S-brak \end{array}$	Gaz pobrano z przestrzeni obciążnika w czasie wyciągania próbnika złożowego, gaz bezgazolinowy z dużą zawartością wodoru –11,38%
Kamień Pomorski 13	2329,0–2332,7 (dolomit główny)	$\begin{array}{c} {\rm CH_{4}=2,96} \\ {\rm N_{2}=92,86} \\ {\rm H_{2}=2,66} \\ {\rm Ar=1,18} \end{array}$	Po degazacji rdzenia, po przeliczeniu na sumę węglowodorów
Rekowo 2	2714,5–2723,5 (dolomit główny)	$\begin{array}{c} {\rm CH_{4}-26,15} \\ {\rm C_{2}H_{6}-2,67} \\ {\rm C_{3}H_{8}-1,44} \\ {\rm N_{2}-69,05} \\ {\rm H_{2}-0,27} \end{array}$	Gaz z rdzenia, w przeliczeniu na sumę węglowodorów
Rekowo 4	2676,4–2695,6 (a. podstawowy, dolomit główny)	$\begin{array}{c} {\rm CH_{4}\!\!-\!\!8,\!61} \\ {\rm C_{2}}{\rm H_{6}\!\!-\!\!0,\!88} \\ {\rm C_{3}}{\rm H_{8}\!\!-\!\!0,\!56} \\ {\rm N_{2}\!\!-\!\!88,\!91} \\ {\rm H_{2}\!\!-\!\!0,\!69} \end{array}$	Gaz z próbnika złożowego?
Debaura	2697,0–2707,4 (a. podstawowy, dolomit główny)	$\begin{array}{c} {\rm CH_{4}-67,26} \\ {\rm C_{2}H_{6}\!-\!11,29} \\ {\rm C_{3}H_{8}\!\!-\!\!7,70} \\ {\rm N_{2}\!\!-\!10,\!99} \\ {\rm H_{2}\!\!-\!0,\!29} \end{array}$	Gaz z próbnika złożowego, gaz bezgazolinowy, w czystym gazie
Rekowo 6	2697,0–2721,8 (a. podstawowy, dolomit główny)	$\begin{array}{c} {\rm CH_4-74,83} \\ {\rm C_2H_6-5,07} \\ {\rm C_3H_8-2,13} \\ {\rm N_2-16,84} \\ {\rm H_2-0,20} \end{array}$	Gaz pobrany z przewodu
	2767,8 (dolomit główny)	$\begin{array}{c} {\rm CH_4-74,05} \\ {\rm C_2H_6-9,54} \\ {\rm C_3H_8-6,21} \\ {\rm N_2-7,58} \end{array}$	Gaz z próbnika złożowego
Świerzno 2	2770,2 (dolomit główny)	$\begin{array}{c} CH_4-37,51\\ C_2H_6-9,48\\ C_3H_8-14,46\\ N_2-9,99\\ H_2S-12,73 \end{array}$	Analiza gazu pobranego z głowicy eks- ploatacyjnej; duża ilość siarkowodoru
Świerzno 4	2790,6–2792,4 (dolomit główny)	$\begin{array}{c} {\rm CH_{4}-0,48} \\ {\rm C_{2}H_{6}-0,03} \\ {\rm C_{3}H_{8}-0,03} \\ {\rm N_{2}-99,20} \\ {\rm H_{2}-0,10} \end{array}$	Po degazacji rdzenia, po przeliczeniu na sumę węglowodorów
	2766,5–2774,7 (a. podstawowy, dolomit główny)	$\begin{array}{c} {\rm CH_{4}\!-\!4,\!48} \\ {\rm C_{2}}{\rm H_{6}\!-\!0,\!76} \\ {\rm C_{3}}{\rm H_{8}\!\!-\!0,\!41} \\ {\rm N_{2}\!\!-\!\!93,\!56} \\ {\rm H_{2}\!\!-\!0,\!25} \end{array}$	Po degazacji rdzenia, po przeliczeniu na sumę węglowodorów
Świerzno 9	2774,7 (dolomit główny)	$\begin{array}{c} \overline{\rm CH_4-49,71}\\ {\rm C_2H_6-11,73}\\ {\rm C_3H_8-10,62}\\ {\rm N_2-2,68}\\ {\rm Ar-0,26}\\ {\rm H_2-brak}\\ {\rm H_2S-15,92} \end{array}$	Próba pobrana podczas odpuszczania, w czystym gazie, pojawił się argon, dużo siarkowodoru

Wrzosowo 1	2743,4–2746,4 (dolomit główny)	$\begin{array}{c} {\rm CH_{4}-7,80}\\ {\rm C_{2}H_{6}-0,41}\\ {\rm N_{2}-91,27}\\ {\rm CO_{2}-0,23}\\ {\rm H_{2}-0,29}\end{array}$	Po degazacji rdzenia, po przeliczeniu na sumę węglowodorów
Wrzosowo 8	2757,0–2770,0 (dolomit główny)	$\begin{array}{c} {\rm CH_{4}-18,66} \\ {\rm C_{2}H_{6}-3,28} \\ {\rm C_{3}H_{8}-2,04} \\ {\rm N_{2}-73,92} \\ {\rm H_{2}-0,27} \\ {\rm CO_{2}-1,09} \end{array}$	Po degazacji rdzenia, analiza w czystym gazie
Wrzosowo 9	2757,1–2774,5 (dolomit główny)	$\begin{array}{c} CH_4-24,10\\ C_2H_6-6,16\\ C_3H_8-1,93\\ N_2-59,58\\ O_2-brak\\ H_2-0,32\\ He-ślady\\ \end{array}$	Po degazacji rdzenia, po przeliczeniu na sumę węglowodorów

Tab. 3.10. Wybrane wyniki analiz gazu dla interwałów dolomitu głównego w otworach wiertniczych z obszaru przetargowego "Gryfice" na podstawie dokumentacji wynikowych.

Otwór wiertniczy	Interwał [m] (stratygrafia)	Analizy wody [g/litr]	Uwagi
Benice 3	2731,5–2804,5 (dolomit główny)	$\begin{array}{c} \mbox{Silny zapach H_2S} \\ \mbox{Cl}^195,39 \\ \mbox{Br}^2,12 \\ \mbox{HCO}_3^1,54 \\ \mbox{NH}_4-0,57 \\ \mbox{Ca}^+-5,19 \\ \mbox{Mg}^+-11,50 \\ \mbox{Na}/K^+-100,19 \\ \mbox{pH}-6,0 \end{array}$	Solanka około 32,0% chlorkowo-sodowa
Benice 4K	2658,5–2696,0 (dolomit główny)	Silny zapach H_2S $Cl^198,01$ $Br^1,28$ $HCO_3^2,87$ $SO_4^0,80$ $NH_4^+-0,97$ $Al/Fe^+-0,07$ $Ca^+-5,44$ $Mg^+-11,13$ $Na/K^+-101,62$ pH-6,3	Solanka około 32,2% chlorkowo-sodowa
Chomino1	2686,0–2722,0 (dolomit główny)	CI-190,0 Ca+-1,77 Mg ⁺ -0,02 pH-7,7	Próbka z autoklawu
	2686,0–2722,0 (dolomit główny)	CI ⁻ -187,0 Ca ⁺ -0,9 Mg ⁺ -0,39 pH-7,9	Próbka z autoklawu
Gryfice 1	2897,0–3014,0 (dolomit główny)	$\begin{array}{c} {\rm Cl}^193,\!86\\ {\rm Br}^1,\!04\\ {\rm NH}_4^+\!-\!1,\!91\\ {\rm Ca}^+\!-\!5,\!19\\ {\rm Mg}^+\!-\!11,\!57\\ {\rm Na}/{\rm K}^+\!-\!96,\!09\\ {\rm pH}\!-\!5,\!5\end{array}$	Solanka około 31,18% chlorkowo-sodowa, lekko skażona
Gryfice 3	3136,4–3172,3 (a. podstawowy, dolomit główny, anhydryt górny)	Cl ⁻ -142,23 Br ⁻ -0,31 HCO ₃ ⁻ -1,00 SO ₄ ⁻ -3,18	Solanka około 24,1% chlorkowo-sodowa z niewielką ilością magnezu

		${ m NH_4}^+\!\!-\!\!0,\!26$	
		$Ca^{+}-2,87$	
		Mg ⁺ -3,27	
		Na/K ⁺ -84,44	
		pH–6,7	
		Cl ⁻ -190,26	
		Br-1,22	
		HCO ₃ -1,43	
Kamień	2355 1	$SO_4 - 1,20$	Solanka około 30,8%
Pomorski 13	(dolomit główny)	NH_4^+ -0,39	chlorkowo-sodowa,
r oniorski re	(doronne growny)	Ca ⁺ -4,29	próba pobrana podczas płukania
		$Mg^{+}-15,87$	
		Na/K ⁺ -89,41	
		pH–5,75	
	2721.8	Cl ⁻ -70,57	
Rekowo 6	(a podstawowy	Ca ⁺ -7,56	Solanka około
Rekowo o	dolomit główny)	Na ⁺ -35,75	12% chlorkowo-sodowa
	doronne growny)	pH–6,5	
		Cl ⁻ -99,27	
		$HCO_{3}-0,85$	
,	2770.2	SO ₄ -4,03	Solanka około 17 4%
Swierzno 2	(dolomit główny)	Ca ⁺ -0,72	chlorkowo-sodowa
	(dototilit glowily)	Mg ⁺ -0,15	emorkowo sodowa
		Na ⁺ - 62,53	
		pH-8,2	
		Cl ⁻ -189,71	
		Br-1,07	
		$HCO_{3}^{-}-0,85$	Solanka około 30,9%
,	2832.0	$SO_4 - 1,29$	chlorkowo-sodowa,
Swierzno 4	(dolomit główny)	NH_4^+ -0,81	z dużą ilością magnezu;
	(doronne growny)	Ca ⁺ -5,58	próba pobrana podczas płukania otworu,
		Mg ⁺ -12,91	silny zapach siarkowodoru
		Na/K ⁺ –93,39	
		pH-8,0	
		CI-197,22	
		Br-1,00	
<i>.</i>	2774.7	$SO_4 - 1,84$	Solanka około 32.4%
Swierzno 9	(dolomit główny)	Ca -4,68	chlorkowo-sodowa
	(Mg -11,06	
		Na'-104,48	
		pH-6,15	
	2725.0-2793.0	CI-192,21	
	(sól starsza,	Br-1,40	
Wrzosowo 8	a. podstawowy	Ca ⁺ -6,51	Solanka około 33,0%
WIL030WU 0	dolomit główny.	Mg ⁺ -15,94	chlorkowo-sodowa-magnezowa
	anhydryt górny)	Na/K '-87,08	
		рН–6,55	

Tab. 3.11. Wybrane wyniki analiz wody złożowej dla interwałów dolomitu głównego w otworach wiertniczych z obszaru przetargowego "Gryfice" na podstawie dokumentacji wynikowych.

3.4. SKAŁY USZCZELNIAJĄCE I NADKŁADU

Najważniejszymi skałami uszczelniającymi dla karbońsko-dolnopermskiego i cechsztyńskiego systemu naftowego są ewaporaty cechsztynu (rozdział 2.3.4). W przypadku pierwszego systemu naftowego, główne uszczelnienie stanowią poziomy anhydrytowe (A1d, A1s i A1g) i sól kamienna (Na1), należące do cyklotemu PZ1. Dla cechsztyńskiego systemu naftowego skałami uszczelniającymi są anhydyty (A2, A2r), sole kamienne (Na2, w niektórych przy-padkach Na2r) i miejscami sole potasowo-magnezowe (K2) cyklotemu PZ2. Dodatkowo, jako skały uszczelniające mniejszej rangi, można zakwalifikować utwory triasu, charakteryzujące się w niektórych poziomach większą miąższością iłowców i mułowców.

Skały nadkładu horyzontów zbiornikowych na obszarze "Gryfic" budują utwory cechsztynu trzeciego i czwartego cyklotemu, a następnie triasu, jury, kredy i kenozoiku. Składają się one na klastyczno-węglanowoewaporatową sukcesję o miąższości (stwierdzonej w otworach wiertniczych) 2067,0– 3112,5 m.

3.5. GENERACJA, MIGRACJA, AKUMULACJA I PUŁAPKI WĘGLOWODORÓW

Karbońsko-dolnopermski system naftowy

Skały macierzyste: iłowce i mułowce turneju i wizenu. Minimalny potencjał wykazują także iłowce i mułowce westfalu i stefanu.

Skały zbiornikowe: piaskowce fluwialne górnego karbonu (arenity i waki kwarcowe, najczęściej drobno- i średnioziarniste) oraz piaskowce fluwialne górnego czerwonego spągowca (arenity, sporadycznie waki kwarcowe, sublityczne i lityczne).

Skały uszczelniające: nie licząc północnej części obszaru (rejon Wrzosowo – Strzeżewo), skały zbiornikowe górnego karbonu są izolowane od stropu sukcesją skał wulkanicznych dolnego czerwonego spągowca lub ewaporatami cyklotemu PZ1. Wśród tej sukcesji mogą także występować litologiczne uszczelnienia związane z miąższymi kompleksami skał drobnoklastycznych (iłowce i mułowce). Skały zbiorniowowe górnego karbonu również charakteryzują się wewnętrznym uszczelnieniem (cementy).

W przypadku skał zbiornikowych górnego czerwonego spągowca podstawowym uszczelnieniem są zalegające na nim ewaporaty cyklotemu PZ1. Pośród kompleksów piaskowców pojawiają się również uszczelnienia litologiczne (poziomy zlepieńców), jak również wewnętrzne diagenetyczne uszczelnienia. Kształt i wielkość pułapek: w świetle rozpoznania horyzontu spągu cechszytnu (Kudrewicz, 2008) i odkrytych złóż w utworach górnego karbonu, stwierdzono, że głównym typem pułapek złożowych są pułapki typu mieszanego, strukturalno-litologiczno-tektonicznego. Wraz z reprocessingiem istniejących zdjęć sejsmicznych 2D i 3D można spodziewać się wykartowania pułapek typowo strukturalnych. Na podstawie analiz petrologicznych (Kuberska i in., 2007), w miąższych kompleksach piaskowców występują (najprawdopodobniej) pułapki złóż niekonwencjonalnych typu *tight gas*.

Na podstawie mapy strukturalnej spągu cechsztynu (Kudrewicz, 2008), w stropie utworów czerwonego spągowca należy spodziewać się występowania konwencjonalnych pułapek typu kombinowanego (strukturalnotektonicznych). Mając na uwadze wykonany reprocessing zdjęć sejsmicznych 2D i 3D należy się spodziewać pojawienia się kolejnych pułapek strukturalnych. Dodatkowo, biorąc pod uwagę rozkład facjalny utworów górnego czerwonego spągowca, istnieje możliwość występowania pułapek śródformacyjnych w facjach aluwialno-fluwialnych.

Wiek i mechanizm utworzenia pułapek: znaczna część pułapek w skałach górnego karbonu ma charakter synsedymentacyjny. Wśród nich można się spodziewać szeregu
pułapek litologicznych i litologiczno-strukturalnych. W wyniku późniejszych procesów diagenetycznych należy przypuszczać, że w miąższych pakietach piaskowcowych występują złoża niekonwencjonalne, typu tight gas. Pułapki w utworach górnego karbonu powstały również w wyniku późniejszej przebudowy strukturalnej podłoża i jego nadkładu (ruchy kimeryjskie i laramijskie). Większość występujących pułapek w utworach górnego czerwonego spągowca na obszarze przetargowym "Gryfice" powstawała w trakcie depozycji tych osadów, stąd mają one charakter synsedymentacyjny. Ponadto w trakcie sedymentacji osadów czerwonego spagowca mogło powstać szereg pułapek litologicznych, których należy się spodziewać w pobliżu wyniesionych bloków. W wyniku późniejszej przebudowy strukturalnej omawianego obszaru (ruchy kimeryjskie i laramijskie) mogło dość do powstania szeregu pułapek o założeniach strukturalno-tektonicznych (pozytywna struktura ograniczona uskokami).

Wiek i mechanizm generacji, ekspulsji, migracji i akumulacji węglowodorów: na obszarze Pomorza Zachodniego dla karbońsko-dolnopermskiego systemu naftowego przeprowadzono modelowania historii pogrzebania, historii termicznej oraz historii generowania węglowodorów (Kotarba i in., 2004; Pletsch i in., 2010; Botor i in., 2013). Do analizy przyjęto, za Dadlezem i in. (1995), że wielkość strumienia cieplnego w basenie polskim była najwyższa w późnym permie i wczesnym triasie. Przez resztę mezozoiku ulegał on ochłodzeniu, aż do osiagniecia pod koniec kredy temperatury zbliżonej do współczesnej.

Na podstawie wygenerowanych map refleksyjności witrynitu (Wagner i in., 2008), pomierzonych w spągu i stropie utworów karbonu, wynika, że skały macierzyste występujące na obszarze przetargowym "Gryfice" w momencie największego pogrzebania osiągnęły maksymalnie późną fazę dojrzałości skały, wchodząc w tzw. górne "okno ropne". Wartości refleksyjności witrynitu stropowych partii karbonu na omawianym obszarze nie przekraczają 1,0% Ro, jednakże osiągają one tzw. fazę dojrzałą "okna ropnego". We wczesnym karbonie, zarówno na obszarze przetargowym "Gryfice", jak i w rejonach z nim sąsiadujących, obserwuje się zróżnicowany poziom subsydencji. Został on zahamowany w środkowym wizenie w wyniku wypiętrzenia i erozji basenu (Fig. 3.8; Matyja, 2006, 2008). Część skał macierzystych dolnego karbonu przed etapem wynoszenia przeszła fazę niskotemperaturowej generacji węglowodorów (Fig. 3.8–3.9; Kotarba i in., 2005; Kosakowski i in., 2006).

W północno-zachodniej części basenu polskiego, (w tym obszar "Gryfice"), począwszy od permu, obserwuje się wzmożoną subsydencję (Fig. 3.8), zainicjowaną przez procesy ryftowe (Dadlez i in., 1995). Następnie, od cechsztynu, rozwój basenu polskiego był kontrolowany przez regionalną subsydencję termiczną, której działanie postulowane było także w triasie oraz wczesnej i środkowej jurze (Fig. 3.8; Dadlez i in., 1995). Postępująca subsydencja osiągnęła swoje maksimum w późnej kredzie (Fig. 3.8), gdzie głębokość pogrzebania utworów na Pomorzu Zachodnim mogła wynosić ponad 5000 m (Fig. 3.8; m.in. otwór Strzeżewo 1).

Na obszarze Pomorza Zachodniego główna faza generowania węglowodorów występowała w dwóch etapach. Pierwszy z nich obserwuje się w niektórych miejscach już od wczesnego triasu, gdzie skały macierzyste osiągnęły od 0,5 do 0,7% Ro (wstępna faza dojrzałości; Fig. 3.9; Kotarba i in., 2004). Jednak, w większości przypadków, właściwa faza generacji węglowodorów trwała od środkowego triasu do późnej jury (Fig. 3.8; Kotarba i in., 2004; Botor i in., 2013; Krzywiec i in., 2017). Podczas jej trwania skały macierzyste wykorzystały od 25,0 do 65,0% swojego potencjału generacyjnego (Fig. 3.9; op. cit.). Druga faza generowania węglowodorów trwała w trakcie późnej kredy (Pletsch i in., 2010; Botor i in., 2013). Charakteryzowała się ona mniejszą intensywnością niż poprzednia faza. W wyniku późnokredowej fazy generacji skały macierzyste wykorzystały od 65 do 90% swojego potencjału generacyjnego (Fig. 3.9; Kotarba i in., 2004).

Migracja węglowodorów na obszarze przetargowym "Gryfice" i w rejonach z nim sąsiadujących była równoczesna z ich generacją ze skał macierzystych. Główny okres migracji trwał w triasie i jurze (Pletsch i in., 2010). Migracja późnokredowa, podobnie jak generacja węglowodorów z tego okresu, charakteryzuje się zdecydowanie mniejszą intensywnością.

Według Kotarby i in. (2005), wygenerowane węglowodory w fazie wysokotemperaturowej (środkowy trias – późna jura) powstały prawdopodobnie z tego samego typu genetycznego skał macierzystych, co węglowodory wygenerowane w fazie niskotemperaturowej (wczesny karbon). Postuluje jednak, że późniejsza generacja węglowodorów następowała w obszarze głębiej pogrzebanym, głównie na południe od obszaru przetargowego, tj. za strefą uskokową Resko – Świdwin.

Cechsztyński system naftowy

Skały macierzyste: madstony, greinstony, bandstony.

Skały zbiornikowe: dolomity, dolomity częściowo skalcytyzowane i wapienie reprezentowane przez greinstony i pakstony.

Skały uszczelniające: skały zbiorniowe dolomitu głównego stanowią zamknięty system hydrodynamiczny. Od spągu są izolowane przez utwory ewaporatowe cyklotemu PZ1, natomiast od stropu tą samą sukcesją litologiczną cyklotemu PZ2.

Kształt i wielkość pułapek: występują pułapki typowo strukturalne, strukturalnotektoniczne, jak również facjalne.

Wiek i mechanizm utworzenia pułapek: większość pułapek w utworach dolomitu głównego występujących na obszarze przetargowym ma charakter synsedymentacyjny (Semyrka, 1985). Może o tym świadczyć m.in. występowanie w ich akumulacjach metanu mikrobialnego, który powstawał na bardzo wczesnym etapie generowania węglowodorów (Kotarba i in., 1998). Pozostałe pozytywne struktury mają swoje założenia tektoniczne w dolnym pstrym piaskowcu oraz wapieniu muszlowym. Mają one charakter struktur przyuskokowych i są związane ze strefami rozłamów wgłębnych. Nieliczne struktury o założeniach wczesnojurajskich lub późniejszych są rezultatem wypadkowej faz tektonicznych orogenezy alpejskiej (Kotarba i in., 1998).

Wiek i mechanizm generacji, ekspulsji, migracji i akumulacji węglowodorów: charakter paleoreliefu basenu sedymentacyjnego dolomitu głównego był uwarunkowany czynnikami paleogeograficznymi. W zależności od miejsca depozycji utworów dolomitu głównego, (głębokość pogrążenia oraz wielkość strumienia cieplnego), poszczególne obszary wchodziły w różnym czasie w tzw. "okno generacyjne" węglowodorów. Przyjęto za Dadlezem i in. (1995), że wielkość strumienia cieplnego była najwyższa w późnym permie i wczesnym triasie. Przez resztę mezozoiku ulegał on ochłodzeniu, aż do osiągnięcia pod koniec kredy temperatury zbliżonej do współczesnej.

Pierwszy etap generacji węglowodorów z utworów dolomitu głównego następował najprawdopodobniej pod koniec cechsztynu, biorac pod uwagę procesy bakteryjnego generowania weglowodorów. Właściwa faza generacyjna dla osadów równi basenowej rozpoczęła się w środkowym triasie, natomiast w przypadku facji platformowych i jego skłonów w późnym triasie (Fig. 3.10; Kosakowski i in., 2009). Wartość strumienia cieplnego w tym czasie wynosiła od 20 do 40 mW/m^2 . Jednocześnie, pod koniec triasu, utwory dolomitu głównego uległy pogrzebaniu na ponad 2000 m, wchodząc w tzw. "okno ropne". Współczynnik transformacji kerogenu (TR), jaki osiągnęły osady równi basenowej w środkowym trasie oraz facje platformowe skłonów w późnym triasie, wynosił powyżej 10% (Fig. 3.11; Kosakowski i in., 2009; Pletsch i in., 2010).

Dalsza subsydencja utworów dolomitu głównego, trwająca od późnego triasu, przez wczesną, środkową i późną jurę, spowodowała że skały te weszły w główną fazę "okna ropnego" (Fig. 3.10; Kosakowski i in., 2003). Potencjał generacyjny węglowodorów dla osadów równi basenowej został zakończony w późnej jurze (Fig. 3.11; Kosakowski i in., 2009), osiągając maksymalną wartość współczynnika transformacji kerogenu (TR; Fig. 3.11). W przeciwieństwie do facji basenowych dolomitu głównego, facje platform weglanowych i ich skłonów generowały weglowodory do kredy (Kosakowski i in., 2009), bądź nawet mogą być generowane współcześnie (Karnkowski i Matyasik, 2016), przy pogrzebaniu powyżej 2700 m (Pletsch i in., 2010). Współczesny współczynnik transformacji kerogenu dla platformy Kamienia Pomorskiego i innych platform węglanowych Pomorza jest niski i nie przekracza 70% (Fig. 3.11; Kosakowski i in., 2009). Z przeprowadzonej przez Mikołajewskiego i in. (2012) analizy historii pograżenia wynika, że północna część platformy Kamienia Pomorskiego wygenerowała mniej węglowodorów ropnych niż jego część południowa. Południowy skłon charakteryzuje się wyższym (około 70%) wskaźnikiem transformacji kerogenu i większą miąższością węglanowych skał macierzystych, osiągającą 30,0 m (Wagner i in., 2008).

Modelowania 2D wykonane w programie BasinModTM (*op. cit.*) pokazują, że migracja i akumulacja węglowodorów następowała w tym samym czasie co procesy generacji i ekspulsji. Dla osadów równi basenowej rozpoczęły się w środkowym triasie i trwały do późnej jury, w facjach platform węglanowych i ich skłonów migracja oraz akumulacja trwała od jury do kredy. Zaznaczyć należy, że same ścieżki migracyjne węglowodorów w utworach dolomitu głównego są bardzo krótkie, w związku z czym ich akumulacja następowała w przypadku bliskości występowania skał zbiornikowych (Kotarba i Wagner, 2007).

Fig. 3.8. Krzywa pogrążania wydzielonych kompleksów litostratygraficznych z przedziałami dojrzałości termicznej dla otworu Strzeżewo 1, krzywa kalibracyjna modelu termiczno-erozyjnego oraz krzywa ewolucji strumienia cieplnego dla obszaru zlokalizowanego wokół otworu Strzeżewo 1 (Wagner i in., 2008); Pal. – paleogen, N. – neogen, Q – czwarto-rzęd.

Fig. 3.9. Krzywe ewolucji dojrzałości oraz stopień transformacji kerogenu w utworach karbonu w wybranych otworach wiertniczych (Kotarba i in., 2004). Pg+Ng – paleogen i neogen.

Fig. 3.10. Krzywe pogrążania wydzielonych kompleksów litostratygraficznych z przedziałami dojrzałości termicznej kerogenu. Zestawione otwory znajdują się na obszarze przetargowym "Gryfice" i jego sąsiedztwie; Q – czwartorzęd (Kosakowski i in., 2003).

Fig. 3.11. Krzywe ewolucji dojrzałości materii organicznej w analizowanych odwiertach strefy Kamienia Pomorskiego oraz stopień transformacji kerogenu w utworach dolomitu głównego strefy Kamienia Pomorskiego (Kosakowski i in., 2003).

4. CHARAKTERYSTYKA ZŁÓŻ WĘGLOWODORÓW 4.1. ZŁOŻA WĘGLOWODORÓW W SĄSIEDZTWIE OBSZARU PRZETARGOWEGO

W granicach obszaru przetargowego "Gryfice" udokumentowano dwa złoża węglowodorów (MIDAS, 2021; Fig. 4.1). Są to:

- złoże ropy naftowej Rekowo (NR 4847; Fig. 4.2–4.4);
- złoże gazu ziemnego Wrzosowo (GZ 4732; Fig. 4.5).

W bliskim sąsiedztwie obszaru znajduje się również sześć złóż gazu ziemnego i ropy naftowej (MIDAS, 2021; Fig. 4.1):

- złoże gazu ziemnego Dargosław (GZ 20146; Fig. 4.6);
- złoże gazu ziemnego Gorzysław N (GZ 4687; Fig. 4.7–4.8);

- złoże gazu ziemnego Gorzysław S (GZ 4688; Fig. 4.9–4.10);
- złoże ropy naftowej Kamień Pomorski (NR 4802; Fig. 4.11–4.13);
- złoże gazu ziemnego Trzebusz (GZ 4686; Fig. 4.14–4.15);
- złoże ropy naftowej Wys. Kamieńska (NR 4804; Fig. 4.16–4.18).

W dalszej części rozdziału przedstawiono charakterystykę w/w złóż. Mogą one być traktowane jako analogi dla poszukiwań akumulacji węglowodorów na obszarze przetargowym "Gryfice".

4.2. ZŁOŻE ROPY NAFTOWEJ REKOWO

Położenie administracyjne

województwo – zachodniopomorskie powiat – kamieński

- gmina Kamień Pomorski
- **Powierzchnia całkowita złoża** 53,12 ha
- Głębokość zalegania

od -2658,05 do -2665,00 m n.p.m.

Stratygrafia:

perm/cechsztyn (dolomit główny)

Koncesja na wydobywanie 45/95 z dnia 12 grudnia 1995 roku wydana przez Ministra Ochrony Środowiska, Zasobów Naturalnych i Leśnictwa

Użytkownik złoża

PGNiG S.A. w Warszawie

Data rozpoczęcia eksploatacji

17 kwietnia 1975 roku

Nadzór górniczy Okręgowy Urząd Górniczy – Poznań Nr MIDAS: 4847

Dokumentacje w NAG PIG-PIB

1. Binder, I. 1994. Dokumentacja geologiczna w kat. B¹ złoża ropy naftowej Rekowo. Inw. 710/95, Arch. CAG PIG, Warszawa. Zatwierdzona decyzją Ministra Ochrony Środowiska, Zasobów Naturalnych i Leśnictwa z 22.03.1995 r., zn.: KZK/2/6453/ 94/95.

2. Mularczyk, A. 1996. Dokumentacja geologiczna w kat. B złoża ropy naftowej Rekowo. Dodatek nr 1. Inw. 331/97, Arch. CAG PIG, Warszawa. Zatwierdzony decyzją Ministra Ochrony Środowiska, Zasobów Naturalnych i Leśnictwa z 30.12.1996 r., zn.: KZK/2/ 6690/ 96/K.

3. Pawłowski, A. 2005. Dokumentacja geologiczna w kat. B złoża ropy naftowej Rekowo. Dodatek nr 2. Inw. 569/2007, Arch. CAG PIG, Warszawa. Zatwierdzony decyzją Ministra Środowiska z 20.03.2007 r., zn.: DGkzk-479-10/7708/2424/07/EZD.

Zasoby

Pierwotne wydobywalne zasoby bilansowe (stan na rok 2006):

- 32,00 tys. t ropy naftowej w kat. B
- 3,63 mln m³ gazu ziemnego w kat. B

Wydobywalne zasoby bilansowe według stanu na 31.12.2019 roku:

- •1,37 tys. t ropy naftowej w kat. B
- 0,27 mln m^3 gazu ziemnego w kat. B

Zasoby przemysłowe według stanu na 31.12.2019 roku:

- 1,46 tys. t zasobów przemysłowych ropy naftowej w kat. B oraz 61,41 tys. t zasobów nieprzemysłowych ropy naftowej w kat. B
- brak zasobów przemysłowych gazu ziemnego, 6,95 mln m³ zasobów nieprzemysłowych gazu ziemnego w kat. B Wydobycie w 2019 roku:
- brak

Budowa złoża

Złoże ropy naftowej Rekowo (Fig. 4.4.A) zostało odkryte w 1975 roku odwiertem Rekowo 1. Złoże jest zlokalizowane w obrębie zrębu Rekowa, ograniczonego od wschodu i zachodu dwiema dyslokacjami, z największą elewacją w jego północnej części. Pułapka ma charakter strukturalno-tektoniczny. Poziom roponośny występuje w utworach dolomitu głównego (Fig. 4.4.B). Pierwotne ciśnienie złożowe wynosiło 49,11 MPa przy samoczynnym wypływie ropy w ilości 160 t/d.

Otwory zlokalizowane na złożu

(Fig. 4.4.A; stan na 2021 r.)

Nazwa	Głębokość	Stratygrafia
otworu	[m]	na dnie
REKOWO 1	2667,0	perm

Parametry złoża i parametry jakościowe kopalin: dane zestawiono w Tab. 4.1.

Historia produkcji: dane zestawiono na Fig. 4.2–4.3 i w Tab. 4.2–4.3.

Według informacji w "Dodatku nr 2..." (Pawłowski, 2005) od dnia 17.04.1975 r. do dnia 01.12.2006 r. ze złoża wydobyto ogółem 26,48 tys. t ropy naftowej i 3,1041 mln m³ gazu ziemnego. Do 31.12.1994 r. eksploatowane były zasoby szacunkowe.

¹ Na stronie tytułowej dokumentacji błędnie wpisano "w kat. C".

Nazwa parametru	Wartość min.	Wartość max.	Wartość średnia	Jednostka	Uwagi
ciśnienie aktualne				MPa	nie mierzono (zapuszczona pom- pa wgłębna)
ciśnienie nasycenia			18,428	MPa	określone z korelacji
ciśnienie złożowe pierwotne			49,911	MPa	
głębokość położenia wody pod- ścielającej				m	nieznana
miąższość efektywna złoża				m	nieznana
porowatość	0,500	3,100		%	
przepuszczalność	0,016	1,163		mD	oraz przepuszczalność szczelino- wa
stopień mineralizacji wody zło- żowej	117,000			g/l	
temperatura złoża			347,000	°K	
typ chemiczny wody złożowej				-	solanka Cl-Na
warunki produkowania				_	pompowanie
współczynnik nasycenia węglo- wodorami			0,700	-	
współczynnik wydobycia			0,330	_	
wydajność absolutna V _{abs}				t/d	nie wyliczono
wydajność dozwolona V _{dozw}	7,000	12,000		t/d	według prognozy wydobycia
wykładnik gazowy			104,000	m ³ /t	
par	ametry jako	ściowe ropy	naftowej (k	opalina głóv	vna)
Nazwa parametru	Wartość min.	Wartość max.	Wartość średnia	Jednostka	Uwagi
ciężar właściwy ropy	0,856	0,878	0,861	g/cm ³	
lepkość	10,750	29,910	20,720	MPa/s	lepkość przy 20°C (dynamiczna)
zawartość asfaltenów	4,700	9,500	7,130	% wag.	asfalteny twarde
zawartość asfaltenów	2,500	6,150	4,180	% wag.	
zawartość parafiny	4,130	11,940	5,600	% wag.	pozostałość podestylacyjna
parametr	y jakościow	e gazu ziemi	nego (kopali	na współwys	stępująca)
Nazwa parametru	Wartość min.	Wartość max.	Wartość średnia	Jednostka	Uwagi
wartość opałowa	37,230	50,290	43,760	MJ/m ³	
zawartość C ₂ H ₆	8,080	12,260	10,170	% obj.	
zawartość CH ₄	53,220	73,650	63,430	% obj.	
zawartość dwutlenku węgla	0,140	0,530	0,330	% obj.	
zawartość He	0	0,060	0,030	% obj.	
zawartość N ₂	5,000	9,920	7,460	% obj.	
zawartość siarkowodoru	3,040	6,320	4,680	% obj.	
zawartość węglowodorów cięż- kich C ₃₊	4,970	20,080	12,480	% obj.	

Tab. 4.1. Parametry złoża ropy naftowej Rekowo i parametry jakościowe kopalin (MIDAS, 2021; według Pawłowskiego, 2005).

GRYFICE

Stan na dzień (rok/miesiąc/dzień)	Wydobycie ropy naftowej z wydobywalnych zasobów bilansowych w tys. t	Wydobycie ropy naftowej z wydobywalnych zasobów pozabilansowych w tys. t	Wydobycie ropy naftowej z zasobów szacunkowych w tys. t
	kat. A+B	kat. A+B	
2019/12/31	-	—	—
2018/12/31	_	—	—
2017/12/31	0,08	—	—
2016/12/31	0,37	—	—
2015/12/31	0,45	—	—
2014/12/31	0,54	—	—
2013/12/31	0,60	—	—
2012/12/31	0,62	—	—
2011/12/31	0,67	—	—
2010/12/31	0,76	—	—
2009/12/31	1,05	—	—
2008/12/31	1,40	_	_
2007/12/31	0,14	_	_
2006/12/31	_	_	_
2005/12/31	2,25	_	_
2004/12/31	_	0,11	_
2003/12/31	_	0,05	_
2002/12/31	_	0,69	_
2001/12/31	_	0,53	_
2000/12/31	_	0,86	_
1999/12/31	_	1,05	_
1998/12/31	_	0,89	_
1997/12/31	_	0,74	_
1996/12/31	_	0,47	—
1995/12/31	_	—	—
1994/12/31	_	—	0,29
1993/12/31	_	_	0,22
1992/12/31	_	_	0,48
1991/12/31	_	_	0,27
1990/12/31	_	_	0,84
1989/12/31	_	_	_
1988/12/31	_	_	0,09
1987/12/31	_	_	0,36
1986/12/31	_	_	0,72
1985/12/31	_	_	0,62
1984/12/31	_	_	1,31
1983/12/31	_	_	1,04
1982/12/31	_	_	0,67
1981/12/31	-	-	1,84
1980/12/31	_	_	—
1979/12/31	_	_	_
1978/12/31	_	_	_
1977/12/31	_	_	_
1976/12/31	_	_	1,06
1976/01/01	-	_	7,35
		•	

Tab. 4.2. Historia wydobycia ropy naftowej (kopalina główna) w złożu Rekowo (na podstawie corocznych zestawień zmian zasobów złóż przysyłanych przez przedsiębiorcę; lata 1995-2019 według bazy MIDAS, 2021, wcześniejsze lata według "Dodatku nr 2..." – Pawłowski, 2005; danych z lat 1975-1994 brak w bilansach złóż kopalin w Polsce w wersji papierowej).

Stan na dzień (rok/miesiąc/dzień)	Wydobycie gazu ziemnego z wydobywalnych zasobów bilansowych w mln m ³	Wydobycie gazu ziemnego z wydobywalnych zasobów pozabilansowych w mln m ³	Wydobycie gazu ziemnego z zasobów szacunkowych w mln m ³
	kat. A+B	kat. A+B	
2019/12/31	_	_	_
2018/12/31	_	_	_
2017/12/31	0,01	_	_
2016/12/31	0,04	_	_
2015/12/31	0,05	_	_
2014/12/31	0,06	_	_
2013/12/31	0,07	_	_
2012/12/31	0,10	_	_
2011/12/31	0,13	_	_
2010/12/31	0,13	_	_
2009/12/31	0,13	_	_
2008/12/31	0,18	-	_
2007/12/31	0,02	-	_
2006/12/31	_	-	_
2005/12/31	_	0,19	_
2004/12/31	_	0,25	_
2003/12/31	_	0,01	_
2002/12/31	—	0,07	—
2001/12/31	_	0,05	—
2000/12/31	_	0,09	—
1999/12/31	_	0,10	—
1998/12/31	_	0,09	—
1997/12/31	_	0,07	_
1996/12/31	_	0,05	_
1995/12/31	_	_	_
1994/12/31	_	_	0,04
1993/12/31	_	_	0,02
1992/12/31	_	—	0,04
1991/12/31	_	—	0,03
1990/12/31	_	—	0,09
1989/12/31	_	_	_
1988/12/31	_	_	0,02
1987/12/31	_	_	0,06
1986/12/31	_	_	0,11
1985/12/31	_	_	0,09
1984/12/31	_	_	0,08
1983/12/31	_	_	0.09
1982/12/31	_	_	0.04
1981/12/31	_	_	0,19
1980/12/31	_	_	—
1979/12/31	_	_	_
1978/12/31	_	_	_
1977/12/31	_	_	_
1976/12/31	_	_	0.11
1976/01/01	_	_	1.12
	1		· · · · · · · · · · · · · · · · · · ·

Tab. 4.3. Historia wydobycia gazu ziemnego (kopalina współwystępująca) w złożu Rekowo (na podstawie corocznych zestawień zmian zasobów złóż przysyłanych przez przedsiębiorcę; lata 1995-2019 według bazy MIDAS, 2021, wcześniejsze lata według "Dodatku nr 2..." – Pawłowski, 2005; danych z lat 1975-1994 brak w bilansach złóż kopalin w Polsce w wersji papierowej).

Fig. 4.2. Wykres wydobycia ropy naftowej (kopalina główna) w złożu Rekowo (na podstawie corocznych zestawień zmian zasobów złóż przysyłanych przez przedsiębiorcę; lata 1995-2019 według bazy MIDAS, 2021, wcześniejsze lata według "Dodatku nr 2..." – Pawłowski, 2005; danych z lat 1975-1994 brak w bilansach złóż kopalin w Polsce w wersji papierowej).

Fig. 4.3. Wykres wydobycia gazu ziemnego (kopalina współwystępująca) w złożu Rekowo (na podstawie corocznych zestawień zmian zasobów złóż przysyłanych przez przedsiębiorcę; lata 1995-2019 według bazy MIDAS, 2021, wcześniejsze lata według "Dodatku nr 2..." – Pawłowski, 2005; danych z lat 1975-1994 brak w bilansach złóż kopalin w Polsce w wersji papierowej).

В


```
[m n.p.m.]
[m a.s.l.]
```

Fig. 4.4. A. Lokalizacja otworów wiertniczych na złożu ropy naftowej Rekowo i w jego sąsiedztwie (na podstawie CBDG, 2021). **B.** Przekrój przez złoże ropy naftowej Rekowo (na podstawie Pawłowskiego, 2005).

4.3. ZŁOŻE GAZU ZIEMNEGO WRZOSOWO

Położenie administracyjne województwo - zachodniopomorskie powiat – kamieński gmina – Kamień Pomorski Powierzchnia całkowita złoża 320 ha Głębokość zalegania od -2910,00 m do -3140,00 m n.p.m. Stratygrafia: perm/czerwony spagowiec, karbon Koncesja na wydobywanie brak Użytkownik złoża brak Data rozpoczęcia eksploatacji złoże nieeksploatowane Nadzór górniczy Okręgowy Urząd Górniczy – Poznań Nr MIDAS: 4732

Dokumentacje w NAG PIG-PIB

1. Binder, I., Sikorski, B. 1975. Dokumentacja geologiczna złoża gazu ziemnego Wrzosowo w rejonie Kamienia Pomorskiego. Inw. 11409 CUG, Arch. CAG PIG, Warszawa. Zatwierdzona decyzją Prezesa Centralnego Urzędu Geologii z 17.04.1976 r., znak: KZK/ 012/S/3320/76.

Zasoby

Pierwotne wydobywalne zasoby bilansowe (stan na rok 1975):

• nie wyznaczono

Wydobywalne zasoby bilansowe według stanu na 31.12.2019 roku:

• 600,00 mln m³ gazu ziemnego w kat. C Zasoby przemysłowe według stanu na 31.12.2019 roku:

• brak

Wydobycie w 2019 roku: • brak

Budowa złoża

Złoże gazu ziemnego Wrzosowo (Fig. 4.5.A) odkryto w 1975 roku odwiertem Wrzosowo 1. Znajduje się ono w NW części antyklinorium pomorskiego, w NE skrzydle struktury Kamienia Pomorskiego. Horyzont gazowy występuje w utworach czerwonego spągowca i karbonu (Fig. 4.5.B). Od góry ekran dla złoża stanowią utwory cechsztynu i wapienia podstawowego. Od SW i E złoże jest ograniczone dwiema strefami dyslokacyjnymi. Przypuszczalnie strefa dyslokacyjna biegnąca wzdłuż SW granicy złoża gazu Wrzosowo stanowi dla niego pułapkę tektoniczną. Pierwotne ciśnienie złożowe wynosiło 275,55 atm.

Otwory zlokalizowane na złożu

(Fig. 4.5.A; stan na 2021 r.)

Nazwa otworu	Głębokość [m]	Stratygrafia na dnie
WRZOSOWO 1	3305,0	karbon (westfal)
WRZOSOWO 2	3127,3	karbon (westfal)
WRZOSOWO 3	3255,0	karbon (westfal)

Parametry złoża i parametry jakościowe kopaliny: dane zestawiono w Tab. 4.4.

Historia produkcji

Złoże Wrzosowo obecnie nie jest zagospodarowane. Brak jest informacji o wydobyciu prowadzonym na etapie poszukiwania i rozpoznawania złoża.

Nazwa parametru	Wartość min.	Wartość max.	Wartość średnia	Jednostka	Uwagi
ciśnienie złożowe pierwotne			275,550	atm	
ciśnienie złożowe pierwotne			284,660	ata	
głębokość położenia wody pod- ścielającej			-3188,00	m	wyznaczony na podstawie badań geofizycznych
głębokość położenia wody pod- ścielającej			-3140,00	m	poziom umowny przyjęty do obliczeń
miąższość efektywna złoża		43,000		m	
porowatość			7,000	%	
przepuszczalność	0,075	1,037		mD	karbon
przepuszczalność	0,622	1,926		mD	czerwony spągowiec
temperatura złoża			80,000	°C	
współczynnik nasycenia węglo- wodorami			0,800	_	
wydajność absolutna V _{abs}			16,500	Nm ³ /min	otwór Wrzosowo 1
	paran	netry jakoś	ciowe gazu z	ziemnego	
Nazwa parametru	Wartość min.	Wartość max.	Wartość średnia	Jednostka	Uwagi
gęstość			0,803	_	względem powietrza
wartość opałowa	3995,000			Kcal/Nm ³	
zawartość C ₂ H ₆			2,240	% obj.	
zawartość CH ₄			40,360	% obj.	
zawartość dwutlenku węgla				% obj.	ślady
zawartość H ₂			0,020	% obj.	
zawartość He			0,220	% obj.	
zawartość N ₂			56,590	% obj.	
zawartość siarkowodoru				% obj.	nie stwierdzono

Tab. 4.4. Parametry złoża gazu ziemnego Wrzosowo i parametry jakościowe kopaliny (MIDAS, 2021; według Binder i Sikorskiego, 1975).

Fig. 4.5. A. Lokalizacja otworów wiertniczych na złożu gazu ziemnego Wrzosowo i w jego sąsiedztwie (na podstawie CBDG, 2021). **B.** Przekrój przez złoże gazu ziemnego Wrzosowo (na podstawie Binder i Sikorskiego, 1975).

4.4. ZŁOŻE GAZU ZIEMNEGO DARGOSŁAW

Położenie administracyjne województwo - zachodniopomorskie powiat – gryficki gmina - Brojce, Trzebiatów Powierzchnia całkowita złoża 266,07 ha Głębokość zalegania od -2674,24 do -2851,61 m n.p.m. **Stratygrafia** karbon górny Koncesja na wydobywanie brak Użytkownik złoża brak Data rozpoczęcia eksploatacji 29 maja 2018 roku (test produkcyjny) Nadzór górniczy Okręgowy Urząd Górniczy – Poznań Nr MIDAS: 20146

Dokumentacje w NAG PIG-PIB

1. Gamrot, J. 2019. Dokumentacja geologiczno-inwestycyjna złoża gazu ziemnego Dargosław. Inw. 1245/2021, Arch. CAG PIG, Warszawa. Zatwierdzona decyzją Ministra Klimatu i Środowiska z 2.02.2021 roku, znak: DGK-IV.4742.2.2020.7.GJ.

Zasoby

Pierwotne wydobywalne zasoby bilansowe (stan na rok 2018):

• 555,0 mln m³ gazu ziemnego w kat. C Wydobywalne zasoby bilansowe stan na 31.12.2018 roku:

• 536,26 mln m³ gazu ziemnego w kat. C Zasoby przemysłowe według stanu na 31.12.2018 roku:

 • 536,26 mln m³ zasobów przemysłowych gazu ziemnego w kat. C oraz 185,00 mln m³ zasobów nieprzemysłowych gazu ziemnego w kat. C

Wydobycie w 2019 roku:

• brak danych

Budowa złoża

Złoże gazu ziemnego Dargosław (Fig. 4.6.A) zostało odkryte w 2016 roku otworem Dargosław-1. Znajduje się ono w północnej części antyklinorium pomorskiego, na SE od ciągu złóż gazu ziemnego Trzebusz – Gorzysław N - Gorzysław S. Gaz jest zakumulowany w piaskowcach karbonu górnego, w pułapce strukturalno-tektonicznej (Fig. 4.6.B); jest to złoże typu masywowego. Rejon występowania złoża odznacza się skomplikowaną budową geologiczną. Samo złoże ma formę dwukulminacyjnej struktury, silnie zaangażowanej tektonicznie, o stosunkowo regularnym kształcie, wydłużonej wzdłuż osi NNW-SSE. Kulminacje rozdziela uskok odwrócony o zrzucie około 50 m. Za górną granicę złoża przyjęto strop utworów karbonu górnego, jako dolną - poziom odpowiadający spodowi otworu Dargosław 1, ponieważ na podstawie dostępnych danych ustalenie głębokości występowania konturu gaz-woda nie jest możliwe. Od wschodu złoże ogranicza regionalna dyslokacja, wzdłuż której struktura Dargosławia została wydźwignięta. Od strony zachodniej obiekt zanurza się pod utwory czerwonego spagowca. Granice północną stanowi uskok przebiegający poprzecznie do głównych stref nieciągłości, oddzielający złoże Dargosław od złoża Gorzysław S. Na południu granicę złoża wyznacza zamknięcie strukturalne.

Otwory zlokalizowane na złożu

(Fig. 4.6.A; stan na 2021 r.)

Nazwa	Głębokość	Stratygrafia
otworu	[m]	na dnie
DARGOSŁAW 1	2879,5	karbon

Parametry złoża i parametry jakościowe kopaliny: dane zestawiono w Tab. 4.5.

Historia produkcji:

Złoże Dargosław udostępnione jest odwiertem Dargosław 1, który został odwiercony i opróbowany w lutym 2016 roku. Od 29 maja 2018 roku do momentu sporządzenia dokumentacji geologiczno-inwestycyjnej w otworze tym przeprowadzony był długotrwały test produkcyjny. Do końca listopada 2019 roku ze złoża wydobyto 39,53722 mln m³ gazu oraz 54,51 m³ wody kondensacyjnej o ciężarze ok. 0,99 g/cm³, przy czym nie odnotowano wody złożowej.

Nazwa parametru	Wartość min.	Wartość max.	Wartość średnia	Jednostka	Uwagi
ciśnienie aktualne			23,890	MPa	maj 2019
ciśnienie złożowe pierwotne			29,280	MPa	na głębokości -2798,92 m TVDSS
głębokość położenia wody pod- ścielającej				m	nie dotyczy, niemożliwa do ustalenia
miąższość efektywna złoża			17,920	m	średnia z mapy miąższości efektywnej
porowatość			9,330	%	średnia dla serii efektywnej wy- znaczona z otworu Dargosław 1
przepuszczalność			2,960	mD	średnia dla serii efektywnej wy- znaczona z otworu Dargosław 1
temperatura złoża			72,300	°C	na głębokości -2798,92 m TVDSS
warunki produkowania				_	wolumetryczne
współczynnik nasycenia węglo- wodorami			77,370	%	na podstawie otworu Dargosław 1
współczynnik wydobycia			0,750	_	
wydajność absolutna V _{abs}	132,000	581,000	358,000	m ³ /min	
wydajność dozwolona V _{dozw}		100,000		m ³ /min	proponowana, na podstawie po- miaru wydajności w otworze Dargosław 1
wykładnik ropny/kondensatowy				g/m ³	nie dotyczy
wykładnik wodny				g/m ³	nie dotyczy
	param	etry jakości	owe gazu zie	emnego	
Nazwa parametru	Wartość min.	Wartość max.	Wartość średnia	Jednostka	Uwagi
ciepło spalania	17,450	19,470	18,300	MJ/m ³	
wartość opałowa	15,720	17,510	16,480	MJ/m ³	
zawartość C ₂ H ₆	0,630	0,680	0,650	% obj.	
zawartość CH ₄	44,210	47,080	45,480	% obj.	
zawartość dwutlenku węgla	0,040	0,160	0,140	% obj.	
zawartość He	0,080	0,230	0,190	% obj.	
zawartość Hg	5,014	5,978	5,492	$\mu g/m^3$	
zawartość N ₂	51,850	54,740	53,410	% obj.	
zawartość siarkowodoru	0,000	0,000	0,000	% obj.	
zawartość węglowodorów cięż- kich C ₃₊	0,100	0,230	0,160	% obj.	

Tab. 4.5. Parametry złoża gazu ziemnego Dargosław i parametry jakościowe kopaliny (MIDAS, 2021; według Gamrot, 2019).

Fig. 4.6. A. Lokalizacja otworów wiertniczych na złożu gazu ziemnego Dargosław i w jego sąsiedztwie (na podstawie CBDG, 2021). B. Przekrój przez złoże gazu ziemnego Dargosław (na podstawie Gamrot, 2019).

4.5. ZŁOŻE GAZU ZIEMNEGO GORZYSŁAW N

Położenie administracyjne

województwo – zachodniopomorskie powiat – gryficki gmina – Trzebiatów

Powierzchnia całkowita złoża

233,00 ha

Głębokość zalegania

od -2692,8 m do -2819,3 m n.p.m.

Stratygrafia

karbon górny – westfal

Koncesja na wydobywanie

108/93 z dnia 21 czerwca 1993 roku wydana przez Ministra Ochrony Środowiska, Zasobów Naturalnych i Leśnictwa

Użytkownik złoża

PGNiG S.A w Warszawie

Data rozpoczęcia eksploatacji

Pierwsze dane o wydobyciu pochodzą z 1979 roku (na podstawie bilansów złóż kopalin w Polsce)

Nadzór górniczy

Okręgowy Urząd Górniczy – Poznań Nr MIDAS: 4687

Dokumentacje w NAG PIG-PIB:

1. Binder, I., Lech, I., Sikorski, B. 1976. Dokumentacja złoża gazu ziemnego Gorzysław w rejonie Trzebiatowa. Inw. 11780a CUG, Arch. CAG PIG, Warszawa. Zatwierdzona decyzją Prezesa Centralnego Urzędu Geologii z 21.03.1977 r., zn.: KZK/012/S/ 3544/77.

2. Binder, I., Lech, I., Sikorski, B. 1978. Dokumentacja geologiczna złoża gazu ziemnego Gorzysław-Trzebusz. Dodatek nr 1. Inw. 11780b CUG, Arch. CAG PIG, Warszawa. Zatwierdzony decyzją Prezesa Centralnego Urzędu Geologii z 13.04.1979 r., zn.: KZK/ 012/S/3947/79.

3. Binder, I., Lech, I., Sikorski, B. 1980. Dokumentacja geologiczna złóż gazu ziemnego Gorzysław-Trzebusz. Dodatek nr 2². Inw. 11780c CUG, Arch. CAG PIG, Warszawa. Zatwierdzony decyzją Prezesa Centralnego Urzędu Geologii z 14.04.1981 r., zn.: KZK/ 012/M/4278/81.

Zasoby

Pierwotne wydobywalne zasoby bilansowe:

• brak danych

Wydobywalne zasoby bilansowe według stanu na 31.12.2019 roku:

• 109,99 mln m³ gazu ziemnego w kat. B i 160,00 mln m³ w kat. C

Zasoby przemysłowe według stanu na 31.12.2019 roku:

- •67,99 mln m³zasobów przemysłowych gazu ziemnego w kat. B,
- 324,00 mln m³ zasobów nieprzemysłowych gazu ziemnego w kat. B oraz 200,00 mln m³ zasobów nieprzemysłowych gazu ziemnego w kat. C

Wydobycie w 2019 roku:

• 19,62 mln m³ gazu ziemnego w kat. B

Budowa złoża

Złoże Gorzysław N (Fig. 4.8.A) odkryto odwiertem Gorzysław 2 w 1976 roku. Znajduje się ono w NE część antyklinorium pomorskiego, we wschodnim obrzeżeniu niecki trzebiatowskiej, w obrębie struktury Gorzysławia. W tym rejonie stwierdzono wystepowanie deformacji nieciągłych, związanych głównie z tektoniką waryscyjską, w mniejszym stopniu z alpejską. Strukturę Gorzysławia od NE i SW ograniczają dyslokacje regionalne, a biegnacy prostopadle do nich rów tektoniczny rozdziela samą strukturę i zarazem złoża gazu Gorzysław N i Gorzysław S. Złoże Gorzysław N występuje w pułapce złożowej w piaskowcach karbonu górnego (westfal) przedzielonych utworami mułowcowoilastymi (Fig. 4.8B). Górna granica złoża odpowiada stropowi górnokarbońskich utworów piaskowcowych o odpowiednich parametrach kolektorskich (pozostałe utwory karbonu górnego mają słabe właściwości kolektorskie lub nie mają ich w ogóle). Ponieważ w przypadku złóż występujących w obrębie struktury Gorzysławia granica woda-gaz jest trudna do wyznaczenia, jako dolną granicę przyjęto spąg najniższej udostępnionej do eksploatacji warstwy gazonośnej. Pozostałe granice złoża

² Tekst dodatku odnosi się wyłącznie do złoża Gorzysław S, którego zasoby zaktualizowano w związku z przeprowadzeniem nowych prac geologicznorozpoznawczych. Decyzja zatwierdza zasoby złóż Gorzysław S, Gorzysław N, Trzebusz.

stanowią umowne płaszczyzny pionowe. W tak określonej bryle utworów karbonu górnego znajdują się piaszczyste kolektory tworzące właściwe złoże gazu (stanowią tylko pewien procent ogólnej kubatury utworów "złożowych").

Otwory zlokalizowane na złożu

(Fig. 4.8.A; stan na 2021 r.)

Głębokość	Stratygrafia
[m]	na dnie
2861,7	westfal
2820,0	westfal
2849,5	westfal
2798,0	karbon
2772,0	karbon
	Głębokość [m] 2861,7 2820,0 2849,5 2798,0 2772,0

Parametry złoża i parametry jakościowe kopaliny: dane zestawiono w Tab. 4.6.

Historia produkcji: dane zestawiono na Fig. 4.7 i w Tab. 4.7.

Nazwa parametru	Wartość min.	Wartość max.	Wartość średnia	Jednostka	Uwagi
ciśnienie złożowe pierwotne	299,840	303,070	301,070	ata	
głębokość wody podścielającej			-2813,30	m	przyjęta umownie
miąższość złoża		64,300		m	
porowatość	0,210	21,520	10,000	%	
temperatura złoża	341,000	343,000	342,000	°K	
typ chemiczny wody złożowej				-	solanka Cl-Na-Ca
wsp. nasycenia węglowodorami			0,840	_	
współczynnik wydobycia			0,800	_	
wydajność absolutna V _{abs}			135,000	Nm ³ /min	otwór Gorzysław 2
wydajność absolutna V _{abs}			321,000	Nm ³ /min	otwór Gorzysław 6
wydajność absolutna V _{abs}			37,000	Nm ³ /min	otwór Gorzysław 7
wydajność dozwolona V _{dozw}			4,000	Nm ³ /min	otwór Gorzysław 7
wydajność dozwolona V _{dozw}			25,000	Nm ³ /min	otwór Gorzysław 2
wydajność dozwolona V _{dozw}			68,000	Nm ³ /min	otwór Gorzysław 6
	param	etry jakości	owe gazu zie	emnego	
Nazwa parametru	Wartość min.	Wartość max.	Wartość średnia	Jednostka	Uwagi
gęstość	0,748	0,784	0,771	-	względem powietrza
wartość opałowa	4158,000	4851,000	4443,000	Kcal/Nm ³	
zawartość C ₂ H ₆	1,110	1,250	1,180	% obj.	
zawartość CH ₄	44,700	52,930	47,600	% obj.	
zawartość dwutlenku węgla	0,050			% obj.	ślady
zawartość He	0,240	0,260	0,250	% obj.	
zawartość N ₂	45,380	53,650	50,720	% obj.	
zawartość węglowodorów			43,620	% obj.	
zawartość węgl. ciężkich C ₃₊			0,250	% obj.	

Tab. 4.6. Parametry złoża gazu ziemnego Gorzysław N i parametry jakościowe kopaliny (MIDAS, 2021; według Binder i in., 1978).

GRYFICE

Stan na dzień (rok/miosiaa/dziaź)	Wydobycie gazu ziemnego z wydobywalnych zasobów bilan- sowych w mln m ³			
(rok/miesiąc/dzien)	kat. A+B	kat. C		
2019/12/31	19,62	_		
2018/12/31	24,28	_		
2017/12/31	38,18	_		
2016/12/31	36,78	_		
2015/12/31	24,19	_		
2014/12/31	21,89	_		
2013/12/31	17,82	_		
2012/12/31	19,32	_		
2011/12/31	19,37	_		
2010/12/31	21,91	_		
2009/12/31	23,34	_		
2008/12/31	19,92	_		
2007/12/31	24,50	_		
2006/12/31	20,22	_		
2005/12/31	20,68	_		
2004/12/31	18,62	_		
2003/12/31	26,91	_		
2002/12/31	22,61	_		
2001/12/31	24,25	_		
2000/12/31	20,40	_		
1999/12/31	24,23	_		
1998/12/31	23,61	_		
1997/12/31	22,22	—		
1996/12/31	21,08	—		
1995/12/31	19,55	—		
1994/12/31	21,38	—		
1993/12/31	23,49	—		
1992/12/31	33,62	—		
1991/12/31	33,95	_		
1990/12/31	46,30	_		
1989/12/31	39,09	_		
1988/12/31	38,00	_		
1987/12/31	34,00	—		
1986/12/31	38,32	—		
1985/12/31	44,63	_		
1984/12/31	39,81	—		
1983/12/31	34,88	-		
1982/12/31	28,48	-		
1981/12/31	21,02	-		
1980/12/31	17,33	-		
1979/12/31	0,23	-		

Tab. 4.7. Historia wydobycia gazu zimnego w złożu Gorzysław N (na podstawie corocznych zestawień zmian zasobów złóż przysyłanych przez przedsiębiorcę; lata 1992-2019 według bazy MIDAS, 2021, wcześniejsze lata według bilansów złóż kopalin w Polsce w wersji papierowej).

GRYFICE

Fig. 4.7. Wykres wydobycia gazu ziemnego w złożu Gorzysław N (na podstawie corocznych zestawień zmian zasobów złóż przysyłanych przez przedsiębiorcę; lata 1992-2019 według bazy MIDAS, 2021, wcześniejsze lata według bilansów złóż kopalin w Polsce w wersji papierowej).

Fig. 4.8. A. Lokalizacja otworów wiertniczych na złożu gazu ziemnego Gorzysław N i w jego sąsiedztwie (na podstawie CBDG, 2021). B. Przekrój przez złoże gazu ziemnego Gorzysław N (na podstawie Binder i in., 1978).

4.6. ZŁOŻE GAZU ZIEMNEGO GORZYSŁAW S

Położenie administracyjne

województwo – zachodniopomorskie powiat – gryficki gmina – Trzebiatów

Powierzchnia całkowita złoża

44,24 ha

Głębokość zalegania

od -2743,5 m do -2832,5 m n.p.m.

Stratygrafia

karbon górny – westfal

Koncesja na wydobywanie

146/93 z dnia 21 czerwca 1993 roku wydana przez Ministra Ochrony Środowiska, Zasobów Naturalnych i Leśnictwa

Użytkownik złoża

PGNiG S.A. w Warszawie

Data rozpoczęcia eksploatacji

Pierwsze dane o wydobyciu pochodzą z 1982 roku (na podstawie bilansów złóż kopalin w Polsce)

Nadzór górniczy

Okręgowy Urząd Górniczy – Poznań Nr MIDAS: 4688

Dokumentacje w NAG PIG-PIB:

1. Binder, I., Lech, I., Sikorski, B. 1978. Dokumentacja geologiczna złoża gazu ziemnego Gorzysław-Trzebusz. Dodatek nr 1. Inw. 11780b CUG, Arch. CAG PIG, Warszawa. Zatwierdzony decyzją Prezesa Centralnego Urzędu Geologii z 13.04.1979 r., zn.: KZK/ 012/S/3947/79.

2. Binder, I., Lech, I., Sikorski, B. 1980. Dokumentacja geologiczna złóż gazu ziemnego Gorzysław-Trzebusz. Dodatek nr 2. Inw. 11780c CUG, Arch. CAG PIG, Warszawa. Zatwierdzony decyzją Prezesa Centralnego Urzędu Geologii z 14.04.1981 r., zn.: KZK/ 012/M/4278/81.

Zasoby:

Pierwotne wydobywalne zasoby bilansowe:

• brak danych

Wydobywalne zasoby bilansowe według stanu na 31.12.2019 roku:

•417,88 mln m³ gazu ziemnego w kat. B Zasoby przemysłowe według stanu na 31.12.2019 roku:

- •4,68 mln m³zasobów przemysłowych gazu ziemnego w kat. B,
- 533,21 mln m³ zasobów nieprzemysłowych gazu ziemnego w kat. B
- Wydobycie w 2019 roku:
- brak

Budowa złoża

Złoże Gorzysław S (Fig. 4.10.A) zostało odkryte w 1978 roku. Ponieważ jest ono częścią tej samej struktury co złoże Gorzysław N, jego lokalizacja i budowa są niemal tożsame. Od NE i SW strukturę Gorzysławia ograniczają dyslokacje regionalne, a biegnący prostopadle do nich rów tektoniczny rozdziela tę strukturę i znajdujące się w jej obrębie złoża gazu Gorzysław N i Gorzysław S. Złoże Gorzysław S występuje w pułapce złożowej, w górnokarbońskich (westfal) piaskowcach przedzielonych utworami mułowcowo-ilastymi (Fig. 4.10.B). Górna granica złoża tylko częściowo odpowiada stropowi karbonu górnego. Dolną granicę stanowi spąg najniższego udostępnionego otworem Gorzysław 10 horyzontu gazowego, przy czym jest to granica umowna, woda złożowa występuje w rzeczywistości znacznie głębiej. Pozostałe granice złoża wyznaczają umowne płaszczyzny pionowe, które oddzielają rozpoznaną część złoża od pozostałej cześci struktury Gorzysławia. W tak określonej bryle utworów karbonu górnego występują piaszczyste kolektory będące właściwym złożem gazu (stanowią tylko pewien procent ogólnej kubatury utworów "złożowych").

Otwory zlokalizowane na złożu

(Fig. 4.10A; stan na 2021 r.)

Nazwa	Głębokość	Stratygrafia	
otworu	spągu [m]	na dnie	
GORZYSŁAW 10	3086,5	fran	

Parametry złoża i parametry jakościowe kopaliny: dane zestawiono w Tab. 4.8.

Historia produkcji: dane zestawiono na Fig. 4.9 i w Tab. 4.9.

Nazwa parametru	Wartość min.	Wartość max.	Wartość średnia	Jednostka	Uwagi
ciśnienie denne Pds			29,071	MPa	otwór Gorzysław 15
ciśnienie denne Pds			29,230	MPa	otwór Gorzysław 10
ciśnienie złożowe pierwotne			29,150	MPa	
głębokość położenia wody pod- ścielającej			-2832,50	m	umowna
miąższość złoża		24,000		m	
porowatość	6,000	15,000	10,850	%	
temperatura złoża	345,000	346,000	345,500	°K	
typ chemiczny wody złożowej				-	solanka Cl-Na-Ca
współczynnik nasycenia węglo- wodorami			0,800	-	
współczynnik wydobycia			0,800	-	
wydajność absolutna V _{abs}			59,000	Nm ³ /min	otwór Gorzysław 10
wydajność absolutna V _{abs}			219,000	Nm ³ /min	otwór Gorzysław 15
wydajność dozwolona V _{dozw}			13,000	Nm ³ /min	otwór Gorzysław 10
wydajność dozwolona V_{dozw}			31,000	Nm ³ /min	otwór Gorzysław 15
	param	etry jakości	owe gazu zie	emnego	
Nazwa parametru	Wartość min.	Wartość max.	Wartość średnia	Jednostka	Uwagi
gęstość			0,781	_	względem powietrza
wartość opałowa			17,580	MJ	
zawartość C ₂ H ₆			0,920	% obj.	
zawartość CH ₄			45,950	% obj.	
zawartość He			0,220	% obj.	
zawartość N ₂			52,760	% obj.	
zawartość węglowodorów			47,010	% obj.	
zawartość węglowodorów cięż- kich C ₃₊			3,200	g/Nm ³	

Tab. 4.8. Parametry złoża gazu ziemnego Gorzysław S i parametry jakościowe kopaliny (MIDAS, 2021; według Binder i in., 1980).

Stan na dzień	Wydobycie gazu ziemnego z wydobywalnych zasobów bilan- sowych w mln m ³			
(rok/miesiąc/uzien)	kat. A+B	kat. C		
2019/12/31	-	_		
2018/12/31	0,23	_		
2017/12/31	1,13	_		
2016/12/31	0,23	_		
2015/12/31	_	_		
2014/12/31	0,85	_		
2013/12/31	0,57	_		
2012/12/31	0,49	_		
2011/12/31	0,68	_		
2010/12/31	0,48	_		
2009/12/31	0,75	_		
2008/12/31	0,43	_		
2007/12/31	0,56	_		
2006/12/31	0,71	_		

2005/12/31	0,91	—	
2004/12/31	0,80	—	
2003/12/31	-	_	
2002/12/31	-	_	
2001/12/31	-	_	
2000/12/31	0,58	_	
1999/12/31	2,05	_	
1998/12/31	1,97	_	
1997/12/31	2,34	—	
1996/12/31	3,08	—	
1995/12/31	1,39	_	
1994/12/31	0,35	_	
1993/12/31	2,25	_	
1992/12/31	0,85	_	
1991/12/31	0,33		
1990/12/31	1,30		
1989/12/31	1,00		
1988/12/31	1,88		
1987/12/31	2,52		
1986/12/31	2,77		
1985/12/31	3,41		
1984/12/31	5,43		
1983/12/31	7,40		
1982/12/31	2.39		

Tab. 4.9. Historia wydobycia gazu zimnego w złożu Gorzysław S (na podstawie corocznych zestawień zmian zasobów złóż przysyłanych przez przedsiębiorcę; lata 1992-2019 według bazy MIDAS, 2021, wcześniejsze lata według bilansów złóż kopalin w Polsce w wersji papierowej).

Fig. 4.9. Wykres wydobycia gazu ziemnego w złożu Gorzysław S (na podstawie corocznych zestawień zmian zasobów złóż przysyłanych przez przedsiębiorcę; lata 1992-2019 według bazy MIDAS, 2021, wcześniejsze lata według bilansów złóż kopalin w Polsce w wersji papierowej).

B

Fig. 4.10. A. Lokalizacja otworów wiertniczych na złożu gazu ziemnego Gorzysław S i w jego sąsiedztwie (na podstawie CBDG, 2021). **B.** Przekrój przez złoże gazu ziemnego Gorzysław S (na podstawie Binder i in., 1980).

4.7. ZŁOŻE ROPY NAFTOWEJ KAMIEŃ POMORSKI

Położenie administracyjne

województwo – zachodniopomorskie powiat – kamieński

gmina – Kam. Pomorski, Wolin, Dziwnów

- **Powierzchnia całkowita złoża** 620.00 ha
- Głębokość zalegania

od -2227,40 m do -2315,00 m n.p.m.

Stratygrafia

Perm/cechsztyn (dolomit główny)

Koncesja na wydobywanie 99/93 z dnia 21 czerwca 1993 roku wydana przez Ministra Ochrony Środowiska, Zasobów Naturalnych i Leśnictwa

Użytkownik złoża

- PGNiG S.A. w Warszawie
- Data rozpoczęcia eksploatacji

listopad 1972 roku

Nadzór górniczy

Okręgowy Urząd Górniczy – Poznań Nr MIDAS: 4802

Dokumentacje w NAG PIG-PIB

1. Oświęcimska, A., Sikorski, B. 1972. Dokumentacja geologiczna złoża ropy naftowej Kamień Pomorski. Inw. 9777 CUG, Arch. CAG PIG, Warszawa. Zatwierdzona decyzją Prezesa Centralnego Urzędu Geologii z 28.02.1973 r., zn.: KZK/012/S/2781/73.

2. Hannes, A., Sikorski, B. 1973. Dokumentacja geologiczna złoża ropy naftowej Kamień Pomorski. Dodatek nr 1. Inw. 10535a CUG, Arch. CAG PIG, Warszawa. Zatwierdzony decyzją Prezesa Centralnego Urzędu Geologii z 23.04.1974 r., zn.: KZK/012/ S/2949/74.

3. Mularczyk, A., Pyzik, M. 1981. Dokumentacja geologiczna złoża ropy naftowej Kamień Pomorski. Dodatek nr 2. Inw. 10535b CUG, Arch. CAG PIG, Warszawa. Zatwierdzony decyzją Prezesa Centralnego Urzędu Geologii z 25.03.1982 r., zn.: KZK/012/ M/4393/81/82.

4. Nowak, J. 2008. Dokumentacja geologiczna złoża ropy naftowej Kamień Pomorski w kat. B. Dodatek nr 3. Inw. 557/2009, Arch. CAG PIG, Warszawa. Zatwierdzony decyzją Ministra Środowiska z 9.02.2009 r., zn.: DGiKGkzk-4791-88/7859/626/09/AW.

Zasoby

Pierwotne bilansowe zasoby wydobywalne (stan na rok 2007):

- 1925,00 tys. t ropy naftowej w kat. B
- •270,40 mln m³ gazu ziemnego w kat. B Wydobywalne zasoby bilansowe według stanu na 31.12.2019 roku:
 - •4,24 tys. t ropy naftowej w kat. B
- •8,93 mln m³ gazu ziemnego w kat. B Zasoby przemysłowe według stanu na 31.12.2019 roku:
- •6,34 tys. t zasobów przemysłowych ropy naftowej w kat. B
- •2117,90 tys. t zasobów nieprzemysłowych ropy naftowej w kat. B
- brak zasobów przemysłowych gazu ziemnego w kat. B,
- 373,52 mln m³ zasobów nieprzemysłowych gazu ziemnego w kat. B

Wydobycie w 2019 roku:

- •1,25 tys. t ropy naftowej w kat. B
- •0,21 mln m³ gazu ziemnego w kat. B

Budowa złoża

Złoże ropy naftowej Kamień Pomorski (Fig. 4.13A) zostało odkryte w 1972 roku. Jest ono usytuowane w osiowej części kamieńskiego odgałęzienia antyklinorium pomorskiego. Ma formę płaskiej, szerokopromiennej brachyantykliny o elipsoidalnym kształcie, płaskim wierzchołku i przebiegu NW-SE, co odpowiada regionalnym kierunkom tektonicznym. Horyzont produktywny występuje w utworach dolomitu głównego (Fig. 4.13B). Dolna granica odpowiada pierwotnemu poziomowi wody podścielającej, górną wyznaczono po stropie utworów dolomitu głównego. Jest to typowe złoże warstwowe związane ze strukturalnym podniesieniem w obrębie dolomitu głównego. Wraz z ropą w złożu występuje rozpuszczony w niej gaz ziemny gazolinowy. Główne znaczenie dla przemieszczania się płynów w złożu ma szczelinowość.

Otwory zlokalizowane na złożu (Fig. 4.13.A; stan na 2021 r.)

Nazwa	Głębokość	Stratygrafia
otworu	[m]	na dnie
KAM. POM. 2	2299,6	perm górny
KAM. POM. 4	2248,1	perm górny
KAM. POM. 5	2246,4	perm górny
KAM. POM. 8K	2480,6	perm
KAM. POM. 9	2270,0	perm górny
KAM. POM. 10	2260,7	perm górny
KAM. POM. 11	2305,6	perm
KAM. POM. 16	2375,4	perm
KAM. POM. 17	2317,3	perm górny
KAM. POM. 18	2355,9	perm
KAM. POM. 19	2670,4	perm
KAM. POM. 19K	2670,4	perm
KAM. POM. 21	2268,3	perm
KAM. POM. 22	2371,0	perm
KAM. POM. 23/23K	2382,1	perm
KAM. POM. 25K	2328,5	perm
KAM. POM. 26K	2327,5	perm
KAM. POM. Z1	2550,0	perm
KAM. POM. Z2	2356,0	perm
ZASTAŃ 1	2418,0	perm górny

Parametry złoża i parametry jakościowe kopalin: dane zestawiono w Tab. 4.10.

Historia produkcji: dane zestawiono na Fig. 4.11–4.12 i w Tab. 4.11–4.12.

Od początku eksploatacji do dnia 31 grudnia 2007 r. ze złoża wydobyto 1891,564 tys. t ropy i 265,150 mln m³ gazu. Do złoża zatłoczono 787 064 m³ wody i wód złożowych oraz 8 820 550 m³ gazu. Średni roczny wykładnik gazowy zmieniał się w zakresie od 114 do 177 m³/t.

Nazwa parametru	Wartość min.	Wartość max.	Wartość średnia	Jednostka	Uwagi
ciśnienie aktualne			20,700	MPa	30.08.2007 r.
ciśnienie nasycenia			17,260	MPa	obliczone
ciśnienie złożowe pierwotne			44,160	MPa	
głębokość położenia wody pod- ścielającej			-2315,00	m	pierwotna
miąższość efektywna złoża			18,500	m	
porowatość			6,000	%	
przepuszczalność	0,010	0,440		mD	
stopień mineralizacji wody zło- żowej			314,000	g/l	
temperatura złoża			72,000	°C	
typ chemiczny wody złożowej				-	Cl-Ca (wg Bojarskiego); Na-Cl (wg Cimaszewskiego)
warunki produkowania				_	eksploatacja samoczynna okre- sowa
współczynnik nasycenia węglo- wodorami			0,900	_	
współczynnik wydobycia			0,480	_	
wydajność dozwolona $\mathrm{V}_{\mathrm{dozw}}$			560,000	t/miesiąc	
wykładnik gazowy			157,000	m ³ /t	średni roczny z 24 lat eksploatacji
parametry jakościowe ropy naftowej (kopalina główna)					
Nazwa parametru	Wartość min.	Wartość max.	Wartość średnia	Jednostka	Uwagi
ciężar właściwy ropy	0,855	0,861	0,859	g/cm ³	
gęstość			0,859	g/cm ³	w temperaturze 15°C

lepkość			11,970	cSt	w temperaturze 30°C
lepkość			22,230	cSt	w temperaturze 20°C
temperatura płynięcia			6,750	°C	
zawartość parafiny	3,000	4,300	3,700	% wag.	
zawartość siarki				% wag.	>1,0
zawartość siarkowodoru			961,000	mg/dm ³	
zawartość wody			0,190	% wag.	
parame	etry jakościo	we gazu zie	mnego (kop	alina towarz	ysząca)
Nazwa parametru	Wartość min.	Wartość max.	Wartość średnia	Jednostka	Uwagi
liczba Wobbego			54,290	MJ/Nm ³	
wartość opałowa	49,140	50,370	49,755	MJ/Nm ³	
zawartość C ₂ H ₆	10,940	11,220	11,080	% obj.	
zawartość CH ₄	46,530	47,640	47,085	% obj.	
zawartość dwutlenku węgla	0,049	0,059	0,054	% obj.	
zawartość He	0,0198	0,020	0,0199	% obj.	
zawartość Hg	0,966	2,893	1,787	$\mu g/Nm^3$	
zawartość N ₂	7,181	7,614	7,398	% obj.	
zawartość siarkowodoru	15,000	15,640	15,320	% obj.	
zawartość węglowodorów cięż- kich C ₃₊	18,450	19,685	19,067	% obj.	

Tab. 4.10. Parametry złoża ropy naftowej Kamień Pomorski i parametry jakościowe kopalin (MIDAS, 2021; według Nowaka, 2008).

Stan na dzień	Wydobycie ropy naftowej z wydobywalnych zasobów bi- lansowych w tys. t			
(rok/miesiąc/uzien)	kat. A+B	kat. C		
2019/12/31	1,25	_		
2018/12/31	1,58	_		
2017/12/31	1,69	_		
2016/12/31	2,06	_		
2015/12/31	1,87	_		
2014/12/31	2,13	_		
2013/12/31	2,36	_		
2012/12/31	2,86	_		
2011/12/31	3,00	_		
2010/12/31	3,27	_		
2009/12/31	3,45	_		
2008/12/31	3,66	_		
2007/12/31	4,06	_		
2006/12/31	4,71	_		
2005/12/31	4,84	_		
2004/12/31	4,42	_		
2003/12/31	6,28	_		
2002/12/31	6,38	_		
2001/12/31	5,18	_		
2000/12/31	5,79	_		
1999/12/31	6,21	_		
1998/12/31	6,40	_		
1997/12/31	9,37	_		
1996/12/31	7,61	_		
1995/12/31	8,88	_		

1994/12/31	9,14	_
1993/12/31	6,71	—
1992/12/31	13,72	_
1991/12/31	10,49	_
1990/12/31	12,29	_
1989/12/31	12,31	_
1988/12/31	11,18	_
1987/12/31	13,02	_
1986/12/31	21,40	_
1985/12/31	31,32	_
1984/12/31	32,80	_
1983/12/31	40,74	_
1982/12/31	43,96	_
1981/12/31	86,40	
1980/12/31	119,80	
1979/12/31	137,30	_
1978/12/31	173,34	_
1977/12/31	b.d.	_
1976/12/31	b.d.	_
1976/01/01	266,66	_
1975/01/01	273,03	_
1974/01/01	107,01	_
1973/01/01	_	1,83

Tab. 4.11. Historia wydobycia ropy naftowej (kopalina główna) w złożu Kamień Pomorski (na podstawie corocznych zestawień zmian zasobów złóż przysyłanych przez przedsiębiorcę; lata 1992-2019 według bazy MIDAS, 2021, wcześniejsze lata według bilansów złóż kopalin w Polsce w wersji papierowej).

Stan na dzień (rok/miesiąc/dzień)	Wydobycie ga z wydobywalnych wych w t	zu ziemnego zasobów bilanso- mln m ³	Wydobycie gazu ziemnego z wydobywalnych zasobów pozabi- lansowych w mln m ³
	kat. A+B	kat. C	kat. A+B
2019/12/31	0,21	-	_
2018/12/31	0,27	-	_
2017/12/31	0,29	-	_
2016/12/31	0,36	-	_
2015/12/31	0,33	-	_
2014/12/31	0,38	-	_
2013/12/31	0,43	-	_
2012/12/31	0,53	-	_
2011/12/31	0,52	-	_
2010/12/31	0,55	-	_
2009/12/31	0,62	-	_
2008/12/31	0,64	-	_
2007/12/31	0,63	-	_
2006/12/31	0,71	-	_
2005/12/31	0,77	-	_
2004/12/31	0,73	-	_
2003/12/31	-	-	_
2002/12/31	-	-	1,02
2001/12/31	-	-	0,81
2000/12/31	-	-	0,88
1999/12/31	-	-	0,98
1998/12/31	-	-	0,92
1997/12/31	-	-	1,37
1996/12/31	-	-	1,37
1995/12/31	-	-	1,26
1994/12/31	-	-	_
1993/12/31	-	-	_
1992/12/31	1,41	-	—

1991/12/31	1,61	-	—
1990/12/31	2,14	-	—
1989/12/31	2,18	-	—
1988/12/31	1,97	-	—
1987/12/31	2,29	-	—
1986/12/31	3,66	-	—
1985/12/31	5,00	-	—
1984/12/31	4,57	-	—
1983/12/31	5,15	-	_
1982/12/31	5,21	-	_
1981/12/31	9,70		_
1980/12/31	14,	,02	_
1979/12/31	15,77	-	_
1978/12/31	19,81	-	_
1977/12/31	b.d.	-	_
1976/12/31	b.d.	-	—
1976/01/01	44,87	-	—
1975/01/01	37,92	—	—
1974/01/01	15,36	—	-
1973/01/01			

Tab. 4.12. Historia wydobycia gazu zimnego (kopalina towarzysząca) w złożu Kamień Pomorski (na podstawie corocznych zestawień zmian zasobów złóż przysyłanych przez przedsiębiorcę; lata 1992-2019 według bazy MIDAS, 2021, wcześniejsze lata według bilansów złóż kopalin w Polsce w wersji papierowej).

Fig. 4.11. Wykres wydobycia ropy naftowej (kopalina główna) w złożu Kamień Pomorski (na podstawie corocznych zestawień zmian zasobów złóż przysyłanych przez przedsiębiorcę; lata 1992-2019 według bazy MIDAS, 2021, wcześniejsze lata według bilansów złóż kopalin w Polsce w wersji papierowej).

GRYFICE

Fig. 4.12. Wykres wydobycia gazu ziemnego (kopalina towarzysząca) w złożu Kamień Pomorski (na podstawie co-rocznych zestawień zmian zasobów złóż przysyłanych przez przedsiębiorcę; lata 1992–2019 według bazy MIDAS, 2021, wcześniejsze lata według bilansów złóż kopalin w Polsce w wersji papierowej).

Fig. 4.13. A. Lokalizacja otworów wiertniczych na złożu ropy naftowej Kamień Pomorski i w jego sąsiedztwie (na podstawie CBDG, 2021). **B.** Przekrój przez złoże ropy naftowej Kamień Pomorski (na podstawie Nowaka, 2008, szczegółowa litostratygrafia na podstawie Sikorskiego i Hannes, 1973).

4.8. ZŁOŻE GAZU ZIEMNEGO TRZEBUSZ

Położenie administracyjne: województwo - zachodniopomorskie powiat - gryficki gmina - Trzebiatów Powierzchnia całkowita złoża 336,48 ha Głębokość zalegania od -2732,6 m do -2906,0 m n.p.m. **Stratygrafia** karbon górny – westfal Koncesja na wydobywanie 109/93 z dnia 21 czerwca 1993 roku wydana przez Ministra Ochrony Środowiska, Zasobów Naturalnych i Leśnictwa Użytkownik złoża PGNiG S.A. w Warszawie Data rozpoczęcia eksploatacji listopad 1982 roku Nadzór górniczy Okręgowy Urząd Górniczy – Poznań Nr MIDAS: 4686

Dokumentacje w NAG PIG-PIB

1. Binder, I., Lech, I., Sikorski, B. 1978. Dokumentacja geologiczna złoża gazu ziemnego Gorzysław-Trzebusz. Dodatek nr 1. Inw. 11780b CUG, Arch. CAG PIG, Warszawa. Zatwierdzony decyzją Prezesa Centralnego Urzędu Geologii z 13.04.1979 r., zn.: KZK/ 012/S/3947/79.

2. Binder, I., Lech, I., Sikorski, B. 1980. Dokumentacja geologiczna złóż gazu ziemnego Gorzysław-Trzebusz. Dodatek nr 2³. Inw. 11780c CUG, Arch. CAG PIG, Warszawa. Zatwierdzony decyzją Prezesa Centralnego Urzędu Geologii z 14.04.1981 r., zn.: KZK/ 012/M/4278/81.

3. Czajka, D. 2019. Dokumentacja geologiczno-inwestycyjna w kat. C złoża gazu ziemnego Trzebusz. Inw. 9379/2020, Arch. CAG PIG, Warszawa. Zatwierdzona decyzją Ministra Klimatu i Środowiska z 9.12.2020 r., zn.: DGK-IV.4742.21.2019.GJ.

Zasoby

Pierwotne wydobywalne zasoby bilansowe (stan na rok 2018):

•710,00 mln m³ gazu ziemnego w kat. C, w tym 1,78 mln m³ helu

Wydobywalne zasoby bilansowe według stanu na 31.12.2019 roku:

• 596,79 mln m³ gazu ziemnego w kat. C, w tym 1,49 mln m³ helu

Zasoby przemysłowe według stanu na 31.12.2019 roku:

• 587,24 mln m³zasobów przemysłowych gazu ziemnego w kat. C, w tym 1,46 mln m³ helu oraz 299,55 mln m³ zasobów nieprzemysłowych gazu ziemnego w kat. C, w tym 0,75 mln m³ helu

Wydobycie w 2019 roku:

• 5,75 mln m³ gazu ziemnego w kat. C

Główną kopaliną złoża jest gaz ziemny zaazotowany, domieszkę towarzyszącą w złożu stanowi hel, którego uśredniona zawartość wynosi 0,25% obj. W trakcie eksploatacji, w wyniku procesu technologicznego, towarzyszącego wydobyciu gazu ze złoża, odbierany jest również kondensat węglowodorowy.

Budowa złoża

Złoże Trzebusz (Fig. 4.15.A) odkryto odwiertem Trzebusz 1 (1977/1978 rok). Jest ono zlokalizowane w antyklinorium pomorskim, w rejonie strefy uskokowej Trzebiatowa. Akumulacja gazu występuje w piaskowcach górnego karbonu (westfal), w pułapce strukturalno-tektonicznej (Fig. 4.15.B). Górna granicę złoża stanowi strop karbonu, natomiast dolną – zamknięcie strukturalne, przy czym na głębokości 2906,0 m prawdopodobnie występuje też kontur gaz-woda. Struktura złożowa rozciąga się w kierunku NW-SE. Od południowego zachodu i północnego wschodu ograniczają ją strefy uskokowe, a od północy i północnego wschodu granicę wyznacza wyraźne obniżenie powierzchni podcechsztyńskiej. Domieszkę towarzyszącą w złożu stanowi hel.

³ Tekst dodatku odnosi się wyłącznie do złoża Gorzysław S, którego zasoby zaktualizowano w związku z przeprowadzeniem nowych prac geologicznorozpoznawczych. Decyzja zatwierdza zasoby złóż Gorzysław S, Gorzysław N, Trzebusz.

Otwory zlokalizowane na złożu (Fig. 4.15.A; stan na 2021 r.)

Nazwa otworu	Głębokość [m]	Stratygrafia na dnie
TRZEBUSZ 1	3186,0	famen
TRZEBUSZ 2K	3315,0	karbon
TRZEBUSZ 3	3200,0	westfal

Parametry złoża i parametry jakościowe kopaliny: dane zestawiono w Tab. 4.13.

Historia produkcji: dane zestawiono na Fig. 4.14 i w Tab. 4.14.

Nazwa parametru	Wartość min.	Wartość max.	Wartość średnia	Jednostka	Uwagi
błąd oszacowania średnich warto- ści parametrów złoża i zasobów			6,000	%	
ciśnienie głowicowe aktualne			24,800	MPa	-2819,3 m TVDSS
ciśnienie złożowe pierwotne			30,140	MPa	-2819,3 m TVDSS
głębokość położenia wody pod- ścielającej			-2906,00	m	TVDSS
miąższość efektywna złoża			15,480	m	
porowatość			8,680	%	z otworu Trzebusz 1
przepuszczalność			4,480	mD	z otworu Trzebusz 1
stopień mineralizacji wody zło- żowej			227,800	g/l	
temperatura złoża			70,200	°C	
typ chemiczny wody złożowej				_	Cl-Na-Ca
warunki produkowania				_	wolumetryczne
współczynnik nasycenia węglo- wodorami			0,800	_	
współczynnik wydobycia			0,710	_	
wydajność absolutna V _{abs}	9,000	141,000	72,000	m ³ /min	
wydajność dozwolona V_{dozw}	3,000	25,000	16,200	m ³ /min	
wykładnik ropny/kondensatowy	0,000	12,570	7,000	g/m ³	
wykładnik wodny	0,000	2,120	1,130	g/m ³	
	param	etry jakości	owe gazu zie	emnego	
Nazwa parametru	Wartość min.	Wartość max.	Wartość średnia	Jednostka	Uwagi
wartość opałowa	14,230	21,470	18,150	MJ/m ³	
zawartość C ₂ H ₆	0,950	2,590	1,460	% obj.	
zawartość CH ₄	35,110	53,560	45,220	% obj.	
zawartość dwutlenku węgla	0,130	0,230	0,150	% obj.	
zawartość He	0,190	0,390	0,250	% obj.	
zawartość Hg	1,466	3,981	2,724	$\mu g/m^3$	
zawartość N ₂	43,940	62,960	52,190	% obj.	
zawartość siarkowodoru	0,000	0,000	0,000	% obj.	
zawartość węglowodorów cięż- kich C ₃₊	0,190	1,350	0,730	% obj.	

Tab. 4.13. Parametry złoża gazu ziemnego Trzebusz i parametry jakościowe kopaliny (MIDAS, 2021 według Czajki, 2019).

Stan na dzień	Wydobycie gazu ziemnego z wydobywalnych zasobów bilan- sowych w mln m ³
(rok/miesiąc/dzień)	kat C
2019/12/31	575
2018/12/31	3.86
2017/12/31	5.18
2016/12/31	3.72
2015/12/31	2,78
2014/12/31	3,92
2013/12/31	5,15
2012/12/31	3,64
2011/12/31	4,38
2010/12/31	2,69
2009/12/31	3,63
2008/12/31	2,63
2007/12/31	1,07
2006/12/31	3,67
2005/12/31	4,88
2004/12/31	2,95
2003/12/31	3,31
2002/12/31	4,02
2001/12/31	5,56
2000/12/31	4,98
1999/12/31	4,30
1998/12/31	4,48
1997/12/31	4,45
1996/12/31	1,40
1995/12/31	0,84
1994/12/31	0,89
1993/12/31	0,89
1992/12/31	1,38
1991/12/31	1,41
1990/12/31	2,58
1989/12/31	3,23
1988/12/31	2,53
1987/12/31	2,14
1986/12/31	1,00
1985/12/31	0,02
1984/12/31	1,32
1983/12/31	2,30
1982/12/31	0,26

Tab. 4.14. Historia wydobycia gazu zimnego w złożu Trzebusz (na podstawie corocznych zestawień zmian zasobów złóż przysyłanych przez przedsiębiorcę; lata 1992-2019 według bazy MIDAS, 2021, wcześniejsze lata według bilansów złóż kopalin w Polsce w wersji papierowej).

Fig. 4.14. Wykres wydobycia gazu ziemnego w złożu Trzebusz (na podstawie corocznych zestawień zmian zasobów złóż przysyłanych przez przedsiębiorcę; lata 1992-2019 według bazy MIDAS, 2021, wcześniejsze lata według bilansów złóż kopalin w Polsce w wersji papierowej).

Fig. 4.15. A. Lokalizacja otworów wiertniczych na złożu gazu ziemnego Trzebusz i w jego sąsiedztwie (na podstawie CBDG, 2021). **B.** Przekrój przez złoże gazu ziemnego Trzebusz (na podstawie Czajki, 2019).

4.9. ZŁOŻE ROPY NAFTOWEJ WYSOKA KAMIEŃSKA

Położenie administracyjne

województwo – zachodniopomorskie powiat – goleniowski gmina – Przybiernów

Powierzchnia całkowita złoża 256.20 ha

Głębokość zalegania

od -3010,30 m do -3060,70 m n.p.m.

Stratygrafia

perm/cechsztyn (dolomit główny)

Koncesja na wydobywanie

100/93 z dnia 21 czerwca 1993 roku wydana przez Ministra Ochrony Środowiska, Zasobów Naturalnych i Leśnictwa

Użytkownik złoża

PGNiG S.A. w Warszawie

Data rozpoczęcia eksploatacji sierpień 1979 roku

Nadzór górniczy

Okręgowy Urząd Górniczy – Poznań Nr MIDAS: 4804

Dokumentacje w NAG PIG-PIB

1. Ryba, J., Sikorski, B. 1980. Dokumentacja geologiczna złoża ropy naftowej Wysoka Kamieńska. Inw. 13095 CUG, Arch. CAG PIG, Warszawa. Zatwierdzona decyzją Prezesa Centr. Urzędu Geologii z 10.04.1980 r., zn.: KZK/012/S/4101/80.

2. Zoła, K. 1996. Dokumentacja geologiczna złoża ropy naftowej Wysoka Kamieńska. Dodatek nr 1. Inw. 739/97, Arch. CAG PIG, Warszawa. Zatwierdzony decyzją Ministra Ochrony Środowiska, Zasobów Naturalnych i Leśnictwa z 11.03.1997 r., zn.: KZK/ 2/6652/96/97.

3. Nowak, J. 2004. Dokumentacja geologiczna złoża ropy naftowej Wysoka Kamieńska. Dodatek nr 2 w kat. A. Inw. 1969/2004, Arch. CAG PIG, Warszawa. Zatwierdzony decyzją Ministra Środowiska z 10.11.2004 r., zn.: DG/kzk/EZD/489-7554/2004.

Zasoby:

Pierwotne wydobywalne zasoby bilansowe (stan na rok 2003):

•450,00 tys. t ropy naftowej w kat. A

• 32,92 mln m³ gazu ziemnego w kat. A Wydobywalne zasoby bilansowe według stanu na 31.12.2019 roku: •8,39 tys. t ropy naftowej w kat. A

•2,19 mln m³ gazu ziemnego w kat. A Zasoby przemysłowe według stanu na 31.12.2019 roku:

- •8,90 tys. t zasobów przemysłowych ropy naftowej w kat. A oraz 899,48 tys. t zasobów nieprzemysłowych ropy naftowej w kat. A
- brak zasobów przemysłowych gazu ziemnego, 67,81 mln m³ zasobów nieprzemysłowych gazu ziemn. w kat. A

Wydobycie w 2019 roku:

- •3,90 tys. t ropy naftowej w kat. A
- •0,28 mln m³ gazu ziemnego w kat. A

Budowa złoża:

Złoże ropy naftowej Wysoka Kamieńska (Fig. 4.18A) zostało odkryte w 1978 roku. Złoże występuje w centralnej części zrębu Wysokiej Kamieńskiej, ograniczonego uskokami o przebiegu NW-SE. Struktura Wysokiej Kamieńskiej ma amplitudę od kilkudziesięciu do ponad 100 m. Akumulacja ropy naftowej występuje na głębokości przekraczającej 3000 m w utworach dolomitu głównego (Fig. 4.18B). Złoże ma skomplikowaną budowę geologiczną: krzyżują się tutaj dwa regionalne kierunki tektoniczne, ujawnia się też skomplikowany układ facji dolomitu głównego.

Otwory zlokalizowane na złożu

(Fig. 4.18.A; stan na 2021 r.)

Nazwa otworu	Głębokość [m]	Stratygrafia na dnie
W. KAMIEŃSKA 1	3069,0	perm górny
W. KAMIEŃSKA 4	3075,0	perm górny
W. KAMIEŃSKA 7	3039,0	perm górny
W. KAMIEŃSKA 8	3364,0	perm
W. KAMIEŃSKA 21	3063,0	perm
W. KAMIEŃSKA 22	3052,0	perm

Parametry złoża i parametry jakościowe

kopalin: dane zestawiono w Tab. 4.15. **Historia produkcji:** dane zestawiono na Fig. 4.16–4.17 i w Tab. 4.16–4.17. Według informacji zawartych w dodatku nr 2 do dokumentacji geologicznej złoża (Nowak, 2004) od sierpnia 1979 roku do dnia 31.12.2004 roku ze złoża wydobyto ogółem 366,624 tys. t ropy naftowej i 25,2853 mln m³ gazu ziemnego.

Nazwa parametru	Wartość min.	Wartość max.	Wartość średnia	Jednostka	Uwagi
ciśnienie aktualne			18,130	MPa	pomiar z dnia 05.05.2001 r.
ciśnienie złożowe pierwotne			54,600	MPa	
głębokość położenia wody pod- ścielającej			-3060,70	m	
miąższość efektywna złoża			21,430	m	
nasycenie ropą			75,000	%	
porowatość	3,710	5,440	4,580	%	
przepuszczalność	0,010	298,350	10,210	mD	
stopień mineralizacji wody zło- żowej			332,000	g/l	
temperatura złoża			81,000	°C	
typ chemiczny wody złożowej				_	Cl-Ca typ genetyczny wg Sulina; I Na-I Cl typ wody wg Cima- szewskiego
warunki produkowania				-	mieszane: gaz rozpuszczony w ropie i częściowy napór wody z ograniczonej warstwy wodo- nośnej
współczynnik nasycenia wodą			0,250	-	
współczynnik wydobycia			0,330	-	
wydajność dozwolona V _{dozw}			8,000	t/miesiąc	otwór Wysoka Kamieńska 21: 8 t na cykl, 30 cykli/mies.
wydajność dozwolona V _{dozw}			8,000	t/miesiąc	otwór Wysoka Kamieńska 1: 8 t na cykl, 16 cykli/mies.
wydajność dozwolona V_{dozw}			8,000	t/miesiąc	otwór Wysoka Kamieńska 7: 8 t na cykl, 30 cykli/mies.
wydajność dozwolona V _{dozw}			608,000	t/miesiąc	dla całego złoża
wykładnik gazowy			73,000	m ³ /t	
pa	rametry jal	kościowe ro	py naftowe	j (kopalina głów	na)
Nazwa parametru	Wartość min.	Wartość max.	Wartość średnia	Jednostka	Uwagi
gęstość			0,856	g/cm ³	gęstość w temperaturze 20°C
lepkość			4,240	°E	lepkość w temperaturze 30°C
lepkość			30,330	cSt	lepkość w temperaturze 30°C
lepkość			27,160	cP	lepkość w temperaturze 30°C
temperatura płynięcia			24,000	°C	
zawartość chlorków			5,100	mg/dm ³	
zawartość parafiny			6,180	% wag.	wg PN-71/C-04105
zawartość siarki			0,330	% wag.	zawartość siarki całkowitej
zawartość wody			0,030	% wag.	
param	netry jakośc	ciowe gazu :	ziemnego (l	kopalina towarzy	ysząca)
Nazwa parametru	Wartość min.	Wartość max.	Wartość średnia	Jednostka	Uwagi
gęstość			0,887	_	względem powietrza
liczba Wobbego			57,240	MJ/Nm ³	

wartość opałowa	 	49,160	MJ/Nm ³	wartość opałowa dolna czystego gazu
zawartość C ₂ H ₆	 	12,433	% obj.	
zawartość CH ₄	 	62,280	% obj.	
zawartość dwutlenku węgla	 	2,719	% obj.	
zawartość He	 	0,020	% obj.	
zawartość N ₂	 	5,470	% obj.	
zawartość siarkowodoru	 	0,050	% obj.	
zawartość węglowodorów	 	91,730	% obj.	
zawartość węgl. ciężkich C ₃₊	 	17,020	% obj.	
zawartość węgl. ciężkich C ₃₊	 	411,460	g/Nm ³	

Tab. 4.15. Parametry złoża ropy naftowej Wysoka Kamieńska i parametry jakościowe kopalin (MIDAS, 2021; według Nowaka, 2004).

Stan na dzień	Wydobycie ropy naftowej z wydobywalnych zasobów bilansowych w tys. t				
(rok/miesiąc/dzien)	kat. A+B	kat. C			
2019/12/31	3,90	_			
2018/12/31	3,81	_			
2017/12/31	3,73	_			
2016/12/31	3,83	_			
2015/12/31	4,09	_			
2014/12/31	4,13	_			
2013/12/31	4,98	_			
2012/12/31	5,13	_			
2011/12/31	4,28	_			
2010/12/31	5,38	_			
2009/12/31	5,26	_			
2008/12/31	5,30	_			
2007/12/31	4,73	_			
2006/12/31	5,37	_			
2005/12/31	5,55	_			
2004/12/31	5,53	_			
2003/12/31	6,01	_			
2002/12/31	6,66	_			
2001/12/31	6,04	_			
2000/12/31	6,30	_			
1999/12/31	7,04	_			
1998/12/31	6,92	_			
1997/12/31	7,40	_			
1996/12/31	7,76	_			
1995/12/31	7,65	_			
1994/12/31	-	8,22			
1993/12/31	-	9,07			
1992/12/31	-	14,41			
1991/12/31	13,4	7			
1990/12/31	11,7	3			
1989/12/31	11,9	1			
1988/12/31	12,6	8			
1987/12/31	13,11				
1986/12/31	16,9	6			
1985/12/31	21,20				
1984/12/31	24,1	24,13			
1983/12/31	20,64				
1982/12/31	23,9	4			
1981/12/31	37,2	3			

1980/12/31	47,25
1979/12/31	18,89

Tab. 4.16. Historia wydobycia ropy naftowej (kopalina główna) w złożu Wysoka Kamieńska (na podstawie corocznych zestawień zmian zasobów złóż przysyłanych przez przedsiębiorcę; lata 1992-2019 według bazy MIDAS, 2021, wcześniejsze lata według bilansów złóż kopalin w Polsce w wersji papierowej).

kat. A+Bkat. C $2019/12/31$ 0.28 - $2017/12/31$ 0.28 - $2017/12/31$ 0.27 - $2016/12/31$ 0.30 - $2015/12/31$ 0.30 - $2013/12/31$ 0.33 - $2013/12/31$ 0.35 - $2013/12/31$ 0.36 - $2010/12/31$ 0.36 - $2010/12/31$ 0.39 - $2000/12/31$ 0.39 - $2000/12/31$ 0.39 - $2000/12/31$ 0.39 - $2000/12/31$ 0.40 - $2000/12/31$ 0.44 - $2000/12/31$ 0.52 - $2000/12/31$ 0.52 - $2000/12/31$ 0.52 - $2000/12/31$ 0.52 - $1999/12/31$ 0.52 - $1999/12/31$ 0.52 - $1999/12/31$ 0.59 - $1999/12/31$ 0.61 - $1999/12/31$ 0.61 - $1999/12/31$ 0.61 - $1999/12/31$ 0.95 - $1999/12/31$ 0.95 - $1999/12/31$ 0.95 - $1999/12/31$ 0.92 - $1999/12/31$ 0.92 - $1999/12/31$ 0.92 - $1999/12/31$ 0.93 $1980/12/31$ 1.17 $1983/12/31$ 1.41 $1980/12/31$ 1.41 $1980/12/31$ 1.57 $1980/12/31$ 1.57	Stan na dzień	Wydobycie gazu ziemnego z bilansowych	ycie gazu ziemnego z wydobywalnych zasobów bilansowych w mln m ³		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	(rok/miesiąc/dzień)	kat. A+B	kat. C		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	2019/12/31	0,28	_		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	2018/12/31	0,28	_		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	2017/12/31	0,27	_		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	2016/12/31	0,28	_		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	2015/12/31	0,30	_		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	2014/12/31	0,31	_		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	2013/12/31	0,35	_		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	2012/12/31	0,36	_		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	2011/12/31	0,31	_		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	2010/12/31	0,39	_		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	2009/12/31	0.39			
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	2008/12/31	0.39	-		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	2007/12/31	0.34	-		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	2006/12/31	_			
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	2005/12/31	0.40			
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	2004/12/31	0.42			
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	2003/12/31	0.41			
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	2002/12/31	0.52			
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	2001/12/31	0.50			
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	2000/12/31	0.51			
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	1999/12/31	0.52			
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	1998/12/31	0.52			
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	1997/12/31	0,52			
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	1996/12/31	0,61			
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	1995/12/31	0.59			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1994/12/31		0.61		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1993/12/31		0.67		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1992/12/31		1 14		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1991/12/31	0.95			
1930/12/31 0,84 1989/12/31 0,92 1988/12/31 0,92 1987/12/31 0,93 1986/12/31 1,17 1985/12/31 1,47 1984/12/31 1,67 1983/12/31 1,41 1982/12/31 1,53 1981/12/31 2,13 1980/12/31 2,88	1990/12/31	0.78	3		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1989/12/31	0.84	<u> </u>		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1988/12/31	0.92	2		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1987/12/31	0.93	3		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1986/12/31	1 17			
1984/12/31 1,67 1983/12/31 1,41 1982/12/31 1,53 1981/12/31 2,13 1980/12/31 2,88	1985/12/31	1,17	7		
1983/12/31 1,41 1982/12/31 1,53 1981/12/31 2,13 1980/12/31 2,88 1070/12/21 1,28	1984/12/31	1,17	7		
1982/12/31 1,53 1981/12/31 2,13 1980/12/31 2,88 1070/12/21 1,28	1983/12/31	1,07			
1981/12/31 2,13 1980/12/31 2,88 1970/12/21 1,28	1982/12/31	1 53	3		
<u>1980/12/31</u> <u>1980/12/31</u> <u>2,88</u> <u>1070/12/21</u>	1981/12/31	2 13	, }		
	1980/12/31	2,12	3		
	1979/12/31	1 38	3		

Tab. 4.17. Historia wydobycia gazu ziemnego (kopalina towarzysząca) w złożu Wysoka Kamieńska (na podstawie corocznych zestawień zmian zasobów złóż przysyłanych przez przedsiębiorcę; lata 1992-2019 według bazy MIDAS, 2021, wcześniejsze lata według bilansów złóż kopalin w Polsce w wersji papierowej).

Fig. 4.16. Wykres wydobycia ropy naftowej (kopalina główna) w złożu Wysoka Kamieńska (na podstawie corocznych zestawień zmian zasobów złóż przysyłanych przez przedsiębiorcę; lata 1992-2019 według bazy MIDAS, 2021, wcześniejsze lata według bilansów złóż kopalin w Polsce w wersji papierowej).

Fig. 4.17. Wykres wydobycia gazu ziemnego (kopalina towarzysząca) w złożu Wysoka Kamieńska (na podstawie corocznych zestawień zmian zasobów złóż przysyłanych przez przedsiębiorcę; lata 1992-2019 według bazy MIDAS, 2021, wcześniejsze lata według bilansów złóż kopalin w Polsce w wersji papierowej).

Fig. 4.18. A. Lokalizacja otworów wiertniczych na złożu ropy naftowej Wysoka Kamieńska i w jego sąsiedztwie (na podstawie CBDG, 2021). **B.** Przekrój przez złoże ropy naftowej Wysoka Kamieńska (na podstawie Zoły, 1996).

5. OTWORY WIERTNICZE 5.1. INFORMACJE OGÓLNE

Na obszarze przetargowym "Gryfice" znajduje się 40 głębokich otworów wiertniczych (Fig. 5.1), z których 35 nawierciło lub przewierciło horyzonty perspektywiczne (Tab. 5.1). Przykładowe profile dwóch z nich – otworów Laska 2 i Wrzosowo 1 – zilustrowano na Fig. 5.2. Z kolei otwory Dziwnów Józef, Gostyń IG-1, Kamień Pomorski, Mechowo IG-1 i Trzęsacz GT-1 nie przewierciły utworów triasu i, nie wnosząc nic do określenia perspektywiczności naftowej obszaru przetargowego "Gryfce", nie zostaną tutaj uwzględnione. Informacje źródłowe niniejszego rozdziału – dane geologiczne będące własnością Skarbu Państwa, które są niezbędne dla prawidłowej analizy perspektywiczności naftowej obszaru "Gryfice", zostały zebrane i wycenione w innym miejscu – "Projekcie cyfrowych danych geologicznych". Jest on dostępny do wglądu w ramach "DATA ROOMu" w Czytelni NAG w trakcie trwania piątej rundy przetargów na koncesje węglowodorowe w Polsce.

	Rok	Właściciel	Koncesja	Clabalasíá	C4ma 4mama fia
Nazwa otworu	wyko-	informacji	(dla otworów wykonanych	GIĘDOKOSC	Stratygrafia
	nania	geologicznej	po 1994 r.)	լայ	na unie
BENICE 1	1973	Skarb Państwa		3247,0	perm
BENICE 2	1974	Skarb Państwa		2916,0	perm
BENICE 3	1979	Skarb Państwa		2842,0	perm
BENICE 4K	1986	Skarb Państwa		2732,5	perm
BROJCE IG-1	1986	Skarb Państwa		4252,0	żywet
CHOMINO-1	2014	Skarb Państwa	Kaleń 28/2008/p	2750,0	perm górny
DOBROPOLE 1	1987	Skarb Państwa		2883,0	perm
DUSIN 1	1977	Skarb Państwa		2662,5	perm
GOSTYŃ 2	1982	Skarb Państwa		3447,0	westfal
GRYFICE 1	1979	Skarb Państwa		3367,0	perm
GRYFICE 2	1974	Skarb Państwa		3415,0	perm dolny
GRYFICE 3	1975	Skarb Państwa		3190,0	perm
JARSZEWO 1	1974	Skarb Państwa		2998,7	perm
KALEŃ 1	2000	PGNiG S.A.	Świerzno-Rybokarty 3/97/p	3232,0	karbon
KAMIEŃ POMORSKI 13	1973	Skarb Państwa		2672,0	perm
KAMIEŃ POMORSKI 3	1978	Skarb Państwa		2405,0	perm górny
KAMIEŃ POMORSKI 7	1974	Skarb Państwa		3410,0	westfal
LASKA 2	1980	Skarb Państwa		3583,0	wizen
REKOWO 1	1974	Skarb Państwa		2667,0	perm
REKOWO 2	1975	Skarb Państwa		3141,5	perm
REKOWO 3	1976	Skarb Państwa		2697,0	perm
REKOWO 4	1975	Skarb Państwa		2736,0	perm
REKOWO 6	1976	Skarb Państwa		2746,0	perm
SKARCHOWO 1	1976	Skarb Państwa		2667,0	perm
STRZEŻEWO 1	1978	Skarb Państwa		4521,0	żywet
ŚWIERZNO 1	1973	Skarb Państwa		3103,0	perm
ŚWIERZNO 2	1975	Skarb Państwa		2772,2	perm
ŚWIERZNO 4	1975	Skarb Państwa		3238,5	famen
ŚWIERZNO 5	1975	Skarb Państwa		2883,6	perm
ŚWIERZNO 9	1975	Skarb Państwa		2774,7	perm
WRZOSOWO 1	1975	Skarb Państwa		3305,0	westfal
WRZOSOWO 2	1976	Skarb Państwa		3127,3	westfal
WRZOSOWO 3	1979	Skarb Państwa		3255,0	westfal
WRZOSOWO 8	1977	Skarb Państwa		3310,0	westfal
WRZOSOWO 9	1977	Skarb Państwa		3198,0	westfal

Tab. 5.1. Otwory wiertniczne o głębokości >500 m MD osiągające interwały perspektywiczne na obszarze przetargowym "Gryfice" wraz z wskazaniem roku wykonania, właściciela informacji geologicznej, koncesji, na której zostały wykonane (dotyczy otworów wykonanych po 1989 r.), głębokości końcowej i stratygrafii na dnie.

Fig. 5.1. Otwory wiertniczne o głębokości >500 m MD osiągające interwały perspektywiczne na obszarze przetargowym "Gryfice" i jego sąsiedztwie.

5.2. BENICE 1

Głębokość otworu: 3247,0 m Rok zakończenia wiercenia: 1973 Rdzenie: 2635,0–3247,0 m, 107 skrzynek, NAG PIG-PIB, Archiwum Rdzeni Wiertniczych w Chmielniku

Stratygrafia (CBDG, 2021):

Głębokość [m]		Stratvarafia		
od	do	Stratygrana		
0,0	28,0	kenozoik		
28,0	120,0	jura środkowa		
120,0	1018,0	jura dolna		
1018,0	2374,0	trias		
1018,0	1092,0	→formacja zagajska		
10020	1225 0	<i>→warstwy zbąszyneckie</i>		
1092,0	1255,0	→warstwy jarkowskie		
1235,0	1421,0	→wapień muszlowy		
1421,0	1598,5	→formacja barwicka		
1598,5	1867,5	→formacja połczyńska		
1867,5	2055,5	→formacja pomorska		
2055,5	2374,0	→formacja bałtycka		
2374,0	3247,0	perm		
2374,0	2428,5	→formacja rewalska		
2428,5	2437,5	→sól kam. najmł. stropowa Na4b2		
2437,5	2449,5	→ił solny czerwony górny T4b2		
2449,5	2452,0	→sól rozdzielająca Na4b1		
2452,0	2457,5	→ił solny czerwony górny T4b1		
2457,5	2475,5	→sól kam. najmł. ilasta Na4ast		
2475,5	2488,0	→sól kam. najmł. górna Na4a2		
2488,0	2490,0	→anh. pegmatytowy górny A4a2		
2490,0	2522,0	→sól kam. najmł. dolna Na4a1		
2522,0	2522,5	\rightarrow anh. pegmatytowy dolny A4a1		
2522,5	2550,0	\rightarrow <i>il solny czerwony dolny T4a</i>		
2550,0	2584,5	→sól kam. młodsza górna Na3g		
2584,5	2644,5	→anhydryt główny A3		
2611 5	2652 5	\rightarrow dolomit płytowy Ca3		
2044,5	2052,5	\rightarrow szary ił solny T3		
2652,5	2653,5	→anhydryt kryjący A2r		
2653,5	2728,0	→sól kamienna starsza Na2		
2728,0	2739,0	\rightarrow anhydryt podstawowy A2		
2739,0	2793,0	→dolomit główny Ca2		
2793,0	3000,0	→anhydryt górny A1g		
3000,0	3091,5	→sól kamienna najstarsza Na1		
3091,5	3142,0	\rightarrow anhydryt dolny A1d		
31420	3150.0	→wapień cechsztyński Ca		
5142,0	5150,0	<i>→łupek miedzionośny T1</i>		
3150,0	3247,0	→czerwony spągowiec		

Wyniki badań skał:

W dokumentacji wynikowej otworu wiertniczego Benice 1 (Wójcik i Barbulis, 1973) znajdują się wyniki analiz fizyko-chemicznych 92 próbek dolomitu głównego z interwału 2748,3–2792,8 m oraz 49 próbek czerwonego spągowca z interwału 3147,5– 3166,6 m (Wójcik i Burbulis, 1973) wraz z oznaczeniem porowatości, przepuszczalności i zawartości bituminów (Tab. 5.2.) Ponadto wykonano 2 analizy gazu – z utworów dolomitu głównego oraz spągu cechsztynu i czerwonego spągowca (Tab. 5.3).

Wyniki geofizyki otworowej:

Dokumentacja wynikowa otworu Benice 1 (Wójcik i Burbulis, 1973) zawiera wyniki badań geofizyki wiertniczej wykonanych w następującym zakresie (dla podkreślonych profilowań w CBDG znajdują się pliki LAS):

- profilowanie krzywizny otworu (PK): 250–3240 m,
- <u>profilowanie średnicy otworu</u> (PSr): 15–3246 m,
- profilowanie potencjałów samoistnych (PS): 26–3246 m,
- standardowe profilowanie oporności (PO): 25–3246 m,
- sterowane profilowanie oporności (POst): 2290–3246 m,
- profilowanie oporności EL28 (PO): 25–3245 m,
- o profilowanie gamma (PG): 11-3246 m,
- <u>profilowanie neutron-gamma</u> (PNG): 13–3246 m,
- profilowanie akustyczne amplitudy (PAa): 250–3245 m,
- profilowanie akustyczne czasu interwałowego (PAdt): 235–3245 m,
- profilowanie czasu akustycznego T1 (Pat1): 2617–3245 m.

Sprawozdanie z pomiarów średnich prędkości i pomiarów pionowego profilowania sejsmicznego w otworze Benice 1 (Nowak i Klecan, 1990) zawiera wyniki pomiarów wykonanych w następującym zakresie (w CBDG dostępne są dla nich pliki LAS):

- profilowanie prędk. śr., czas interpolowany podwójony Tx2: 20–3180 m,
- profilowanie prędk. śr., czas interpolowany TW: 20–3180 m,
- profilowanie prędk. śr., czas pomierzony Tr_PW1: 126–3176 m,
- profilowanie prędk. śr., czas pomierzony Tr_PW2: 136–3191 m,
- profilowanie prędk. śr., czas pomierzony Tr_PW3: 96–3191 m,

- profilowanie prędk. śr., czas uśredniony Tr_PO: 96–3191 m,
- profilowanie prędk. śr., gradient czasu interpol. DT_VSP: 20– 3180 m.

Objawy węglowodorów w trakcie wiercenia i próby złożowe: obserwacje obecności węglowodorów w płuczce oraz w rdzeniu oraz wyniki przeprowadzonyc prób złożowych zestawiono w Tab. 5.4–5.5.

Dokumentacje NAG PIG-PIB:

- Nowak, E., Klecan, A. 1973. Sprawozdanie z pomiarów średnich prędkości w otworze Benice 1. B36 VS, Arch. CAG PIG, Warszawa.
- Wójcik, Z., Burbulis, H. 1973. Dokumentacja wynikowa otworu Benice 1. Inw. 118360, Arch. CAG PIG, Warszawa.
- Żurawek, E., Muszyński, M., Głowacki, E., Roman, S., Rydzewska, K. 1990. Korelacja i charakterystyka petrograficznozbiornikowa piaskowców śródsaksońskich na obszarze wału pomorskiego. Inw. 5108/2009, Arch. CAG PIG, Warszawa.

Stratygrafia	Liczba pomiarów	Porowatość min-max (średnia)	Przepuszczalność min-max	Bituminy min-max (średnia)
		[%]	[mD]	[%]
dolomit główny	92	0,07–7,81 (2,65)	b. słaba–0,265	0,0055–0,0409 (0,0186)
czerwony spągowiec	46	2,30–8,93 (4,39)	b. słaba–0,730	ślady

Tab. 5.2. Podsumowanie wyników badań fizyczno-chemicznych próbek pobranych z interwału 2748,3–2792,8 m (dolomit główny) oraz 3147,5–3166,6 m (spąg cechsztynu, czerwony spągowiec) w otworze Benice 1 na podstawie dokumentacji wynikowej (Wójcik i Burbulis, 1973).

Stratygrafia	Stratygrafia Interwał Metoda		Składniki	% obj.
			CH_4	0,83
dolomit główny	2775,0–2784,0	degazacja próby rdze-	C_2H_6	0,27
		niowej	N_2	98,49
			H_2	0,41
spąg cechsztynu, czerwony spągowiec	3126,0–3169,1		CH_4	0,86
		pr. rurowy złoża	CO_2	0,13
			N_2	98,56
			H_2	0,45

Tab. 5.3. Wyniki analiz gazu (w czystym gazie) w otworze Benice 1 według dokumentacji wynikowej (Wójcik i Burbulis, 1973).

Głębokość [m]		Stratugrafia	Obiowy			
od	do	Stratygrana	Objawy			
2739,5	2748,0		punktowe ślady odgazowania oraz zapach H ₂ S			
2748,0	2757,3	dolomit główny	martwa ropa			
2766,3	2775,0		kroplowe wycieki żywej żółtobrunatnej ropy			

Tab. 5.4. Objawy węglowodorów w rdzeniach w otworze Benice 1 według dokumentacji wynikowej (Wójcik i Burbulis, 1973).

Głębokość [m]	Stratygrafia	Metoda	Przypływ	Tempo przypływu [m ³ /h]
2738,0	anhydryt podstawo-	pr. rurowy złoża	brak przypływu	
2739,0	wy, dolomit główny	pr. rurowy złoża	brak przypływu	1
3126,0	anhydryt dolny	pr. rurowy złoża	słaby przyp. gazu niepalnego	
3154,0	czerwony spągowiec	pr. rurowy złoża	brak przypływu	_

Tab. 5.5. Rezultaty prób złożowych w otworze Benice 1 według dokumentacji wynikowej (Wójcik i Burbulis, 1973).

5.3. BENICE 2

Głębokość otworu: 2916,0 m **Rok zakończenia wiercenia:** 1974 **Rdzenie:** 2833,0–2887,3 m, 19 skrzynek, NAG PIG-PIB, Archiwum Rdzeni Wiertniczych w Chmielniku

Stratygrafia (CBDG, 2021):

Głębokość [m]		Stratygnofia
od	do	Stratygrana
0,0	54,0	kenozoik
54,0	189,0	jura środkowa
189,0	1103,0	jura dolna
1103,0	2504,0	trias
1103,0	1212,0	retyk
1212,0	1335,0	noryk
1335,0	1398,0	karnik
1335,0	1398,0	kajper
1389,0	1543,0	<i>→wapień muszlowy</i>
1543,0	1706,0	→formacja barwicka
1706,0	1997,0	→formacja połczyńska
1997,0	2180,0	→formacja pomorska
2180,0	2504,0	→formacja bałtycka
2504,0	2916,0	perm
2504,0	2554,0	→formacja rewalska
2554,0	2565,0	→sól kam. najmł. stropowa Na4b2
2565,0	2595,5	<i>→ił solny czerwony górny</i>
2595,5	2620,5	→sól kam. najmłodsza górna Na4a2
2620,5	2621,5	→anh. pegmatytowy górny A4a2
2621,5	2652,5	→sól kam. najmłodsza dolna Na4a1
2652,5	2654,0	\rightarrow anh.pegmatytowy dolny A4a1
2654,0	2677,5	\rightarrow <i>il solny czerwony dolny T4a</i>
2677,5	2731,0	→sól kam. młodsza górna Na3g
2731,0	2763,0	→anhydryt główny A3
2763.0	2767 5	→dolomit płytowy Ca3
2703,0	2707,5	\rightarrow szary ił solny T3
2767,5	2770,0	→anhydryt kryjący A2r
2770.0	28200	→sól kamienna starsza Na2
2770,0	2029,0	→sól potasowa starsza K2
2829,0	2836,0	\rightarrow anhydryt podstawowy A2
2836,0	2881,0	→dolomit główny Ca2
2881,0	2916,0	→anhydryt górny A1g

Wyniki badań skał:

W dokumentacji wynikowej otworu Benice 2 (Wójcik i Knitter, 1975a) znajdują się wyniki analiz mikrofaunistycznych 15 próbek z interwału 50,0–190,0 m, analiz petrograficznochemiczna 31 próbek dolomitu głównego z interwału 2837,5–2882,0 m oraz analizy fizykochemiczne dla interwału 2835,5–2887,3 m (Tab. 5.6). Ponadto wykonano 4 analizy gazu (Tab. 5.7).

Wyniki geofizyki otworowej:

Dokumentacja wynikowa otworu Benice 2 (Wójcik i Knitter, 1974a) zawiera wyniki badań geofizyki wiertniczej wykonanych w następującym zakresie (dla wymienionych profilowań w CBDG brak plików LAS):

- profilowanie krzywizny otworu (PK): 100–2900 m,
- profilowanie średnicy otworu (PSr): 106–2907 m,
- profilowanie potencjałów samoistnych (PS): 106–2907 m,
- standardowe profilowanie oporności (PO): 106–2907 m,
- sterowane profilowanie oporności (POst): 2486–2907 m,
- o profilowanie gamma (PG): 10-2907 m,
- profilowanie neutron–gamma (PNG): 10–2907 m,
- profilowanie akustyczne amplitudy (PAa): 108–2907 m,
- profilowanie akustyczne czasu interwałowego (PAdt): 108–2907 m,
- profilowanie czasu akustycznego T1 (Pat1): 108–2907 m.

Objawy węglowodorów w trakcie wiercenia i próby złożowe: obserwacje obecności węglowodorów w płuczce oraz w rdzeniu oraz wyniki przeprowadzonyc prób złożowych zestawiono w Tab. 5.8–5.9.

Dokumentacje NAG PIG-PIB:

• Wójcik, Z., Knitter, K. 1975a. Dokumentacja wynikowa otworu Benice 2. Inw. 120905, Arch. CAG PIG, Warszawa

GRYFICE

Stratygrafia	Liczba pomiarów	Porowatość min-max (średnia)	Przepuszczalność min-max	Bituminy min-max (średnia)	
		[%]	[mD]	[%]	
delemit ekénymy	02	0,07–10,25	h alaha 1796	0,009–0,062	
dolomit giowny	92	(3,00)	0.81a0a - 1,780	(0,021)	

Tab. 5.6. Podsumowanie wyników badań fizyczno-chemicznych próbek pobranych z interwału 2835,5–2887,3 m w otworze Benice 2 na podstawie dokumentacji wynikowej (Wójcik i Knitter, 1975a).

Stratygrafia	Stratygrafia Interwał [m]		Składniki	% obj.
			CH_4	0,07
trios	2168 0 2108 0	gaz rozpuszczony	O_2	0,07
ullas	2108,0-2198,0	w solance	N_2	92,95
			H_2	6,98
			CH_4	ślady
anhydryt postawowy,	2822 5 2828 5	dagazacia rdzania	CO_2	ślady
dolomit główny	2833,3-2838,3	uegazacja tuzenia	N_2	79,61
			O_2	20,3
			CH_4	11,61
	2852,0–2854,6	degazacja rdzenia	C_2H_6	3,12
			C_3H_8	1,9
dolomit główny			$C_4 H_{10}$	0,09
dolollin glowily			$n-C_4H_{10}$	0,48
			CO_2	0,37
			N_2	81,85
			H_2	0,58
			CH_4	8,06
			C_2H_6	0,61
dolomit główny	2867,8–2870,8	degazacja rdzenia	C ₃ H ₈	ślady
			CO_2	1,54
			N ₂	89,79

Tab. 5.7. Rezultaty analiz gazu (w czystym gazie) w otworze Benice 2 według dokumentacji wynikowej (Wójcik i Knitter, 1975a).

Głębokość [m]		Stuaturanofia	Obione			
od	do	Stratygrana	Objawy			
2844,6	2847,6		punktowe ślady gazu			
2852,0	2854,6	dolomit główny	punktowe ślady gazu			
2870,8	2875,8		punktowe ślady gazu			

Tab. 5.8. Objawy węglowodorów w otworze Benice 2 według dokumentacji wynikowej (Wójcik i Knitter, 1974).

Głębokość [m]	Stratygrafia	Metoda	Przypływ	Tempo przypływu [m ³ /h]
2835,0–2916,0	anhydryt podstawowy, dolomit główny, anhydryt górny	pr. rurowy złoża	brak przypływu	_

Tab. 5.9. Rezultaty prób złożowych w otworze Benice 2 według dokumentacji wynikowej (Wójcik i Knitter, 1975a).

5.4. BENICE 3

Głębokość otworu: 2842,0 m Rok zakończenia wiercenia: 1979 Rdzenie: 2730,5–2842,0 m, 20 skrzynek, NAG PIG-PIB, Archiwum Rdzeni Wiertniczych w Chmielniku

Stratygrafia (CBDG, 2021):

Głębokość [m]		Stuatyonafia		
od	do	Stratygrana		
0,0	18,0	kenozoik		
18,0	130,0	jura środkowa		
130,0	1034,0	jura dolna		
1034,0	2367,5	trias		
1034,0	1264,0	\rightarrow kajper		
1264,0	1413,0	→wapień muszlowy		
1413,0	1579,0	→formacja barwicka		
1579,0	1864,0	→formacja połczyńska		
1864,0	2045,0	→formacja pomorska		
2045,0	2367,5	→formacja bałtycka		
2367,5	2842,0	perm		
2367,5	2413,5	→formacja rewalska		
2413,5	2422,5	→sól kam. najmł. stropowa Na4b2		
2422,5	2436,0	→ił solny czerwony górny T4b1		
2436,0	2469,5	→sól kam. najmł. grn. ilasta Na4a2t		
2469,5	2470,5	→anh. pegmatytowy górny A4a2		
2470,5	2500,5	→sól kam. najmłodsza dolna Na4a1		
2500,5	2501,5	\rightarrow anh. pegmatytowy dolny A4a1		
2501,5	2503,5	→sól kamienna najmłodsza Na4a		
2503,5	2532,0	\rightarrow <i>it solny czerwony dolny T4a</i>		
2532,0	2620,0	→sól kamienna młodsza Na3		
2620,0	2642,0	→anhydryt główny A3		
26120	2640.0	\rightarrow dolomit płytowy Ca3		
2042,0	2049,0	\rightarrow szary ił solny T3		
2649,0	2650,5	→anhydryt kryjący A2r		
2650,5	2655,0	→sól kam. starsza kryjąca Na2r		
2655,0	2664,5	→sól potasowa starsza K2		
2664,5	2726,0	→sól kamienna starsza Na2		
2726,0	2731,0	\rightarrow anhydryt podstawowy A2		
2731,0	2805,0	→dolomit główny Ca2		
2805,0	2842,0	→anhydryt górny Alg		

Wyniki badań skał:

W dokumentacji wynikowej otworu Benice 3 (Ryba i Szewc, 1980) znajdują się wyniki analiz petrograficznych 71 próbek dolomitu głównego, 32 sześcioskładnikowe analizy chemiczne oraz 49 analiz rentgenowskich z interwału 2730,8–2816,2 m. Ponadto przeprowadzono badania porowatości, przepuszczalności i zawartości bituminów 163 próbek rdzeni z interwału 2730,5–2824,0 m (dla 8 próbek wykonano rozdział grupowo-węglowodorowy) oraz wykonano 3 analizy gazu i 2 analizy wód złożowych (Tab. 5.10–5.12).

Wyniki geofizyki otworowej:

Dokumentacja wynikowa otworu Benice 3 (Janusz i Szewc, 1980) zawiera wyniki badań geofizyki wiertniczej wykonanych w następującym zakresie (dla wymienionych profilowań w CBDG brak plików LAS):

- profilowanie krzywizny otworu (PK): 5–2815 m,
- profilowanie średnicy otworu (PSr): 155–2815 m,
- profilowanie potencjałów samoistnych (PS): 155–2340 m,
- standardowe profilowanie oporności (PO): 155–2815 m,
- sterowane profilowanie oporności (POst): 2335–2815 m,
- sterowane profilowanie oporności (log-POst): 2335–2815 m,
- mikroprofilowanie oporności sterowane (mPOst): 2730–2815 m,
- mikroprofilowanie oporności sterowane (logmPOst): 2730–2815 m,
- o profilowanie gamma (PG): 15–1810 m,
- profilowanie neutron-gamma (PNG): 15–2810 m,
- profilowanie neutron-gamma (logPNG): 2300–2815 m,
- profilowanie akustyczne amplitudy (PAa): 250–3245 m,
- profilowanie akustyczne czasu interwałowego (PAdt): 1250–2820 m,
- profilowanie czasu akustycznego T1 (Pat1): 1250–2820 m,
- profilowanie czasu akustycznego T2 (Pat2): 1250–2820 m,
- profilowanie gazowe (PGaz): 161–2842 m.

Opracowanie pomiarów średnich prędkości w odwiercie Benice 3 (Nowak i Walasek, 1979) zawiera wyniki pomiarów wykonanych w następującym zakresie (w CBDG dostępne są dla nich pliki LAS):

- profilowanie prędk. śr., czas interpolowany podwojony Tx2: 20– 2400 m,
- profilowanie prędk. śr., czas interpolowany TW: 20– 2400 m,
- profilowanie prędk. śr., czas pomierzony Tr_PW1: 915–2415 m,
- profilowanie prędk. śr., czas pomierzony Tr_PW2: 1170–2415 m,

- profilowanie prędk. śr., czas pomierzony Tr_PW3: 810–2400 m,
- profilowanie prędk. śr., czas uśredniony Tr_PO: 810–2415 m,
- profilowanie prędk. śr., gradient czasu interpol. DT_VSP: 20– 2400 m.

Objawy węglowodorów w trakcie wiercenia i próby złożowe: obserwacje obecności węglowodorów w płuczce oraz w rdzeniu oraz wyniki przeprowadzonyc prób złożowych zestawiono w Tab. 5.13–5.14.

Dokumentacje NAG PIG-PIB:

- Nowak, E., Walasek, B. 1985. Opracowanie pomiarów średnich prędkości w odwiercie Benice 3. 1979. B37 VS, Arch. CAG PIG, Warszawa.
- Ryba, J., Szewc, A. 1980. Dokumentacja wynikowa otworu Benice-3. Inw. 125368, Arch. CAG PIG, Warszawa.

Stratygrafia	Liczba pomiarów	Porowatość min-max (średnia)	Przepuszczalność min-max	Bituminy min-max (średnia)	
		[%]	[mD]	[%]	
anhydryt podstawowy, dolomit główny, anhydryt górny	163	0,06–12,78 (3,30)	0,01–185,1	0–0,151 (0,019)	

Tab.	5.10.	Podsumowa	inie w	yników	badań	fizyczno	-chemiczr	iych	próbek	pobranych	Z	interwału	2730,5	-2824,0	m
w otv	vorze]	Benice 3 na p	podstav	wie doku	imenta	cji wynik	owej (Wó	jcik i	Knitter	, 1975).					

Stratygrafia	Interwał [m]	Metoda	Składniki	% obj.
			CH_4	31,9581
			C_2H_6	1,2414
			C ₃ H ₈	0,2564
			C_4H_{10}	0,1139
dolomit aláumu	2721 5 2804 5	ne mirona złożo	$C_{5}H_{12}$	0,0686
doloning glowing	2751,3-2004,5	pr. rurowy złoża	$C_{6}H_{14}$	0,0289
			He	ślady
			N_2	12,4205
			H_2S	46,6693
			H_2	1,2426
		pr. rurowy złoża	CH_4	39,0811
			C_2H_6	0,9385
			C_3H_8	0,2036
			$C_4 H_{10}$	0,1051
dolomit główny	2731 5 2804 5		C ₅ H ₁₂	0,0524
dolonin glowily	2731,3-2004,3		$C_{6}H_{14}$	0,0329
			He	ślady
			N_2	13,1038
			H_2S	44,8514
			H_2	1,6308
			CH_4	24,5139
			C_2H_6	4,7957
			C_3H_8	2,4133
anhydryt podstawowy,	2720 5 2750 0	dagazagia rdzonia	$C_4 H_{10}$	1,5074
dolomit główny	2750,5-2750,0	ucgazacja iuzellia	C ₅ H ₁₂	0,4111
			C ₆ H ₁₄	0,1355
			N ₂	66,0898
			H ₂	0,1332

Tab. 5.11. Wyniki analiz gazu (w czystym gazie) w otworze Benice 3 według dokumentacji wynikowej (Janusz i Szewc, 1980).

Stratygrafia	Interwał [m]	Metoda	Składniki	g/l
			Cl	195,3917
			Br	2,1205
			HCO ₃ ⁻	1,5372
			SiO ₃ ²⁻	brak
dolomit główny	2731,5-2804,5	pr. rurowy złoża	SiO ₄ ²⁻	1,5269
			$\mathrm{NH_4}^+$	0,575
			Ca ²⁺	5,1896
			Mg^{2+}	11,5054
			Na/K ⁺	100,1947

Tab. 5.12. Rezultaty analiz wód złożowych w otworze Benice 3 według dokumentacji wynikowej (Janusz i Szewc, 1980).

Głębokość [m]		Stuatuquafia	Obierry	
od	do	Stratygrafia	Objawy	
2251,5	2280,0	trias górny	0,2–2,1% węglowodorów w płuczce	
2340,0	2374,0	trias dolny	ślady węglowodorów w płuczce	
2770,0		dolomit główny	wypływ płuczki z siarkowodorem	

Tab. 5.13. Objawy węglowodorów w płuczce w otworze Benice 3 według dokumentacji wynikowej (Janusz i Szewc, 1980).

Głębokość [m]	Stratygrafia	Metoda	Przypływ	Tempo przypływu [m ³ /h]
2731,5–2804,5	dolomit główny	pr. rurowy złoża	przypływ zgazowanej wody złożowej z dużą ilością siar- kowodoru	0,69

Tab. 5.14. Rezultaty prób złożowych w otworze Benice 3 według dokumentacji wynikowej (Janusz i Szewc, 1980).

5.5. BENICE 4K

Głębokość otworu: 2752,0 m **Rok zakończenia wiercenia:** 1986 **Rdzenie:** 2541,0–2714,0 m, 95 skrzynek, NAG PIG-PIB, Archiwum Rdzeni Wiertniczych w Chmielniku

Stratygrafia (CBDG, 2021):

Głębokość [m]		Stratuquafia	
od	do	Stratygrana	
0,0	19,5	kenozoik	
19,5	397,0	jura środkowa	
397,0	1504,0	jura dolna	
1504,0	2234,5	trias	
2234,5	2752,0	perm	
2334,5	2244,0	→sól kam. najmł. stropowa Na4b2	
2244,0	2263,5	<i>→ił solny czerwony górny T4b2</i>	
2263,5	2324,5	→sól kam. najmł. grn. ilasta Na4a1	
2324,5	2325,5	\rightarrow anh. pegmatytowy dolny A4a1	
2325,5	2364,5	\rightarrow <i>it solny czerwony dolny T4a</i>	
2364,5	2424,0	→sól kamienna młodsza Na3	
2424,0	2540,5	→anhydryt główny A3	
2540,5	2543,0	\rightarrow dolomit płytowy Ca3	
2543,0	2546,5	\rightarrow szary ił solny T3	
2546,5	2550,5	<i>→anhydryt kryjący A2r</i>	
2550,5	2606,0	→sól potasowa starsza K2	

		→sól kamienna starsza Na2
2606,0	2611,5	\rightarrow anhydryt podstawowy A2
2611,5	2688,5	→dolomit główny Ca2
2688,5	2752,0	→anhydryt górny A1g

Wyniki badań skał:

W dokumentacji wynikowej otworu Benice 4K (Lech i Sikorska-Piekut, 1987) znajdują się wyniki analiz petrolitologicznych dolomitu głównego. Ponadto wykonano analizy fizykochemiczne 6 prób rdzeni dolomitu płytowego oraz 154 prób rdzeni dolomitu głównego (dla 7 próbek wykonano rozdział grupowo-węglowodorowy; Tab. 5.15). Zamieszczono także 3 analizy gazu i 1 analizę wód złożowych (Tab. 5.16–5.17).

Wyniki geofizyki otworowej:

Dokumentacja wynikowa otworu Benice 4K (Lech i Sikorska-Piekut, 1987) zawiera wyniki badań geofizyki wiertniczej wykonanych w następującym zakresie (dla podkreślonych profilowań w CBDG znajdują się pliki LAS):

- profilowanie krzywizny otworu (PK): 0–2725 m,
- profilowanie średnicy otworu (PSr): 170–2735 m,
- profilowanie potencjałów samoistnych (PS): 177–2731 m,
- standardowe profilowanie oporności (PO): 177–2731 m,
- sterowane profilowanie oporności (POst): 1696–2400 m,
- sterowane profilowanie oporności (log-POst): 1696–2731 m,
- mikroprofilowanie oporności sterowane (mPOst): 2395–2731 m,
- mikroprofilowanie oporności sterowane (logmPOst): 2395–2731 m,
- profilowanie oporności EL03 (PO): 175–2731 m,
- o profilowanie gamma (PG): 3-2733 m,
- profilowanie gamma–gamma gęstościowe (GGDN): 1682–2732 m,
- <u>profilowanie neutron-gamma (PNG)</u>: 3–2733 m,
- profilowanie neutron–gamma (logPNG): 1682–2732 m,
- profilowanie akustyczne czasu interwałowego (PAdt): 1682–2745 m,
- profilowanie czasu akustycznego T1 (Pat1): 1682–2732 m,
- profilowanie czasu akustycznego T2 (Pat2): 2370–2732 m,
- o profilowanie gazowe (PGaz): 260-2752 m,
- profilowanie temperatury (TEMP): 2570–2731 m.

Opracowanie pomiarów średnich prędkości w odwiercie Benice 4K (Brzeżański, 1986a) zawiera wyniki pomiarów wykonanych w następującym zakresie (w CBDG dostępne są dla nich pliki LAS):

- profilowanie prędk. śr., czas interpolowany podwojony Tx2: 20–2700 m,
- profilowanie prędk. śr., czas interpolowany TW: 20–2700 m,
- profilowanie prędk. śr., czas pomierzony Tr_PW1: 65–2712 m,
- profilowanie prędk. śr., czas pomierzony Tr_PW2: 35–2712 m,
- profilowanie prędk. śr., czas pomierzony Tr_PW3: 35–2712 m,
- profilowanie prędk. śr., czas uśredniony Tr_PO: 35–2712 m,
- profilowanie prędk. śr., gradient czasu interpol. DT_VSP: 20– 2700 m.

Objawy węglowodorów w trakcie wiercenia i próby złożowe: obserwacje obecności węglowodorów w płuczce oraz w rdzeniu oraz wyniki przeprowadzonyc prób złożowych zestawiono w Tab. 5.18–5.19.

Dokumentacje NAG PIG-PIB:

- Brzeżański, A. 1986a. Opracowanie pomiarów średnich prędkości w odwiercie Benice 4K. B38 VS, Arch. CAG PIG, Warszawa.
- Klecan, A. 1986. Opracowanie pomiarów średnich prędkości w odwiercie reinterpretacja z uwzględnieniem krzywizny otworu Benice-4K. B39 VS, Arch. CAG PIG, Warszawa.
- Lech, I., Sikorska-Piekut, W. 1987. Dokumentacja wynikowa otworu Benice 4K. Inw. 129796, Arch. CAG PIG, Warszawa.

Stratygrafia	Liczba pomiarów	Porowatość min-max (średnia)	Przepuszczalność min-max	Bituminy min-max (średnia)
		[%]	[nm ²]	[%]
dolomit nhytowy	6	0,40–12,93	11	0,008-0,023
dolomit prytowy	0	(8,22)	11	(0,014)
dolomit główny	154	0,07-22,52	1-2003	0,0006-0,033
dolollin glowily	134	(3,70)	(83)	(0,015)

Tab. 5.15. Wyniki badań petrofizycznych próbek z otworu Benice 4K na podstawie dokumentacji wynikowej (Lech i Sikorska-Piekut, 1987).

Stratygrafia	Interwał [m]	Metoda	Składniki	% obj.
			CH_4	83,75
			C_2H_6	2,80
			C_3H_8	-
dolomit główny		z aparatury gazowej	N_2	8,66
			H_2S	brak
			He	brak
			H_2	4,79
		gaz rozpuszczony w płuczce	CH_4	48,75
			C_2H_6	6,44
dolomit główny			C_3H_8	2,67
			N_2	37,51
			H_2	4,63
			CH_4	73,74
			C_2H_6	3,68
			C_3H_8	1,98
dolomit główny,	2658 5 2606 0	pr rurowy złoża	$C_4 H_{10}$	0,015
anhydryt górny	2038,3-2090,0	pr. rurowy złoża	N_2	17,88
			H_2S	brak
			He	0,30
			H ₂	2.41

Tab. 5.16. Wyniki analiz gazu (w czystym gazie) w otworze Benice 4K według dokumentacji wynikowej (Lech i Si-korska-Piekut, 1987).

Stratygrafia	Interwał [m]	Metoda	Składniki	g/l
			Cl	198,0065
			Br⁻	1,2787
			HCO ₃ ⁻	2,8670
			SiO ₄ ²⁻	0,7984
dolomit główny	2658,5-2696,0		$\mathrm{NH_4}^+$	0,9750
			Al/Fe ³⁺	0,0727
			Ca ²⁺	5,4355
			Mg^{2+}	11,1309
			Na/K ⁺	101,6261

Tab. 5.17. Wyniki analiz wód złożowych w otworze Benice 4K według dokumentacji wynikowej (Lech i Sikorska-Piekut, 1987).

Głębokość [m]		Stuatuquafia	Objewy		
od	do	Stratygrafia	Objawy		
2630,7	2696,0	dolomit główny, anhydryt górny	punktowe ślady ropy naftowej w rdzeniach		

Tab. 5.18. Objawy węglowodorów w rdzeniach w otworze Benice 4K według dokumentacji wynikowej (Lech i Sikorska-Piekut, 1987).

Głębokość [m]	Stratygrafia	Metoda	Przypływ	Tempo przypływu [m ³ /h]
1856,0–1863,0	kajper	pr. rurowy złoża	brak przypływu	—
2630,9–2660,0	dolomit główny	ny pr. rurowy złoża brak przypływu		—
2658,5–2696,0	dolomit główny, anhydryt górny	pr. rurowy złoża	solanka zgazowana gazem palnym/ siarkowodorem	0,41

Tab. 5.19. Rezultaty prób złożowych w otworze Benice 4K według dokumentacji wynikowej (Lech i Sikorska-Piekut, 1987).

5.6. BROJCE IG-1

Głębokość otworu: 4252,0 m Rok zakończenia wiercenia: 1986 Rdzenie: 400,0–2926,0 m, 481 skrzynek, NAG PIG-PIB, Archiwum Rdzeni Wiertniczych w Leszczach.

Stratygrafia (CBDG, 2021):

oddoStratygrand0,031,0kenozoik31,0350,0jura dolna1156,02853,0trias1156,01248,0→warstwy wielichowskie1248,01444,0→warstwy zbąszynieckie1248,01444,0→warstwy gipsowe górne1460,01522,0→piaskowiec tracinowy1522,01675,0→warstwy gipsowe dolne1675,01784,0→kajper dolny1784,01921,0→wapień muszlowy1421,02076,5→formacja barwicka1598,52357,0→formacja pomorska2055,52853,0→formacja pomorska2055,52853,0→formacja rewalska2912,52917,5→podcyklotem PZ4c2917,52932,5→sól kam. najml. stropowa Na4b22932,52950,5→sól kam. najmlodsza dolna Na4a12055,02978,0→sól kam. najmlodsza dolna Na4a22978,53007,5→sól kam. najmlodsza dolna Na4a13007,53008,5→anh. pegmatytowy dolny A4a13008,53010,0→sól podscielająca Na4a03010,03108,0→sól kamienna mlodsza Na33108,03106,0→sól kamienna starsza Na23112,53141,0→sól potasowa starsza K23120,03141,0→sól potasowa starsza K23141,03225,0→sól kamienna najstarsza Na13542,53601,0→anhydryt dolny A1d3601,0369,5→sól kamienna najstarsza Na13542,53601,0→anhydryt	Głębokość [m]		Stratvarafia		
0,0 31,0 kenozoik 31,0 350,0 jura środkowa 350,0 1156,0 jura dolna 1156,0 2853,0 trias 1156,0 1248,0 →warstwy zbąszynieckie 1248,0 1444,0 →warstwy gipsowe górne 1460,0 1522,0 →piaskowiec trzcinowy 1522,0 1675,0 →warstwy gipsowe dolne 1675,0 1784,0 →kajper dolny 1784,0 1921,0 →waristwy gipsowe dolne 1675,0 1675,0 →formacja barwicka 1598,5 2357,0 →formacja pomorska 2055,5 2853,0 ⇒formacja rewalska 2912,5 2917,5 →podcyklotem PZ4c 2917,5 2925,5 →sól kam. najml. stropowa Na4b2 2932,5 2945,0 →il solny czerwony górny T4b1 2950,5 2955,0 →il solny czerwony górny T4b1 2955,0 2978,5 →anh. pegmatytowy dolny A4a1 3007,5 3008,5 →anh. pegmatytowy dolny T4a 3010,0 3008,0	od	do	Stratygrana		
31,0 350,0 jura środkowa 350,0 1156,0 jura dolna 1156,0 2853,0 trias 1156,0 1248,0 →warstwy wielichowskie 1248,0 1444,0 →warstwy zbąszynieckie 1440,0 1460,0 →warstwy gipsowe górne 1460,0 1522,0 →piaskowiec trzcinowy 1522,0 1675,0 →warstwy gipsowe dolne 1675,0 1784,0 →kajper dolny 1784,0 1921,0 →wapień muszlowy 1421,0 2076,5 →formacja polczyńska 1867,5 2550,0 →formacja pomorska 2055,5 2853,0 ⇒formacja rewalska 2912,5 917,5 →podzyklotem PZ4c 2917,5 2932,5 →sól kam. najml. stropowa Na4b2 2935,5 2955,0 →il solny czerwony górny T4b1 2950,5 2955,0 →il solny czerwony górny T4b1 2955,5 2978,0 →sól kam. najmlodsza dolna Na4a1 3007,5 3008,5 →anh. pegmatytowy górny A4a2 2978,0 2978,5 →al solny czerwony dolny A4a1 3007,5 <td< td=""><td>0,0</td><td>31,0</td><td>kenozoik</td></td<>	0,0	31,0	kenozoik		
350,01156,0jura dolna1156,02853,0trias1156,01248,0→warstwy vielichowskie1248,01444,0→warstwy zbąszynieckie1440,01460,0→warstwy gipsowe górne1460,01522,0→piaskowiec trzcinowy1522,01675,0→warstwy gipsowe dolne1675,01784,0→kajper dolny1784,01921,0→warstwy gipsowe dolne1675,01784,0→kajper dolny1784,01921,0→warstwy gipsowe dolne1675,52857,0→formacja barwicka1598,52357,0→formacja połczyńska1867,52550,0→formacja rewalska2055,52853,0>formacja rewalska2912,52917,5>podcyklotem PZ4c2917,52932,5→sól kam. najml. stropowa Na4b22932,52945,0→il solny czerwony górny T4b12950,52955,0→il solny czerwony górny T4b12955,02958,0→sól kam. najmlodsza górna Na4a22978,02978,5→anh. pegmatytowy dolny A4a13007,53008,5→anh. pegmatytowy dolny A4a13008,53010,0→sól kamienna mlodsza Na33080,03106,0→anhydryt glówny A33106,03109,0→dolomit plytowy Ca33109,03114,0→sól potasowa starsza Na2→sól kamienna najstarsza Na13542,53542,53601,0→anhydryt górny A1g3460,03604,5→cerwony spągowiec3674,5→cerwony spągowiec <td>31,0</td> <td>350,0</td> <td>jura środkowa</td>	31,0	350,0	jura środkowa		
1156,02853,0trias1156,01248,0→warstwy wielichowskie1248,01444,0→warstwy zbąszynieckie1440,01460,0→warstwy gipsowe górne1460,01522,0→piaskowiec trzcinowy1522,01675,0→warstwy gipsowe dolne1675,01784,0→kajper dolny1784,01921,0→warstwy gipsowe dolne1675,01784,0→kajper dolny1784,01921,0→wapień muszlowy1421,02076,5→formacja barwicka1598,52357,0→formacja polczyńska1867,52550,0→formacja pomorska2055,52853,0→formacja rewalska2912,52917,5→podcyklotem PZ4c2917,52932,5→sól kam. najml. stropowa Na4b22932,52945,0→il solny czerwony górny T4b12950,52955,0→il solny czerwony górny T4b12955,02978,0→sól kam. najmlodsza górna Na4a22978,02978,5→anh. pegmatytowy dolny A4a13007,53008,5→anh. pegmatytowy dolny A4a13008,53010,0→sól kamienna mlodsza Na3308,03106,0→anhydryt główny A33106,03109,0→sól kam. starsza kryjąca Na2r3120,03141,0→sól kamienna ajstarsza Na13460,03542,5→sól kamienna najstarsza Na13542,53601,0→anhydryt dolny A1d3609,53674,5→czerwony spągowiec3674,540250,0fran40025,0425	350,0	1156,0	jura dolna		
1156,01248,0→warstwy wielichowskie1248,01444,0→warstwy zbąszynieckie →warstwy jarkowskie1440,01460,0→warstwy gipsowe górne1460,01522,0→piaskowiec trzcinowy1522,01675,0→warstwy gipsowe dolne1675,01784,0→kajper dolny1784,01921,0→wapeń muszlowy1421,02076,5→formacja barwicka1598,52357,0→formacja połczyńska1867,52550,0→formacja połczyńska2853,03674,5perm2853,02912,5→formacja rewalska2912,52917,5→podcyklotem PZ4c2917,52935,0→il solny czerwony górny T4b22945,02950,5→sól kam. najml. stropowa Na4b22955,02950,0→il solny czerwony górny T4b12950,52950,0→sól kam. najmlodsza dolna Na4a13007,53008,5→anh. pegmatytowy dolny A4a13008,53010,0→sól kamienna mlodsza Na33080,03106,0→anhydryt główy A33106,03109,0→ál kamienna mlodsza Na33080,03104,0→sól kamienna mlodsza Na33080,03104,0→sól kamienna mlodsza Na33080,03104,0→sól kamienna mlodsza Na33106,03141,0→sól kamienna mlodsza Na33106,03141,0→sól kamienna mlodsza Na33106,03144,0→sól kamienna starsza Na23120,03141,0→sól kamienna najstarsza Na13243,53601,0→a	1156,0	2853,0	trias		
1248,0 $1444,0$ \rightarrow warstwy zbąszynieckie \rightarrow warstwy jarkowskie1440,01460,0 \rightarrow warstwy gipsowe górne1460,01522,0 \rightarrow jiaskowiec trzcinowy1522,01675,0 \rightarrow warstwy gipsowe dolne1675,01784,0 \rightarrow kajper dolny1784,01921,0 \rightarrow wapień muszlowy1421,02076,5 \rightarrow formacja połczyńska1867,52550,0 \rightarrow formacja połczyńska1867,52550,0 \rightarrow formacja połczyńska2853,03674,5perm2853,02912,5 \rightarrow formacja rewalska2912,52917,5 \rightarrow podcyklotem PZ4c2917,52932,5 \rightarrow sól kam. najml. stropowa Na4b22932,52945,0 \rightarrow il solny czerwony górny T4b12955,02955,0 \rightarrow il solny czerwony górny T4b12955,02978,5 \rightarrow anh. pegmatytowy dolny A4a13007,53008,5 \rightarrow anh. pegmatytowy dolny A4a13008,53010,0 \rightarrow sól kam. najmlodsza dolna Na4a13008,53010,0 \rightarrow sól kamienna mlodsza Na33080,03106,0 \rightarrow anhydryt główny A33100,03125,0 \rightarrow sól kamienna starsza Na23114,03235,0 \rightarrow sól kamienna najstarsza Na23120,03141,0 \rightarrow sól kamienna najstarsza Na13542,53601,0 \rightarrow anhydryt górny A1g3460,03542,5 \rightarrow sól kamienna najstarsza Na13542,53601,0 \rightarrow anhydryt górny A1g3609,53674,5 \rightarrow cerwony spagowiec3674,5 \rightarrow clupek miedzionóśny T1 <t< td=""><td>1156,0</td><td>1248,0</td><td><i>→warstwy wielichowskie</i></td></t<>	1156,0	1248,0	<i>→warstwy wielichowskie</i>		
1246,01444,0 \rightarrow warstwy jarkowskie1440,01460,0 \rightarrow warstwy gipsowe górne1460,01522,0 \rightarrow piaskowiec trzcinowy1522,01675,0 \rightarrow warstwy gipsowe dolne1675,01784,0 \rightarrow kajper dolny1784,01921,0 \rightarrow wapień muszlowy1421,02076,5 \rightarrow formacja poloczyńska1867,52550,0 \rightarrow formacja pomorska2055,52853,0 \rightarrow formacja pomorska2055,52853,0 \rightarrow formacja rewalska2912,52912,5 \rightarrow formacja rewalska2912,52917,5 \rightarrow podcyklotem PZ4c2917,52932,5 \rightarrow sól kam. najml. stropowa Na4b22932,52945,0 \rightarrow il solny czerwony górny T4b12950,52950,0 \rightarrow sól kam. najmlodsza górna Na4a22978,02978,5 \rightarrow anh. pegmatytowy górny A4a22978,53007,5 \rightarrow sól kam. najmlodsza dolna Na4a13007,53008,5 \rightarrow anh. pegmatytowy dolny A4a13007,5308,0 \rightarrow sól kamienna mlodsza Na33080,0310,0 \rightarrow sól kamienna mlodsza Na33080,0310,0 \rightarrow sól kamienna starsza Na23114,03120,0 \rightarrow sól kamienna starsza Na23141,03235,0 \rightarrow sól kamienna najstarsza Na13542,53601,0 \rightarrow anhydryt górny A1g3460,03542,5 \rightarrow sól kamienna najstarsza Na13542,53601,0 \rightarrow anhydryt górny A1g3460,0369,5 \rightarrow sól kamienna najstarsza Na13542,53601,0 \rightarrow anhydryt górny A1g </td <td>12480</td> <td>11110</td> <td><i>→warstwy zbąszynieckie</i></td>	12480	11110	<i>→warstwy zbąszynieckie</i>		
1440,0 1460,0 \rightarrow warstwy gipsowe górne 1460,0 1522,0 \rightarrow piaskowiec trzcinowy 1522,0 1675,0 \neg warstwy gipsowe dolne 1675,0 1784,0 \rightarrow kajper dolny 1784,0 1921,0 \rightarrow wapień muszlowy 1421,0 2076,5 \rightarrow formacja barwicka 1598,5 2357,0 \rightarrow formacja pomorska 2055,5 2853,0 \rightarrow formacja baltycka 2853,0 3674,5 perm 2853,0 3674,5 perm 2853,0 2912,5 \rightarrow formacja rewalska 2912,5 2945,0 \rightarrow is olny czerwony górny T4b2 2932,5 2945,0 \rightarrow is olny czerwony górny T4b1 2950,5 \rightarrow sól kam. najmlodsza górna Na4a2 2978,0 2978,5 \rightarrow anh. pegmatytowy górny A4a2 2978,5 3007,5 \rightarrow sól kam. najmlodsza dolna Na4a1 3007,5 3008,5 \rightarrow anh. pegmatytowy dolny A4a1 3008,5 3010,0 \rightarrow sól podscielająca Na4a0 3010,0 3028,5 3080,0 \rightarrow sól kamienna midosza Na3 3080,0 3106,0 \rightarrow anhydryt gówny	1240,0	1444,0	<i>→warstwy jarkowskie</i>		
1460,0 1522,0 \rightarrow piaskowiec trzcinowy 1522,0 1675,0 \rightarrow warstwy gipsowe dolne 1675,0 1784,0 \rightarrow kajper dolny 1784,0 1921,0 \rightarrow wapień muszlowy 1421,0 2076,5 \rightarrow formacja barwicka 1598,5 2357,0 \rightarrow formacja pohozyńska 1867,5 2550,0 \rightarrow formacja pomorska 2055,5 2853,0 \rightarrow formacja baltycka 2853,0 2912,5 \rightarrow formacja rewalska 2912,5 2917,5 \rightarrow podcyklotem PZ4c 2917,5 2932,5 \rightarrow sól kam. najml. stropowa Na4b2 2932,5 2945,0 \rightarrow il solny czerwony górny T4b1 2950,5 2955,0 \rightarrow il solny czerwony górny T4b1 2950,5 2950,0 \rightarrow sól kam. najmlodsza dolna Na4a2 2978,0 2978,5 \rightarrow anh. pegmatytowy górny A4a2 2978,5 3007,5 \rightarrow sól kam. najmlodsza dolna Na4a1 3007,5 3088,5 \rightarrow anh. pegmatytowy dolny A4a1 3008,5 3010,0 \rightarrow sól podścielająca Na4a0 3010,0 3028,5 \rightarrow alohydryt glówny A3 3106,0 3109,0 <	1440,0	1460,0	<i>→warstwy gipsowe górne</i>		
1522,0 1675,0 \rightarrow warstwy gipsowe dolne 1675,0 1784,0 \rightarrow kajper dolny 1784,0 1921,0 \rightarrow wapień muszlowy 1421,0 2076,5 \rightarrow formacja barwicka 1598,5 2357,0 \rightarrow formacja pomorska 2055,5 2853,0 \rightarrow formacja bałtycka 2853,0 3674,5 perm 2853,0 2912,5 \rightarrow formacja rewalska 2912,5 2917,5 \rightarrow podcyklotem PZ4c 2917,5 2932,5 \rightarrow sól kam. najml. stropowa Na4b2 2932,5 2945,0 \rightarrow il solny czerwony górny T4b1 2955,0 2955,0 \rightarrow sól kam. najmlodsza górna Na4a2 2978,0 2978,0 \rightarrow sól kam. najmlodsza dolna Na4a1 3007,5 3008,5 \rightarrow anh. pegmatytowy dolny A4a1 3008,5 3010,0 \rightarrow sól kamienna mlodsza Na3 3080,0 3106,0 \rightarrow anhydryt glówny A3 3100,0 3109,0 \rightarrow ali solny szary T3 3112,5 3114,0 \rightarrow sól potasowa starsza K2 3120,0 3141,0 \rightarrow sól potasowa starsza K2 3120,0 3141,0 \rightarrow sól potasowa starsza K2	1460,0	1522,0	\rightarrow piaskowiec trzcinowy		
1675,0 1784,0 \rightarrow kajper dolny 1784,0 1921,0 \rightarrow wapień muszlowy 1421,0 2076,5 \rightarrow formacja barwicka 1598,5 2357,0 \rightarrow formacja polozyńska 1867,5 255,0 \rightarrow formacja pomorska 2055,5 2853,0 \rightarrow formacja baltycka 2853,0 3674,5 perm 2853,0 2912,5 \rightarrow formacja rewalska 2912,5 2917,5 \rightarrow podcyklotem PZ4c 2917,5 2932,5 \rightarrow sól kam. najml. stropowa Na4b2 2932,5 2945,0 \rightarrow il solny czerwony górny T4b1 2950,5 2955,0 \rightarrow il solny czerwony górny A4a2 2978,0 2978,5 \rightarrow anh. pegmatytowy górny A4a2 2978,5 3007,5 \rightarrow sól kam. najmłodsza dolna Na4a1 3007,5 3008,5 \rightarrow anh. pegmatytowy dolny A4a1 3008,5 3010,0 \rightarrow sól podścielająca Na4a0 3010,0 3028,5 \rightarrow sól kamienna młodsza Na3 3080,0 3106,0 \rightarrow anhydryt główny A3 3106,0 3109,0 \rightarrow dolomit płytowy Ca3 3109,0 3112,5 \rightarrow sól kamienna starsza Na2	1522,0	1675,0	<i>→warstwy gipsowe dolne</i>		
1784,0 1921,0 \rightarrow wapień muszlowy 1421,0 2076,5 \rightarrow formacja barwicka 1598,5 2357,0 \rightarrow formacja polczyńska 1867,5 2550,0 \rightarrow formacja bałtycka 2853,0 3674,5 perm 2853,0 2912,5 \rightarrow formacja rewalska 2912,5 2917,5 \rightarrow podcyklotem PZ4c 2917,5 2932,5 \rightarrow sól kam. najml. stropowa Na4b2 2932,5 2945,0 \rightarrow il solny czerwony górny T4b1 2945,0 2950,5 \rightarrow sól rozdzielająca Na4b1 2950,5 2955,0 \rightarrow il solny czerwony górny T4b1 2955,0 2978,0 \rightarrow sól kam. najmłodsza górna Na4a2 2978,0 2978,5 \rightarrow anh. pegmatytowy górny A4a2 2978,5 3007,5 \rightarrow sól kam. najmłodsza dolna Na4a1 3007,5 3008,5 \rightarrow anh. pegmatytowy dolny A4a1 3008,5 3010,0 \rightarrow sól kamienna młodsza Na3 3008,0 3106,0 \rightarrow anhydryt główny A3 3106,0 $3109,0$ \rightarrow ali solny szary T3 3112,5 3114,0 \rightarrow asól kamienna atsrza Na2 3120,0 3141,0 <td< td=""><td>1675,0</td><td>1784,0</td><td>\rightarrowkajper dolny</td></td<>	1675,0	1784,0	\rightarrow kajper dolny		
1421,0 2076,5 \rightarrow formacja barwicka 1598,5 2357,0 \rightarrow formacja polczyńska 1867,5 2550,0 \rightarrow formacja pomorska 2055,5 2853,0 \rightarrow formacja bałtycka 2853,0 3674,5 perm 2853,0 2912,5 \rightarrow formacja rewalska 2912,5 2917,5 \rightarrow podcyklotem PZ4c 2917,5 2932,5 \rightarrow sól kam. najml. stropowa Na4b2 2932,5 2945,0 \rightarrow ił solny czerwony górny T4b1 2950,5 2955,0 \rightarrow sól kam. najmłodsza górna Na4a2 2978,0 2978,0 \rightarrow sól kam. najmłodsza dolna Na4a1 3007,5 3008,5 \rightarrow anh. pegmatytowy górny A4a2 2978,5 3007,5 \rightarrow sól kam. najmłodsza dolna Na4a1 3007,5 3008,5 \rightarrow anh. pegmatytowy dolny A4a1 3008,5 3010,0 \rightarrow sól podścielająca Na4a0 3010,0 3028,5 \rightarrow ił solny czerwony dolny T4a 3028,5 3080,0 \rightarrow sól kamienna młodsza Na3 3080,0 3106,0 \rightarrow anhydryt główny A3 3106,0 3109,0 \rightarrow dolomit płytowy Ca3 3109,0 3112,5	1784,0	1921,0	<i>→wapień muszlowy</i>		
1598,5 2357,0 \rightarrow formacja polezyńska 1867,5 2550,0 \rightarrow formacja pomorska 2055,5 2853,0 \rightarrow formacja bałtycka 2853,0 2912,5 \rightarrow formacja rewalska 2912,5 2917,5 \rightarrow podcyklotem PZ4c 2917,5 2932,5 \rightarrow sól kam. najml. stropowa Na4b2 2932,5 2945,0 \rightarrow il solny czerwony górny T4b2 2945,0 2950,5 \rightarrow sól rozdzielająca Na4b1 2950,5 2955,0 \rightarrow il solny czerwony górny T4b1 2955,0 2978,0 \rightarrow sól kam. najmłodsza górna Na4a2 2978,0 2978,5 \rightarrow anh. pegmatytowy górny A4a2 2978,5 3007,5 \rightarrow sól kam. najmłodsza dolna Na4a1 3007,5 3008,5 \rightarrow anh. pegmatytowy dolny A4a1 3008,5 3010,0 \rightarrow sól podścielająca Na4a0 3010,0 3028,5 \rightarrow il solny czerwony dolny T4a 3028,5 3080,0 \rightarrow sól kamienna młodsza Na3 3080,0 3106,0 \rightarrow anhydryt główny A3 3106,0 3109,0 \rightarrow dolomit płytowy Ca3 3112,5 3114,0 \rightarrow sól potasowa starsza K2 3120,0	1421,0	2076,5	<i>→formacja barwicka</i>		
1867,5 255,0 \rightarrow formacja pomorska 2055,5 2853,0 \rightarrow formacja bałtycka 2853,0 3674,5 perm 2853,0 2912,5 \rightarrow formacja rewalska 2912,5 2917,5 \rightarrow podcyklotem PZ4c 2917,5 2932,5 \rightarrow sól kam. najml. stropowa Na4b2 2932,5 2945,0 \rightarrow il solny czerwony górny T4b1 2950,5 $2950,5$ \rightarrow sól rozdzielająca Na4b1 2950,5 2955,0 \rightarrow il solny czerwony górny T4b1 2955,0 2978,0 \rightarrow sól kam. najmłodsza górna Na4a2 2978,0 2978,5 \rightarrow anh. pegmatytowy górny A4a2 2978,5 3007,5 \rightarrow sól kam. najmłodsza dolna Na4a1 3007,5 3008,5 \rightarrow anh. pegmatytowy dolny A4a1 3008,5 3010,0 \rightarrow sól podscielająca Na4a0 3010,0 3028,5 \rightarrow il solny czerwony dolny T4a 3028,5 3080,0 \rightarrow sól kamienna młodsza Na3 3080,0 3106,0 \rightarrow anhydryt główny A3 3106,0 3109,0 \rightarrow dolomit płytowy Ca3 3112,5 3114,0 \rightarrow sól potasowa starsza K2 3120,0 3141,0	1598,5	2357,0	<i>→formacja połczyńska</i>		
2055,52853,0 \rightarrow formacja bałtycka2853,03674,5perm2853,02912,5 \rightarrow formacja rewalska2912,52917,5 \rightarrow podcyklotem PZ4c2917,52932,5 \rightarrow sól kam. najml. stropowa Na4b22932,52945,0 \rightarrow il solny czerwony górny T4b22945,02950,5 \rightarrow sól rozdzielająca Na4b12950,52955,0 \rightarrow il solny czerwony górny T4b12955,02978,0 \rightarrow sól kam. najmłodsza górna Na4a22978,02978,5 \rightarrow anh. pegmatytowy górny A4a22978,53007,5 \rightarrow sól kam. najmłodsza dolna Na4a13007,53008,5 \rightarrow anh. pegmatytowy dolny A4a13008,53010,0 \rightarrow sól podścielająca Na4a03010,03028,5 \rightarrow il solny czerwony dolny T4a3028,53080,0 \rightarrow sól kamienna młodsza Na33080,03106,0 \rightarrow anhydryt główny A33106,03109,0 \rightarrow alnydryt kryjący A2r3114,03120,0 \rightarrow sól kamienna starsza Na23120,03141,0 \rightarrow sól potasowa starsza K23235,03243,5 \rightarrow dolomit główny Ca23243,53460,0 \rightarrow anhydryt górny A1g3460,03542,5 \rightarrow sól kamienna najstarsza Na13542,53601,0 \rightarrow anhydryt dolny A1d3601,03609,5 \rightarrow lupek miedzionośny T1 \rightarrow wapień cechsztyński Ca1 \rightarrow wapień cechsztyński Ca13609,53674,5 \rightarrow czerwony spągowiec3674,54025,0fran	1867,5	2550,0	→formacja pomorska		
2853,0 3674,5 perm 2853,0 2912,5 \rightarrow formacja rewalska 2912,5 2917,5 \rightarrow podcyklotem PZ4c 2917,5 2932,5 2945,0 \rightarrow il solny czerwony górny T4b2 2932,5 2945,0 \rightarrow il solny czerwony górny T4b1 2950,5 2950,5 \rightarrow sól rozdzielająca Na4b1 2950,5 2955,0 \rightarrow il solny czerwony górny T4b1 2955,0 2978,0 \rightarrow sól kam. najmłodsza górna Na4a2 2978,0 2978,5 \rightarrow anh. pegmatytowy górny A4a2 2978,5 3007,5 \rightarrow sól kam. najmłodsza dolna Na4a1 3007,5 3008,5 \rightarrow anh. pegmatytowy dolny A4a1 3008,5 3010,0 \rightarrow sól podścielająca Na4a0 3010,0 3028,5 \rightarrow il solny czerwony dolny T4a 3028,5 3080,0 \rightarrow sól kamienna młodsza Na3 3080,0 3106,0 \rightarrow anhydryt główny A3 3106,0 3109,0 \rightarrow dolomit płytowy Ca3 3112,5 3114,0 \rightarrow sól potasowa starsza K2 3120,0 3141,0 \rightarrow sól potasowa starsza K2 3235,0 3243,5 \rightarrow dolomit główny Ca2 32	2055,5	2853,0	→formacja bałtycka		
2853,02912,5 \rightarrow formacja rewalska2912,52917,5 \rightarrow podcyklotem PZ4c2917,52932,5 \rightarrow sól kam. najml. stropowa Na4b22932,52945,0 \rightarrow il solny czerwony górny T4b22945,02950,5 \rightarrow sól rozdzielająca Na4b12950,52955,0 \rightarrow il solny czerwony górny T4b12955,02978,0 \rightarrow sól kam. najmłodsza górna Na4a22978,02978,5 \rightarrow anh. pegmatytowy górny A4a22978,53007,5 \rightarrow sól kam. najmłodsza dolna Na4a13007,53008,5 \rightarrow anh. pegmatytowy dolny A4a13008,53010,0 \rightarrow sól podścielająca Na4a03010,03028,5 \rightarrow il solny czerwony dolny T4a3028,53080,0 \rightarrow sól kamienna młodsza Na33080,03106,0 \rightarrow anhydryt główny A33106,03109,0 \rightarrow dolomit płytowy Ca33112,53114,0 \rightarrow anhydryt kryjący A2r3114,03120,0 \rightarrow sól kam. starsza kryjąca Na2r3120,03141,0 \rightarrow sól potasowa starsza K23235,03243,5 \rightarrow dolomit główny Ca23243,53460,0 \rightarrow anhydryt górny A1g3460,03542,5 \rightarrow sól kamienna najstarsza Na13542,53601,0 \rightarrow anhydryt dolny A1d3609,5 \rightarrow hupek miedzionośny T1 \rightarrow wapień cechsztyński Ca13609,53674,5 \rightarrow czerwony spągowiec3674,54025,0fran4025,04252,0żywet	2853,0	3674,5	perm		
2912,52917,5 $\rightarrow podcyklotem PZ4c$ 2917,52932,5 $\rightarrow sól kam. najml. stropowa Na4b2$ 2932,52945,0 $\rightarrow il solny czerwony górny T4b2$ 2945,02950,5 $\rightarrow sól rozdzielająca Na4b1$ 2950,52955,0 $\rightarrow il solny czerwony górny T4b1$ 2955,02978,0 $\rightarrow sól kam. najmlodsza górna Na4a2$ 2978,02978,5 $\rightarrow anh. pegmatytowy górny A4a2$ 2978,53007,5 $\rightarrow sól kam. najmlodsza dolna Na4a1$ 3007,53008,5 $\rightarrow anh. pegmatytowy dolny A4a1$ 3008,53010,0 $\rightarrow sól podscielająca Na4a0$ 3010,03028,5 $\rightarrow il solny czerwony dolny T4a$ 3028,53080,0 $\rightarrow sól kamienna młodsza Na3$ 3080,03106,0 $\rightarrow anhydryt główny A3$ 3106,03109,0 $\rightarrow dolomit płytowy Ca3$ 3112,53114,0 $\rightarrow anhydryt kryjący A2r$ 3114,03120,0 $\rightarrow sól kamienna starsza K2$ 3141,03235,0 $\rightarrow sól kamienna starsza K2$ 3235,03243,5 $\rightarrow olomit główny Ca2$ 3243,5 $\rightarrow sól kamienna najstarsza Na1$ 3542,5 $3601,0$ $\rightarrow anhydryt górny A1g$ 3601,0 $3609,5$ $\rightarrow lupek miedzionośny T1$ $\rightarrow wapień cechsztyński Ca1$ 3609,5 $3674,5$ $\rightarrow czerwony spągowiec$ 3674,54025,0fran	2853,0	2912,5	→formacja rewalska		
2917,52932,5 \rightarrow sól kam. najmł. stropowa Na4b22932,52945,0 \rightarrow ił solny czerwony górny T4b22945,02950,5 \rightarrow sól rozdzielająca Na4b12950,52955,0 \rightarrow il solny czerwony górny T4b12955,02978,0 \rightarrow sól kam. najmłodsza górna Na4a22978,02978,5 \rightarrow anh. pegmatytowy górny A4a22978,53007,5 \rightarrow sól kam. najmłodsza dolna Na4a13007,53008,5 \rightarrow anh. pegmatytowy dolny A4a13008,53010,0 \rightarrow sól podścielająca Na4a03010,03028,5 \rightarrow il solny czerwony dolny T4a3028,53080,0 \rightarrow sól kamienna młodsza Na33080,03106,0 \rightarrow anhydryt główny A33106,03109,0 \rightarrow dolomit płytowy Ca33112,53114,0 \rightarrow anhydryt kryjący A2r3114,03120,0 \rightarrow sól kamienna starsza K23120,03141,0 \rightarrow sól potasowa starsza K23235,03243,5 \rightarrow dolomit główny Ca23243,53460,0 \rightarrow anhydryt górny A1g3460,03542,5 \rightarrow sól kamienna najstarsza Na13542,53601,0 \rightarrow anhydryt dolny A1d3601,03609,5 \rightarrow upek miedzionośny T1 \rightarrow wapień cechsztyński Ca1 \rightarrow wapień cechsztyński Ca13609,53674,5 \rightarrow czerwony spągowiec3674,54025,0fran4025,04252,0żywet	2912,5	2917,5	\rightarrow podcyklotem PZ4c		
2932,52945,0 $\rightarrow il$ solny czerwony górny T4b22945,02950,5 $\rightarrow sól$ rozdzielająca Na4b12950,52955,0 $\rightarrow il$ solny czerwony górny T4b12955,02978,0 $\rightarrow sól$ kam. najmłodsza górna Na4a22978,02978,5 $\rightarrow anh.$ pegmatytowy górny A4a22978,53007,5 $\rightarrow sól$ kam. najmłodsza dolna Na4a13007,53008,5 $\rightarrow anh.$ pegmatytowy dolny A4a13008,53010,0 $\rightarrow sól$ podścielająca Na4a03010,03028,5 $\rightarrow il$ solny czerwony dolny T4a3028,53080,0 $\rightarrow sól$ kamienna młodsza Na33080,03106,0 $\rightarrow anhydryt$ główny A33106,03109,0 $\rightarrow dolomit$ płytowy Ca33112,53114,0 $\rightarrow anhydryt$ kryjący A2r3114,03120,0 $\rightarrow sól$ kamienna starsza K23120,03141,0 $\rightarrow sól$ potasowa starsza K23235,03243,5 $\rightarrow dolomit$ główny Ca23243,5 $3460,0$ $\rightarrow anhydryt$ górny A1g3460,03542,5 $\rightarrow sól$ kamienna najstarsza Na13542,53601,0 $\rightarrow anhydryt$ dolny A1d3601,0 $3609,5$ $\rightarrow lupek$ miedzionośny T1 $\rightarrow wapień$ cechsztyński Ca1 $3609,5$ $\rightarrow czerwony spągowiec3674,54025,0fran4025,04252,0żywet$	2917,5	2932,5	→sól kam. najmł. stropowa Na4b2		
2945,02950,5 \rightarrow sól rozdzielająca Na4b12950,52955,0 \rightarrow il solny czerwony górny T4b12955,02978,0 \rightarrow sól kam. najmłodsza górna Na4a22978,02978,5 \rightarrow anh. pegmatytowy górny A4a22978,53007,5 \rightarrow sól kam. najmłodsza dolna Na4a13007,53008,5 \rightarrow anh. pegmatytowy dolny A4a13008,53010,0 \rightarrow sól podścielająca Na4a03010,03028,5 \rightarrow il solny czerwony dolny T4a3028,53080,0 \rightarrow sól kamienna młodsza Na33080,03106,0 \rightarrow anhydryt główny A33106,03109,0 \rightarrow dolomit płytowy Ca33112,53114,0 \rightarrow anhydryt kryjący A2r3114,03120,0 \rightarrow sól potasowa starsza K23120,03141,0 \rightarrow sól potasowa starsza K23235,03243,5 \rightarrow dolomit główny Ca23243,53460,0 \rightarrow anhydryt górny A1g3460,03542,5 \rightarrow sól kamienna najstarsza Na13542,53601,0 \rightarrow anhydryt dolny A1d3601,03609,5 \rightarrow tupek miedzionośny T1 \rightarrow wapień cechsztyński Ca1 \rightarrow wapień cechsztyński Ca13609,53674,5 \rightarrow czerwony spągowiec3674,54025,0fran	2932,5	2945,0	→ił solny czerwony górny T4b2		
2950,52955,0 $\rightarrow il$ solny czerwony górny T4b12955,02978,0 $\rightarrow sól$ kam. najmłodsza górna Na4a22978,02978,5 $\rightarrow anh.$ pegmatytowy górny A4a22978,53007,5 $\rightarrow sól$ kam. najmłodsza dolna Na4a13007,53008,5 $\rightarrow anh.$ pegmatytowy dolny A4a13008,5 $3010,0$ $\rightarrow sól$ podścielająca Na4a03010,03028,5 $\rightarrow il$ solny czerwony dolny T4a3028,53080,0 $\rightarrow sól$ kamienna młodsza Na33080,03106,0 $\rightarrow anhydryt$ główny A33106,03109,0 $\rightarrow dolomit$ płytowy Ca33112,53114,0 $\rightarrow anhydryt$ kryjący A2r3114,03120,0 $\rightarrow sól$ kamienna starsza K23120,03141,0 $\rightarrow sól$ potasowa starsza K23235,03243,5 $\rightarrow dolomit$ główny Ca23243,53460,0 $\rightarrow anhydryt$ górny A1g3460,03542,5 $\rightarrow sól$ kamienna najstarsza Na13542,53601,0 $\rightarrow anhydryt$ dolny A1d3609,5 $\rightarrow tupek$ miedzionośny T1 $\rightarrow wapień$ cechsztyński Ca13609,53674,5 $\rightarrow czerwony$ spągowiec3674,54025,0fran	2945,0	2950,5	→sól rozdzielająca Na4b1		
2955,02978,0 \rightarrow sól kam. najmłodsza górna Na4a22978,02978,5 \rightarrow anh. pegmatytowy górny A4a22978,53007,5 \rightarrow sól kam. najmłodsza dolna Na4a13007,53008,5 \rightarrow anh. pegmatytowy dolny A4a13008,53010,0 \rightarrow sól podścielająca Na4a03010,03028,5 \rightarrow ił solny czerwony dolny T4a3028,53080,0 \rightarrow sól kamienna młodsza Na33080,03106,0 \rightarrow anhydryt główny A33106,03109,0 \rightarrow dolomit płytowy Ca33112,53114,0 \rightarrow anhydryt kryjący A2r3114,03120,0 \rightarrow sól potasowa starsza K23120,03141,0 \rightarrow sól potasowa starsza K23235,03243,5 \rightarrow dolomit główny Ca23243,53460,0 \rightarrow anhydryt górny A1g3460,03542,5 \rightarrow sól kamienna najstarsza Na13542,53601,0 \rightarrow anhydryt dolny A1d3601,03609,5 \rightarrow upek miedzionośny T1 \rightarrow wapień cechsztyński Ca1 \rightarrow wapień cechsztyński Ca13609,53674,5 \rightarrow czerwony spągowiec3674,54025,0fran	2950,5	2955,0	<i>→ił solny czerwony górny T4b1</i>		
2978,02978,5 \rightarrow anh. pegmatytowy górny A4a22978,53007,5 \rightarrow sól kam. najmłodsza dolna Na4a13007,53008,5 \rightarrow anh. pegmatytowy dolny A4a13008,53010,0 \rightarrow sól podścielająca Na4a03010,03028,5 \rightarrow ił solny czerwony dolny T4a3028,53080,0 \rightarrow sól kamienna młodsza Na33080,03106,0 \rightarrow anhydryt główny A33106,03109,0 \rightarrow dolomit płytowy Ca33112,53114,0 \rightarrow anhydryt kryjący A2r3114,03120,0 \rightarrow sól kam. starsza kryjąca Na2r3120,03141,0 \rightarrow sól potasowa starsza K23141,03235,0 \rightarrow sól kamienna starsza Na2 \rightarrow sól potasowa starsza K2 \rightarrow sól potasowa starsza K23243,5 \rightarrow dolomit główny Ca23243,5 \rightarrow dolomit główny Ca23243,5 \rightarrow sól kamienna najstarsza Na13542,53601,0 \rightarrow anhydryt dolny A1d3601,03609,5 \rightarrow tupek miedzionośny T1 \rightarrow wapień cechsztyński Ca1 \rightarrow wapień cechsztyński Ca13609,53674,5 \rightarrow czerwony spągowiec3674,54025,0fran	2955,0	2978,0	→sól kam. najmłodsza górna Na4a2		
2978,5 $3007,5$ $\rightarrow sól kam. najmłodsza dolna Na4a1$ $3007,5$ $3008,5$ $\rightarrow anh. pegmatytowy dolny A4a1$ $3008,5$ $3010,0$ $\rightarrow sól podścielająca Na4a0$ $3010,0$ $3028,5$ $\rightarrow il solny czerwony dolny T4a$ $3028,5$ $3080,0$ $\rightarrow sól kamienna młodsza Na3$ $3080,0$ $3106,0$ $\rightarrow anhydryt główny A3$ $3106,0$ $3109,0$ $\rightarrow dolomit phytowy Ca3$ $3109,0$ $3112,5$ $\rightarrow il solny szary T3$ $3112,5$ $3114,0$ $\rightarrow anhydryt kryjący A2r$ $3114,0$ $3120,0$ $\rightarrow sól potasowa starsza K2$ $3120,0$ $3141,0$ $\rightarrow sól potasowa starsza K2$ $3141,0$ $3235,0$ $\rightarrow sól potasowa starsza K2$ $3243,5$ $\rightarrow dolomit główny Ca2$ $3243,5$ $\rightarrow dolomit główny Ca2$ $3243,5$ $\rightarrow dolomit glówny Ca2$ $3243,5$ $\rightarrow sol potasowa starsza K2$ $3601,0$ $3542,5$ $\rightarrow sol kamienna najstarsza Na1$ $3542,5$ $3601,0$ $\rightarrow anhydryt dolny A1d$ $3601,0$ $3609,5$ $\rightarrow lupek miedzionośny T1$ $\rightarrow wapień cechsztyński Ca1$ $3609,5$ $\rightarrow czerwony spągowiec$ $3674,5$ $4025,0$ fran $4025,0$ $4252,0$ $zywet$	2978,0	2978,5	→anh. pegmatytowy górny A4a2		
$3007,5$ $3008,5$ $\rightarrow anh. pegmatytowy dolny A4a1$ $3008,5$ $3010,0$ $\rightarrow sól podścielająca Na4a0$ $3010,0$ $3028,5$ $\rightarrow il solny czerwony dolny T4a$ $3028,5$ $3080,0$ $\rightarrow sól kamienna młodsza Na3$ $3080,0$ $3106,0$ $\rightarrow anhydryt główny A3$ $3106,0$ $3109,0$ $\rightarrow dolomit płytowy Ca3$ $3109,0$ $3112,5$ $\rightarrow il solny szary T3$ $3112,5$ $3114,0$ $\rightarrow anhydryt kryjący A2r$ $3114,0$ $3120,0$ $\rightarrow sól potasowa starsza K2$ $3120,0$ $3141,0$ $\rightarrow sól potasowa starsza Na2$ $3120,0$ $3141,0$ $\rightarrow sól potasowa starsza K2$ $3141,0$ $3235,0$ $\rightarrow sól potasowa starsza Na2$ $3243,5$ $\rightarrow dolomit główny Ca2$ $3243,5$ $\rightarrow dolomit główny Ca2$ $3243,5$ $\rightarrow dolomit główny Ca2$ $3243,5$ $\rightarrow dolomit glówny Ca2$ $3243,5$ $\rightarrow sol kamienna najstarsza Na1$ $3542,5$ $3601,0$ $\rightarrow anhydryt dolny A1d$ $3601,0$ $3609,5$ $\rightarrow tupek miedzionośny T1$ $\rightarrow wapień cechsztyński Ca1$ $3609,5$ $\rightarrow czerwony spągowiec$ $3674,5$ $4025,0$ fran $4025,0$ $4252,0$ $\dot{z}ywet$	2978,5	3007,5	→sól kam. najmłodsza dolna Na4a1		
$3008,5$ $3010,0$ $\rightarrow sól podścielająca Na4a0$ $3010,0$ $3028,5$ $\rightarrow il solny czerwony dolny T4a$ $3028,5$ $3080,0$ $\rightarrow sól kamienna młodsza Na3$ $3080,0$ $3106,0$ $\rightarrow anhydryt główny A3$ $3106,0$ $3109,0$ $\rightarrow dolomit plytowy Ca3$ $3109,0$ $3112,5$ $\rightarrow il solny szary T3$ $3112,5$ $3114,0$ $\rightarrow anhydryt kryjący A2r$ $3114,0$ $3120,0$ $\rightarrow sól potasowa starsza kryjąca Na2r$ $3120,0$ $3141,0$ $\rightarrow sól potasowa starsza K2$ $3141,0$ $3235,0$ $\rightarrow sól potasowa starsza K2$ $3235,0$ $3243,5$ $\rightarrow dolomit główny Ca2$ $3243,5$ $3460,0$ $\rightarrow anhydryt górny A1g$ $3460,0$ $3542,5$ $\rightarrow sól kamienna najstarsza Na1$ $3542,5$ $3601,0$ $\rightarrow anhydryt dolny A1d$ $3601,0$ $3609,5$ $\rightarrow czerwony spągowiec$ $3674,5$ $4025,0$ fran $4025,0$ $4252,0$ $zywet$	3007,5	3008,5	\rightarrow anh. pegmatytowy dolny A4a1		
3010,03028,5 $\rightarrow il$ solny czerwony dolny T4a3028,53080,0 $\rightarrow sól$ kamienna młodsza Na33080,03106,0 $\rightarrow anhydryt$ główny A33106,03109,0 $\rightarrow dolomit plytowy Ca3$ 3109,03112,5 $\rightarrow il$ solny szary T33112,53114,0 $\rightarrow anhydryt kryjący A2r$ 3114,03120,0 $\rightarrow sól$ kam. starsza kryjąca Na2r3120,03141,0 $\rightarrow sól$ potasowa starsza K23141,03235,0 $\rightarrow sól$ kamienna starsza Na2 $\rightarrow sól$ potasowa starsza K23235,03243,5 $\rightarrow dolomit główny Ca2$ 3243,53460,0 $\rightarrow anhydryt górny A1g$ 3460,03542,5 $\rightarrow sól kamienna najstarsza Na1$ 3542,53601,0 $\rightarrow anhydryt dolny A1d$ 3601,03609,5 $\rightarrow lupek miedzionośny T1$ $\rightarrow wapień cechsztyński Ca1$ 3609,53674,5 $\rightarrow czerwony spągowiec$ 3674,54025,0fran4025,04252,0żywet	3008,5	3010,0	→sól podścielająca Na4a0		
$3028,5$ $3080,0$ $\rightarrow sól kamienna młodsza Na3$ $3080,0$ $3106,0$ $\rightarrow anhydryt główny A3$ $3106,0$ $3109,0$ $\rightarrow dolomit płytowy Ca3$ $3109,0$ $3112,5$ $\rightarrow il solny szary T3$ $3112,5$ $3114,0$ $\rightarrow anhydryt kryjący A2r$ $3114,0$ $3120,0$ $\rightarrow sól kam. starsza kryjąca Na2r$ $3120,0$ $3141,0$ $\rightarrow sól potasowa starsza K2$ $3141,0$ $3235,0$ $\rightarrow sól potasowa starsza Na2$ $3235,0$ $3243,5$ $\rightarrow dolomit główny Ca2$ $3243,5$ $3460,0$ $\rightarrow anhydryt górny A1g$ $3460,0$ $3542,5$ $\rightarrow sól kamienna najstarsza Na1$ $3542,5$ $3601,0$ $\rightarrow anhydryt dolny A1d$ $3601,0$ $3609,5$ $\rightarrow lupek miedzionośny T1$ $\rightarrow wapień cechsztyński Ca1$ $3609,5$ $3674,5$ $3674,5$ $4025,0$ fran $4025,0$ $4252,0$ żywet	3010,0	3028,5	\rightarrow <i>il solny czerwony dolny T4a</i>		
3080,03106,0 \rightarrow anhydryt główny A33106,03109,0 \rightarrow dolomit płytowy Ca33109,03112,5 \rightarrow ił solny szary T33112,53114,0 \rightarrow anhydryt kryjący A2r3114,03120,0 \rightarrow sól kam. starsza kryjąca Na2r3120,03141,0 \rightarrow sól potasowa starsza K23141,03235,0 \rightarrow sól potasowa starsza Na2 \rightarrow sól potasowa starsza K2 \rightarrow sól potasowa starsza K23235,03243,5 \rightarrow dolomit główny Ca23243,53460,0 \rightarrow anhydryt górny A1g3460,03542,5 \rightarrow sól kamienna najstarsza Na13542,53601,0 \rightarrow anhydryt dolny A1d3601,03609,5 \rightarrow tupek miedzionośny T1 \rightarrow wapień cechsztyński Ca1 \rightarrow wapień cechsztyński Ca13609,53674,5 \rightarrow czerwony spągowiec3674,54025,0fran4025,04252,0żywet	3028,5	3080,0	→sól kamienna młodsza Na3		
3106,03109,0 \rightarrow dolomit plytowy Ca33109,03112,5 \rightarrow il solny szary T33112,53114,0 \rightarrow anhydryt kryjący A2r3114,03120,0 \rightarrow sól kam. starsza kryjąca Na2r3120,03141,0 \rightarrow sól potasowa starsza K23141,03235,0 \rightarrow sól potasowa starsza Na2 \rightarrow sól zdamienna starsza Na2 \rightarrow sól potasowa starsza K23235,03243,5 \rightarrow dolomit główny Ca23243,53460,0 \rightarrow anhydryt górny A1g3460,03542,5 \rightarrow sól kamienna najstarsza Na13542,53601,0 \rightarrow anhydryt dolny A1d3601,03609,5 \rightarrow lupek miedzionośny T1 \rightarrow wapień cechsztyński Ca1 \rightarrow wapień cechsztyński Ca13609,53674,5 \rightarrow czerwony spągowiec3674,54025,0fran4025,04252,0żywet	3080,0	3106,0	→anhydryt główny A3		
3109,03112,5 $\rightarrow il solny szary T3$ 3112,53114,0 $\rightarrow anhydryt kryjący A2r$ 3114,03120,0 $\rightarrow sól kam. starsza kryjąca Na2r$ 3120,03141,0 $\rightarrow sól potasowa starsza K2$ 3141,03235,0 $\rightarrow sól potasowa starsza Na2$ $\rightarrow sól zasowa starsza Na2$ $\rightarrow sól potasowa starsza K2$ 3235,03243,5 $\rightarrow dolomit główny Ca2$ 3243,53460,0 $\rightarrow anhydryt górny A1g$ 3460,03542,5 $\rightarrow sól kamienna najstarsza Na1$ 3542,53601,0 $\rightarrow anhydryt dolny A1d$ 3601,0 $3609,5$ $\rightarrow lupek miedzionośny T1$ $\rightarrow wapień cechsztyński Ca1$ $\rightarrow wapień cechsztyński Ca1$ 3609,53674,5 $\rightarrow czerwony spągowiec$ 3674,54025,0fran4025,04252,0żywet	3106,0	3109,0	\rightarrow dolomit płytowy Ca3		
3112,53114,0 \rightarrow anhydryt kryjący A2r3114,03120,0 \rightarrow sól kam. starsza kryjąca Na2r3120,03141,0 \rightarrow sól potasowa starsza K23141,03235,0 \rightarrow sól kamienna starsza Na2 \rightarrow sól zdasowa starsza K2 \rightarrow sól potasowa starsza K23235,03243,5 \rightarrow dolomit główny Ca23243,53460,0 \rightarrow anhydryt górny A1g3460,03542,5 \rightarrow sól kamienna najstarsza Na13542,53601,0 \rightarrow anhydryt dolny A1d3601,03609,5 \rightarrow tupek miedzionośny T1 \rightarrow wapień cechsztyński Ca1 \rightarrow upek jeńce3674,54025,0fran4025,04252,0żywet	3109,0	3112,5	$\rightarrow il \ solny \ szary \ T3$		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3112,5	3114,0	<i>→anhydryt kryjący A2r</i>		
3120,0 $3141,0$ $\rightarrow s \acute{ol}$ potasowa starsza K2 $3141,0$ $3235,0$ $\rightarrow s \acute{ol}$ kamienna starsza Na2 $\rightarrow s \acute{ol}$ potasowa starsza K2 $3235,0$ $3243,5$ $\rightarrow dolomit gl\acute{owny} Ca2$ $3243,5$ $3460,0$ $\rightarrow anhydryt g\acute{orny} A1g$ $3460,0$ $3542,5$ $3601,0$ $\rightarrow anhydryt dolny A1d$ $3601,0$ $3609,5$ $\rightarrow upek miedzionośny T1$ $\rightarrow wapień cechsztyński Ca1$ $3609,5$ $3674,5$ $\rightarrow czerwony spągowiec$ $3674,5$ $4025,0$ $4025,0$ $4252,0$ $zywet$	3114,0	3120,0	→sól kam. starsza kryjąca Na2r		
3141,0 $3235,0$ $\rightarrow sól kamienna starsza Na2$ $\rightarrow sól potasowa starsza K2$ 3235,0 $3243,5$ $\rightarrow dolomit główny Ca2$ 3243,5 $3460,0$ $\rightarrow anhydryt górny A1g$ $3460,0$ $3542,5$ $\rightarrow sól kamienna najstarsza Na1$ $3542,5$ $3601,0$ $\rightarrow anhydryt dolny A1d$ $3601,0$ $3609,5$ $\rightarrow lupek miedzionośny T1$ $\rightarrow wapień cechsztyński Ca1$ $3609,5$ $3674,5$ $\rightarrow czerwony spągowiec$ $3674,5$ $4025,0$ fran $4025,0$ $4252,0$ żywet	3120,0	3141,0	→sól potasowa starsza K2		
$\begin{array}{r c c c c c c c c c c c c c c c c c c c$	3141,0	3235,0	→sól kamienna starsza Na2		
3235,0 $3243,5$ \rightarrow anhydryt górny Alg3243,5 $3460,0$ \rightarrow anhydryt górny Alg $3460,0$ $3542,5$ \rightarrow sól kamienna najstarsza Nal $3542,5$ $3601,0$ \rightarrow anhydryt dolny Ald $3601,0$ $3609,5$ \rightarrow lupek miedzionośny Tl \rightarrow wapień cechsztyński Cal $3609,5$ $3674,5$ \rightarrow czerwony spągowiec $3674,5$ $4025,0$ fran $4025,0$ $4252,0$ żywet	3235.0	3213 5	→dolomit główny Ca?		
3240,03540,03400,011g3460,03542,5 \rightarrow sól kamienna najstarsza Nal3542,53601,0 \rightarrow anhydryt dolny A1d3601,0 $3609,5$ \rightarrow lupek miedzionośny T1 \rightarrow wapień cechsztyński Cal3609,53674,5 \rightarrow czerwony spągowiec3674,54025,0fran4025,04252,0żywet	3243 5	3460.0	→anhvdrvt górny 41g		
3542,53601,0 \rightarrow anhydryt dolny A1d3601,0 $3609,5$ \rightarrow lupek miedzionośny T1 $3609,5$ $3674,5$ \rightarrow czerwony spągowiec3674,54025,0fran4025,04252,0żywet	3460.0	3542 5	→sól kamienna naistarsza Nal		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3542 5	3601.0	\rightarrow anhydryt dolny A1d		
$3601,0$ $3609,5$ $\rightarrow wapieh$ cechsztyński Cal $3609,5$ $3674,5$ $\rightarrow czerwony spągowiec$ $3674,5$ $4025,0$ fran $4025,0$ $4252,0$ żywet	5572,5	5001,0	\rightarrow hunek miedzionośny Tl		
$\begin{array}{r} 3609,5 \\ 3674,5 \\ 4025,0 \\ 4025,0 \\ 4252,0 \\ \hline \end{array} \begin{array}{r} \hline \\ \hline $	3601,0	3609,5	→wanień cechsztvński Cal		
3674,5 4025,0 fran 4025,0 4252,0 żywet	3609.5	3674.5	\rightarrow czerwony spągowiec		
4025,0 4252,0 żywet	3674.5	4025.0	fran		
	4025.0	4252,0	żywet		

Wyniki badań skał:

Dokumentacja wynikowa otworu Brojce IG-1 (Żelichowski, 1986) zawieta wyniki badań własności fizykochemicznych 809 próbek skał z całego profilu, przy czym dla 145 próbek wykonano pomiary gęstości, porowatości i przepuszczalności (ich podsumowanie zamieszczono w Tab. 5.20), a także wyniki badań refleksyjności witrynitu 10 próbek (Tab. 5.21). Wykonano także 6 analiz gazu i 4 analizy wody złożowej (Tab. 5.22). W dokumentacji znajdują się także opracowania petrograficzne skał dewonu (36 płytek cienkich), skał wulkanicznych czerwonego spągowca (15 płytek cienkich), skał klastycznych czerwonego spągowca, a także analiza petrograficzna skał węglanowych cechsztynu (71 płytek cienkich) i wyniki badań paleontologicznych. dodatku o dokumentacji wynikowej W (Rzepkowska, 1988) znajdują się ponadto wyniki analiz geochemicznych bituminów i materii organicznej 47 próbek z interwału 409.0-4252.0 m.

Ponadto, w dokumentacjach Grotek i Klimuszko (1995) oraz Kiersnowskiego i Poprawy (2010) znajdują się wyniki badań materii organicznej skał dewonu i jury, podsumowane w Tab. 5.23.

Wyniki geofizyki otworowej:

Dokumentacja wynikowa otworu Brojce IG-1 (Żelichowski, 1986) zawiera wyniki badań geofizyki wiertniczej wykonanych w następującym zakresie (dla wszystkich profilowań w CBDG są dostępne pliki LAS):

- profilowanie krzywizny otworu (PK): 0–4225 m,
- profilowanie średnicy otworu (PSr): 0-4234,5 m,
- profilowanie potencjałów samoistnych (PS): 8–4232 m,
- standardowe profilowanie oporności (PO): 8–4230 m,
- profilowanie oporności sonda gradientową (POg): 8–3562 m,
- profilowanie oporności sonda potencjałową (POp): 8–3562 m,
- profilowanie oporności płuczki (POpl): 2425–2920 m,

- sterowane profilowanie oporności (POst): 2917–4229,5 m,
- sterowane profilowanie oporności (logPOst): 2917–4230 m,
- profilowanie oporności EL02 (PO): 2–2921 m,
- profilowanie oporności EL03 (PO): 4–4230 m,
- profilowanie oporności EL09 (PO): 5–4232 m,
- profilowanie oporności EL18 (PO): 9–4230 m,
- profilowanie oporności EL26(PO): 10–4230 m,
- o profilowanie oporności E10 (PO): 7–4232 m,
- profilowanie oporności EN16 (PO): 1–2917 m,
- mikroprofilowanie oporności sterowane (logmPOst): 3000–4230 m,
- o profilowanie gamma (PG): 0-4232 m,
- profilowanie gamma–gamma gęstościowe (GGDN): 290–4232 m,
- o profilowanie neutron–gamma (PNG): 0–4232 m,
- profilowanie neutron–gamma (logPNG): 268–4232 m,
- profilowanie akustyczne czasu interwałowego (PAdt): 250–4232 m,
- profilowanie czasu akustycznego T1 (Pat1): 250–3960 m,
- pomiar akustyczny stanu zacementowania rur okładzinowych (Pac): 90–3562 m,
- profilowanie ekscentryczności (PEksc): 3564–4130 m,
- profilowanie temperatury (TEMP): 2570–2731 m,
- profilowanie temperatury przy nieust. równowadze term, (PTn): 1800–1900 m,
- profilowanie temperatury przy ustalonej równowadze term, (PTn): 1–4153 m.

Opracowanie pomiarów średnich prędkości w odwiercie Brojce IG-1" (Brzeżański, 1986b), zawiera z kolei wyniki pomiarów wykonanych w następującym zakresie (również dla nich w CBDG dostępne są pliki LAS):

- profilowanie prędk. śr., czas interpolowany podwojony Tx2: 20–4180 m,
- profilowanie prędk. śr., czas interpolowany TW: 20–4180 m,

- profilowanie prędk. śr., czas pomierzony Tr_PW1: 56–4196 m,
- profilowanie prędk. śr., czas pomierzony Tr_PW2: 11–4196 m,
- profilowanie prędk. śr., czas pomierzony Tr_PW3: 56–4196 m,
- profilowanie prędk. śr., czas uśredniony Tr_PO: 11–4196 m,
- profilowanie prędk. śr., gradient czasu interpol. DT_VSP: 20–4180 m.

Objawy węglowodorów w trakcie wiercenia i próby złożowe: obserwacje obecności węglowodorów w płuczce oraz w rdzeniu oraz wyniki przeprowadzonyc prób złożowych zestawiono w Tab. 5.24–5.25.

Dokumentacje NAG PIG-PIB:

- Brzeżański, A. 1986b. Opracowanie pomiarów średnich prędkości w odwiercie Brojce IG-1. B215 VS, Arch. CAG PIG, Warszawa.
- Grotek, I., Klimuszko, E. 1995. Komputeryzacja i podsumowanie wyników badań geochemicznych, substancji organicznej, bituminów i węglowodorów na Niżu Polskim. Inw. 1497/96, Arch. CAG PIG, Warszawa.
- Kiersnowski, H., Poprawa, P. 2010. Rozpoznanie basenów węglowodorowych Polski pod kątem możliwości występowania i zasobów oraz możliwości koncesjonowania poszukiwań niekonwencjonalnych złóż gazu ziemnego - etap I. Inw. 2439/2011, Arch. CAG PIG, Warszawa.
- Nawrocki, J., Grabowski, J. 1988. Analiza litofacjalnych i paleogeograficznych podstaw poszukiwań nagromadzeń węglowodorów w utworach permu. Wyniki badań paleomagnetycznych utworów permu i najniższego triasu z otworów wiertniczych Brojce IG-1, Mszczonów IG-1 i Piła IG-1. Inw. 308/92, Arch. CAG PIG, Warszawa.
- Rzepkowska, Z. 1988. Dodatek nr 2 do dokumentacji wynikowej otworu badawczego Brojce IG-1. Inw. 4273/2016, Arch. CAG PIG, Warszawa.
- Żelichowski, A. (red.). 1986. Dokumentacja wynikowa otworu badawczego Brojce IG-1. Inw. 129772, Arch. CAG PIG, Warszawa.

Głębokość	Stua trugua fia	Porowatość [%]		Przepuszczalność [mD]		
[m]	Stratygrana	całkowita	efektywna	horyzontalna	wertykalna	
2864,1		4,15	1,12	0,1	0,1	
2869,0		3,38	1,11	0,1	0,1	
2872,5		4,89	2,21	0,1	0,1	
2876,1		2,23	0,86	0,15	0,1	
2880,0		3,39	1,6	0,1	0,1	
2883,7		1,85	0,45	0,1	0,1	
2888,2	formacia rewalska	4,15	1,76	0,1	0,1	
2891,9	Tormacja re waiska	4,53	2,41	0,1	0,1	
2894,4		4,89	2,7	0,1	0,1	
2898,8		2,99	0,66	0,1	0,1	
2901,7		4,53	1,72	0,1	0,1	
2906,4		3,39	1,18	0,1	0,1	
2907,9		4,89	3,37		0,1	
2910,8		7,41	6,66			
3107,6	dolomit płytowy	1,34	0,49	0,1	0,1	
3113,6		1,02	0,5	0,1	0,1	
3114,6		0,68	0,49	0,1	0,1	
3115,4		2,62	1,36	0,1	0,1	
3116,0	sól kamienna starsza	3,77	2,05	2,3	2,1	
3116,5	kryjąca	7,01	6,49	0,25	0,2	
3117,0		3,7	1,43	0,1	0,1	
311/,5		1,49	0,67	0,1	0,1	
3119,1		5,94	5,62			
3119,6		7,83	7,02	0.1	0.1	
3120,2	sól potasowa starsza	0,07	0,25	0,1	0,1	
3120,9		1,75	0,24	0,23	0,1	
3247,4		1,07	0,71	0,1	0,1	
3240,0		1,0	0,7	0,1	0,1	
3240,5	anhydryt górny	2 16	0,58	0,1	0,1	
3251.5	annydryt gorny	0.69	0.26	0,1	0,1	
3257.6		0,69	0.45	0,1	0,1	
3255.3	-	1.01	0.26	0,1	0,1	
3258,1	•	0.67	0.27	0,1	0,1	
3265.8		0.67	0.14	0,1	0,1	
3270.8	sól kamienna naistarsza	0.34	0.14	0,1	0.1	
3273.8		0.67	0.27	0.1	0.1	
3587,5		1,04	0,41	0,1	0,1	
3588,2	anhydryt dolny	0,69	0,2	0,1	0,1	
3590,4		0,67	0,35	0,1	0,1	
3603,0	wapień cechsztyń-	0,73	0,13	0,1	0,1	
3608,6	ski/łupek miedzionośny	1,49	0,74	0,1	0,1	
3609,5		1,11	0,47	0,1	0,1	
3611,5		1,49	0,54	0,1	0,1	
3612,3		1,48	0,54	0,1	0,1	
3615,4		1,49	0,67	0,1	0,1	
3619,5	czerwony spągowiec	1,5	0,61	0,1	0,1	
3623,4		3,33	1,57	0,1	0,1	
3628,1		0,74	0,6	0,1	0,1	
3635,1		3,3	2,43	0,1	0,1	
3637,5		2,6	1,49	0,1	0,1	
3640,6		1,15	0,59	0,1	0,1	
3641,3		2,98	2,61	0,1	0,1	
3666,6		1,11	0,6	0,1	0,1	
3723,3		1,8	1,32			
3724,4	fran	1,1	0,71			
3756,1		1,84	1,02			
3787,3		1,08	0,3			

3790,3		0,79	0,22		
3823,4		1,08	0,37		
3828,0		1,4	0,78		
3879,5		1,45	0,27	0,1	0,1
3881,5		1,81	0,27	0,1	0,1
3913,5		1,81	0,68		
3917,5		2,19	0,69	0,1	0,1
3961,3		1,79	0,54		
3966,0		1,08	0,34		0,1
3993,2		1,08	0,44		
3996,2		1,78	0,38	0,1	0,1
4034,1		2,17	0,82	0,1	0,1
4035,8		1,08	0,56		
4085,8		1,83	0,44	0,1	
4089,5		1,78	0,14	0,1	0,1
4092,5		1,07	0,35		
4096,6		1,8	0,21	0,1	0,1
4098,5		1,08	0,37	0,1	
4136,1	·	1,06	0,39	0,1	0,1
4143,4	zywei	1,08	0,51		
4179,4		1,45	0,42	0,1	0,1
4188,4		1,8	0,55		
4195,0		1,46	0,42	0,1	0,1
4219,5		1,09	0,31	0,1	0,1
4225,5		1,44	0,8		
4233,4		1,8	0,31		
4235,5		1,8	0,6		

Tab. 5.20. Wyniki badań petrofizycznych próbek paleozoicznych z otworu Brojce IG-1 na podstawie dokumentacji wynikowej (Żelichowski, 1986).

Clabolzoźć [m]	Stratugnofia		VR0 [%]	
Giębokość [m]	Stratygrafia	min	max	średnia
3756,7		1,5	1,85	1,8
3828,5	1	1,6	1,9	1,8
4034,1	dewon	1,75	2,0	1,8
4035,7		1,3	1,85	1,65

Tab. 5.21. Wyniki badań refleksyjności witrynitu próbek paleozoicznych z otworu Brojce IG-1 na podstawie dokumentacji wynikowej (Żelichowski, 1986).

Interwał [m]	Stratygrafia	Metoda	Składniki	% obj.
			CH_4	11,67
			C_2H_6	0,01
95 9 0 900 0	iumo	z przewodu	CO ₂	11,26
838,0-890,0	Jura	nad próbnikiem	N ₂	76,51
			He	0,03
			Ar	0,08
			CH_4	0,27
1459,0–1481,0	trias	z przewodu nad próbnikiem	C_2H_6	0,01
			CO ₂	17,36
			N ₂	81,07
			He	0,03
			H ₂	1,14
			Ar	0,07
			CH_4	0,44
			C_2H_6	0,01
			CO ₂	2,76
1938,0-1960,0	trias	z przewodu nad próbnikiom	N ₂	96,64
		nau problikiem	H ₂ S	-
			He	0,04
			H ₂	-

				0.05
			Ar	0,05
			CH_4	5,06
			C_2H_6	0,08
			C ₃ H ₈	0,02
		1	CO ₂	0,46
2542,0-2526,0	trias	z przewodu	N ₂	73,94
		nad problikiem	H_2S	-
			He	0,9
			H ₂	4,02
			Ar	0,02
3248,0-3274,0	anhydryt górny	gaz z płuczki	CH_4	0,1
			C_2H_6	0,04
			C ₃ H ₈	ślady
			CO ₂	10
			N ₂	73,94
			H ₂	14,87
			CH_4	0,67
			C ₂ H ₆	0,1
			C ₃ H ₈	ślady
3596,0–3642,0	spąg cechsztynu	gaz z płuczki	CO ₂	0,24
			N ₂	85,38
			H ₂	12,59
			Ar	0,95

Tab. 5.22. Wyniki analiz gazu w otworze Brojce IG-1 według dokumentacji wynikowej (Żelichowski, 1986).

		S1	S3	Tmax	HI	OI	PI	TOC
Stratumofia	Ilość	min-max	min-max	min-max	min-max	min-max	min-max	min-max
Stratygrana	pomiarów	[mgHC/	[mgCO ₂ /	[°C]	[mgHC/	[mgCO ₂ /	[mgHC/	[% wag.]
		gskaly	gskaly		giuu	giuu	gskaly	_
jura	4							0,2–1,8
dewon	3	0,02–0,57	0,04–0,63	450-471	27–48	10-87	0,17–0,62	0,27–0,72

Tab. 5.23. Podsumowanie wyników badań pirolitycznych przeprowadzonych w otworze Brojce IG-1 w utworach dewonu i jury (Grotek i Klimuszko, 1995; Kiersnowski i Poprawa, 2010).

Głębokość [m]	Stratygrafia	Objawy
3247,4–3255,0	anhydryt górny	nieliczne plamy ropy i pęcherzyki gazu

Tab. 5.24. Objawy węglowodorów w otworze Brojce IG-1 według dokumentacji wynikowej (Żelichowski, 1986).

Głębokość [m]	Stratygrafia	Metoda	Przypływ	Tempo przypływu [m ³ /h]
858,0–890,0	jura	pr. rurowy złoża (po zakończeniu)	solanka	23,6
1459,0–1481,0	kajper	pr. rurowy złoża (po zakończeniu) solanka		1,93
1938,0–1960,0	ret	pr. rurowy złoża (po zakończeniu)	solanka	12,7
2526,0-2542,0	pstry piaskowiec	pr. rurowy złoża (po zakończeniu)	solanka słabo zgazowana gazem niepalnym	5,69
3248,0-3274	anhydryt górny	pr. rurowy złoża (w trakcie wiercenia)	brak przypływu	_
3596,0–3642,0	czerwony spągowiec	pr. rurowy złoża (w trakcie wiercenia)	brak przypływu	_

Tab. 5.25. Rezultaty prób złożowych wykonanych w otworze Brojce IG-1 według dokumentacji wynikowej (Żelichowski, 1986).

5.7. CHOMINO 1

Głębokość otworu: 2752,0 m **Rok zakończenia wiercenia:** 2014 **Rdzenie:** 2606,0–2722,0 m, 54 skrzynki, NAG PIG-PIB, Archiwum Rdzeni Wiertniczych w Chmielniku

Stratygrafia (CBDG, 2021):

Głębokość [m]		Stratugnafia
od	do	Stratygrana
0,0	46,5	kenozoik
46,5	1055,0	jura
1055,0	2331,0	trias
1055,0	1100,0	\rightarrow retyk
1100,0	1230,0	→kajper
1230,0	1391,5	<i>→wapień muszlowy</i>
1391,5	1529,5	$\rightarrow ret$
1529,5	2331,0	→pstry piaskowiec
2331,0	2752,0	perm
2331,0	2335,0	→sól kam. najmłodsza górna Na4a2
2335,0	2347,0	\rightarrow <i>ił solny czerwony górny T4b1</i>
2347,0	2392,0	→sól kam. najmłodsza dolna Na4a1
2392,0	2393,0	\rightarrow anh. pegmatytowy dolny A4a1
2393,0	2407,0	\rightarrow <i>it solny czerwony dolny T4a</i>
2407,0	2557,5	→sól kamienna młodsza grn. Na3g
2557,5	2592,5	<i>→anhydryt środkowy</i>
2592,5	2605,5	→sól kamienna młodsza dolna Na3d
2605,5	2619,0	→anhydryt główny A3
2619,0	2622,0	\rightarrow dolomit płytowy Ca3
2622,0	2623,0	$\rightarrow il \ solny \ szary \ T3$
2623,0	2624,5	→anhydryt kryjący A2r
2624,5	2682,5	→sól starsza Na2
2682,5	2688,5	\rightarrow anhydryt podstawowy A2
2688,5	2728,0	→dolomit główny Ca2
2728,0	2752,0	→anhydryt górny A1g

Wyniki badań skał:

Dokumentacja geologiczna likwidacji odwiertu poszukiwawczego Chomino 1 (Sikorska-Piekut i Chruścińska, 2014) oraz dokumentacja prac geologicznych niekończących się udokumentowaniem zasobów złoża kopaliny wykonanych na obszarze koncesji na poszukiwanie i rozpoznawanie złóż ropy naftowej i gazu ziemnego w rejonie Kaleń nr 28/2008/p (Chruścińska i Płatek, 2016) nie zawierają danych źródłowych z wykonanych badań skał, a jedynie ich krótkie podsumowanie. Badania własności petrofizycznych objęły 6 próbek dolomitu płytowego i 71 próbek dolomitu głównego. Wykonano też 2 analizy płynów z interwału 2686,0–2722,0 m. Analiza geochemiczna objęła 4 próbki dolomitu płytowego i 21 próbek dolomitu głównego. Wykonano również analizę petrolitologiczną, przeobrażeń diagenetycznych i własnośći zbiornikowych dolomitu głównego i dolomitu płytowego.

Wyniki geofizyki otworowej:

Dokumentacje Sikorskiej-Piekut i Chruścińskiej (2014) i Chruścińskiej i Płatek (2016) zawierają jedynie połączone wyniki pomiarów geofizyki otworowej w formie plików LAS i DLIS. Zgodnie z drugą dokumentacją jest to 27 krzywych profilowań elektrycznego, radiometrycznego, akustycznego, technicznego, upadu warstw, prędkości średnich i pionowego profilowania sejsmicznego.

Objawy węglowodorów i próby złożowe:

Dane te są dostępne wyłącznie do wglądu w ramach "DATA ROOMu" zorganizowanego w Czytelni NAG w trakcie trwania piątej rundy przetargów na koncesje węglowodorowe w Polsce.

Dokumentacje NAG PIG-PIB:

- Sikorska-Piekut, W., Chruścińska, J. 2014. Dokumentacja geologiczna likwidacji odwiertu poszukiwawczego Chomino 1. Inw. 3287/2015, Arch. CAG PIG, Warszawa.
- Chruścińska, J., Płatek, K. 2016. Dokumentacja prac geologicznych niekończących się udokumentowaniem zasobów złoża kopaliny wykonanych na obszarze koncesji na poszukiwanie i rozpoznawanie złóż ropy naftowej i gazu ziemnego w rejonie Kaleń nr 28/2008/p. Inw. 3326/2018, Arch. CAG PIG, Warszawa.

5.8. DOBROPOLE 1

Głębokość otworu: 2883,0 m Rok zakończenia wiercenia: 1987 Rdzenie: 1581,0–2878,0 m, 36 skrzynek, NAG PIG-PIB, Archiwum Rdzeni Wiertniczych w Chmielniku

Stratygrafia (CBDG, 2021):

Głębokość [m]		Structure for
od	do	Stratygrana
0,0	44,5	kenozoik
44,5	131,0	jura górna
131,0	394,0	jura środkowa
394,0	1179,0	jura dolna
1179,0	2316,0	trias
1179,0	1319,0	\rightarrow kajper
1319,0	1468,0	→wapień muszlowy dolny
1468,0	1628,0	→formacja barwicka
1628,0	1865,0	→formacja połczyńska
1865,0	2023,0	→formacja pomorska
2023,0	2316,0	→formacja bałtycka
2316,0	2883,0	perm
2316,0	2347,5	→formacja rewalska
2347,5	2356,0	→sól kam. najmł. stropowa Na4b2
2356,0	2366,0	<i>→ił solny czerwony górny T4b</i>
2366,0	2418,0	→sól kam. najmł. dolna Na4a1
2418,0	2430,0	\rightarrow <i>it solny czerwony dolny T4a</i>
2430,0	2454,0	→sól kam. młodsza górna Na3g
2454,0	2563,5	→sól kamienna młodsza dolna Na3d
2563,5	2584,5	→anhydryt główny A3
2584,5	2588,5	<i>→dolomit płytowy Ca3</i>
2588,5	2591,5	→anhydryt kryjący A2r
2591,5	2847,0	→sól potasowa starsza K2
2847,0	2850,5	\rightarrow anhydryt podstawowy A2
2850,5	2868,0	→dolomit główny Ca2
2868,0	2883,0	→anhydryt górny A1g

Wyniki badań skał:

W dokumentacji wynikowej otworu Dobropole 1 (Zasławski i Sabura, 1987) znajdują się wyniki badań petrograficznych 14 próbek dolomitu głównego z interwału 2850,0– 2861 m oraz 20 analiz petrofizycznych próbek dolomitu głównego z interwału 2851,05– 2860,55 m (Tab. 5.26), w tym parametry porowatości i przepuszczalności (dla 14 próbek wykonano ponadto rozdział grupowo-węglowodorowy). Wykonano także analizę wody złożowej (Tab. 5.27).

Wyniki geofizyki otworowej:

Dokumentacja wynikowa otworu Dobropole 1 (Zasławski i Sabura, 1987) zawiera wyniki geofizyki wiertniczej wykonanej w następującym zakresie (dla podkreślonych profilowań w CBDG znajdują się pliki LAS):

- profilowanie krzywizny otworu (PK): 25–2880 m,
- <u>profilowanie średnicy otworu (PSr)</u>: 0–2883 m,
- <u>nominalna średnica wiercenia (BS)</u>: 0–2883 m,
- profilowanie potencjałów samoistnych (PS): 10–2883 m,
- standardowe profilowanie oporności (PO): 10–2883 m,
- mikroprofilowanie oporności (mPO): 224–2350 m,
- sterowane profilowanie oporności (POst): 2357–2883 m,
- mikroprofilowanie oporności sterowane (logmPOst): 2357–2883 m,
- o <u>profilowanie oporności EL03 (PO)</u>: 2–2883 m,
- o profilowanie gamma (PG): 0–2872 m,
- profilowanie gamma–gamma gęstościowe (GGDN): 220–2883 m,
- <u>profilowanie neutron-gamma (PNG)</u>: 0–2880 m,
- profilowanie neutron-gamma (logPNG): 193–2878 m,
- profilowanie akustyczne czasu interwałowego (PAdt): 171–2883 m,
- profilowanie czasu akustycznego T1 (Pat1): 171–2883 m,
- profilowanie czasu akustycznego T2 (Pat2): 171–2883 m,
- profilowanie temperatury (TEMP): 1770– 2880 m.

Dokumentacja pomiarów średnich prędkości, odwiert: Dobropole 1 (Klecan, 1987), w którym znajdują się wyniki pomiarów wykonanych w następującym zakresie (w CBDG dostępne są dla nich pliki LAS):

- profilowanie prędk. śr., czas interpolowany podwojony Tx2: 20–2860 m,
- profilowanie prędk. śr., czas interpolowany TW: 20–2860 m,
- profilowanie prędk. śr., czas pomierzony Tr_PW1: 22–2872 m,
- profilowanie prędk. śr., czas pomierzony Tr_PW2: 22–2872 m,

- profilowanie prędk. śr., czas pomierzony Tr_PW3: 22–2872 m,
- profilowanie prędk. śr., czas uśredniony Tr_PO: 22–2872 m,
- profilowanie prędk. śr., gradient czasu interpol. DT_VSP: 20–2860 m.

Objawy węglowodorów w trakcie wiercenia i próby złożowe: obserwacje obecności węglowodorów w płuczce oraz w rdzeniu oraz wyniki przeprowadzonyc prób złożowych zestawiono w Tab. 5.28–5.29.

Dokumentacje NAG PIG-PIB:

- Klecan, A. 1987. Dokumentacja pomiarów średnich prędkości, odwiert: Dobropole 1. D57 VS, Arch. CAG PIG, Warszawa.
- Zasławski, S., Sabura, M. 1987. Dokumentacja wynikowa odwiertu poszukiwawczego Dobropole 1. Inw. 130677, Arch. CAG PIG, Warszawa.

Głębokość	Stuaturanofia	Porowatość	Przepuszczalność
[m]	Stratygrana	[%]	[mD]
2851,05		2,11	584
2851,55		1,9	151
2852,05		1,97	
2852,55		1,16	
2853,05		3,21	
2853,55		5,45	3
2854,05		2,09	
2854,55		2,38	2
2855,05		3,08	10
2855,55	dalamit alámur	2,18	1
2856,05	dolomit główny	5,8	
2856,55		5,6	
2857,05		1,09	2
2857,55		2,72	3
2858,05		2,72	2
2858,55		10,14	408
2859,05		6,8	124
2859,55		7,85	143
2860,05		4,19	
2860.55		10.86	2182

Tab. 5.26. Wyniki badań petrofizycznych próbek z otworu Dobropole 1 na podstawie dokumentacji wynikowej (Za-sławski i Sabura, 1987).

Głębokość [m]	Stratygrafia	Metoda	Składniki	g/l
			Cl	196,5689
			Br⁻	0,5887
			HCO ₃ ⁻	1,1956
	anhydryt podstawowy	pr.rurowy złoża	SiO ₄ ²⁻	1,2716
2849,0			$\mathrm{NH_4^+}$	0,275
			Ca ²⁺	3,6222
			Mg^{2+}	1,26
			Na/K ⁺	121,2238
			Al/ Fe ³⁺	0,4881

Tab. 5.27. Rezultaty analiz wody w otworze Dobropole 1 według dokumentacji wynikowej (Zasławski i Sabura, 1987).

Głębok	tość [m]	Stratugrafia	Objerry
od	do	Stratygrana	Objawy
330,0	1120,0	jura	punktowe ślady ropne
1120,0	1140,0	kajper	zapach bituminów
2847,0	2860,0	anhydryt podstawowy	objawy bituminów

Tab. 5.28. Objawy węglowodorów w rdzeniu w otworze Dobropole 1 według dokumentacji wynikowej (Zasławski i Sabura, 1987).

Głębokość [m]	Stratygrafia	Metoda	Przypływ	Tempo przypływu [m³/h]
2849,0-2860,5	anhydryt podstawowy, dolomit główny	pr. rurowy złoża (w trakcie wiercenia)	490 l solanki mini- malnie zgazowanej, bez zanachu H.S	_

Tab. 5.29. Rezultaty prób złożowych w otworze Dobropole 1 według dokumentacji wynikowej (Zasławski i Sabura, 1987).

5.9. DUSIN 1

Głębokość otworu: 2662,5 m **Rok zakończenia wiercenia:** 1977 **Rdzenie:** 586,0–2662,0 m, 73 skrzynki, NAG PIG-PIB, Archiwum Rdzeni Wiertniczych w Chmielniku

Głębokość [m]		Studtuonafia
od	do	Stratygrana
0,0	16,0	kenozoik
16,0	223,0	jura środkowa
223,0	959,0	jura dolna
959,0	2205,0	trias
959,0	993,0	<i>→warstwy wielichowskie</i>
002.0	1071.0	<i>→warstwy zbąszynieckie</i>
995,0	10/1,0	<i>→warstwy jarkowskie</i>
1071,0	1180,0	\rightarrow kajper
1180,0	1302,0	→wapień muszlowy
1302,0	1475,0	→formacja barwicka
1475,0	1720,0	→formacja połczyńska
1720,0	1895,0	→formacja pomorska
1895,0	2205,0	→formacja bałtycka
2205,0	2662,5	perm
2205,0	2245,0	→formacja rewalska
2245,0	2255,0	→sól kam. najmł. stropowa Na4b2
2255,0	2271,0	→ił solny czerwony górny T4b
2271,0	2289,5	→sól kam. najmł. górna Na4a2
2289,5	2290,5	→anh. pegmatytowy górny A4a2
2290,5	2315,0	→sól kam. najmł.dolna Na4a1
2315,0	2316,5	\rightarrow anh. pegmatytowy dolny A4a1
2316,5	2331,0	\rightarrow <i>il solny czerwony dolny T4a</i>
2331,0	2401,0	→sól kamienna młodsza Na3
2401,0	2492,5	→anhydryt główny A3
2402 5	21080	\rightarrow dolomit płytowy Ca3
2492,3 2498,0	\rightarrow szary ił solny T3	
2498,0	2502,0	→anhydryt kryjący A2r
2502.0	2580.0	→sól kamienna starsza Na2
2502,0	2300,0	→sól potasowa starsza K2
2580,0	2583,5	\rightarrow anhydryt podstawowy A2

Stratygrafia	(CBDG,	2021):
--------------	--------	--------

2583,5	2643,0	→dolomit główny Ca2
2643,0	2662,5	→anhydryt górny A1g

Wyniki badań skał:

W dokumentacji wynikowej otworu Dusin 1 (Ryba i Szewc, 1977a) znajdują się wyniki badań mikropaleontologicznych 30 próbek okruchowych z interwału 34,0–222,0 m. Ponadto załączono wyniki analiz petrograficznych 47 prób dolomitu głównego oraz 45 sześcioskładnikowych analiz chemicznych. Zamieszczono również analizy fizykochemiczne 116 prób dolomitu głównego i anhydrytu górnego, w tym parametry porowatości, przepuszczalności i zawartości bituminów (Tab. 5.30). Dodatkowo wykonano 5 analiz gazu oraz 1 analizę wody złożowej (Tab. 5.31– 5.32).

Wyniki geofizyki otworowej:

Dokumentacja wynikowa otworu Dusin 1 (Ryba i Szewc, 1977a) zawiera wyniki badań geofizyki wiertniczej wykonanych w następującym zakresie (dla podkreślonych profilowań w CBDG znajdują się pliki LAS):

- profilowanie krzywizny otworu (PK): 25–2650 m,
- profilowanie średnicy otworu (PSr): 10–2658 m,
- profilowanie potencjałów samoistnych (PS): 18–2658 m,
- standardowe profilowanie oporności (PO): 18–2658 m,
- sterowane profilowanie oporności (POst): 2175–2658 m,

- sterowane profilowanie oporności (log-POst): 2175–2658 m,
- profilowanie oporności EL03 (PO): 15–2657,5 m,
- mikroprofilowanie oporności sterowane (mPOst): 2583–2658 m,
- mikroprofilowanie oporności sterowane (logmPOst): 2583–2658 m,
- o profilowanie gamma (PG): 10-2658 m,
- profilowanie neutron-gamma (PNG): 10–2662 m,
- profilowanie neutron–gamma (logPNG): 2100–2658 m,
- profilowanie akustyczne amplitudy (PA): 1100–2000 m,
- profilowanie akustyczne czasu interwałowego (PAdt): 1100–2658 m,
- profilowanie czasu akustycznego T1 (Pat1): 1100–2658 m,
- profilowanie gazowe (PGaz): 1333–2586 mm

Dokumentacja pomiarów średnich prędkości, w odwiercie Dusin 1 (Klecan, 1977) zawiera wyniki pomiarów wykonanych w następującym zakresie (w CBDG dostępne są dla nich pliki LAS):

 profilowanie prędk. śr., czas interpolowany podwojony Tx2: 20–2560 m,

- profilowanie prędk. śr., czas interpolowany TW: 20–2560 m,
- profilowanie prędk. śr., czas pomierzony Tr_PW1: 70–2365 m,
- profilowanie prędk. śr., czas pomierzony Tr_PW2: 55–2560 m,
- profilowanie prędk. śr., czas pomierzony Tr_PW3: 55–2560 m,
- profilowanie prędk. śr., czas uśredniony Tr_PO: 55–2560 m,
- profilowanie prędk. śr., gradient czasu interpol. DT_VSP: 20–2560 m.

Objawy węglowodorów w trakcie wiercenia i próby złożowe: obserwacje obecności węglowodorów w płuczce oraz w rdzeniu oraz wyniki przeprowadzonyc prób złożowych zestawiono w Tab. 5.33–5.34.

Dokumentacje NAG PIG-PIB:

- Klecan, A. 1977. Opracowanie pomiarów średnich prędkości, odwiert Dusin 1. D83 VS, Arch. CAG PIG, Warszawa.
- Ryba, J., Szewc. A. 1977a. Dokumentacja wynikowa otworu poszukiwawczego Dusin 1. Inw. 123559, Arch. CAG PIG, Warszawa

Stratygrafia	Liczba pomiarów	Porowatość min-max (średnia)	Przepuszczalność pionowa	Bituminy min-max (średnia)
		[%]	[mD]	[%]
dolomit główny, anhydryt górny	116	0,07–19,93 (5,48)	60 prób – brak 34 próby – 0,18–20,59 12 prób – przep. szczelinowa 0,19– 126,77	0,005–0,467 (0,060)

Tab. 5.30. Podsumowanie wyników badań fizyczno-chemicznych próbek pobranych z interwału 2587,05–2646,05 m w otworze Dusin 1 na podstawie dokumentacji wynikowej (Ryba i Szewc, 1977a).

Głębokość [m]	Stratygrafia	Metoda	Składniki	% obj.
	trias	pr. rurowy złoża	CH_4	31,25
			C_2H_6	10,22
			C_3H_8	9,55
			C_4H_{10}	2,31
14910 14500			$C_{5}H_{12}$	1,44
1481,0-1439,0			CO_2	_
			N_2	25,47
			H_2S	11,69
			He	0,1
			H_2	0,24
2582 5 2642 0	dolomit główny	pr. rurowy złoża	CH_4	14
2383,3-2643,0			C_2H_6	19,37

			C_3H_8	22,3
			$C_4 H_{10}$	5,14
			C ₅ H ₁₂	3,31
			CO_2	-
			N_2	18,87
			H_2S	-
			He	0,04
			H_2	1,6
			CH_4	56,07
			C_2H_6	11,41
			C_3H_8	6,03
			$C_4 H_{10}$	1,27
2583 0 2643 0	dolomit alówny	pr rurowa złoża	$C_{5}H_{12}$	1,46
2383,0-2043,0	doioinit giowity	p1. 1010wy 2102a	CO_2	—
			N_2	9,39
			H_2S	7,35
			He	0,17
			H_2	0,3
		pr. rurowy złoża	CH_4	19,58
			C_2H_6	7,83
			C_3H_8	11,09
			C_4H_{10}	2,54
2613 6 2622 3	dolomit alówny		C ₅ H ₁₂	5,53
2015,0-2022,5	dolonnit glowity		CO_2	ślady
			N_2	50,04
			H_2S	-
			He	ślady
			H_2	0,11
			CH ₄	26,73
			C_2H_6	1,72
			C ₃ H ₈	0,81
			C ₄ H ₁₀	0,1
2646 5_2662 5 m	anhydryt górny	pr rurowy złoża	C ₅ H ₁₂	0,16
20 4 0, <i>3</i> –2002, <i>3</i> m	annydryt gonry	pr. rutowy złoża	CO ₂	-
			N ₂	63,9
			H_2S	-
			He	ślady
			H_2	6,49

Tab. 5.31. Wyniki analiz gazu (w czystym gazie) w otworze Dusin 1 według dokumentacji wynikowej (Ryba i Szewc, 1977).

Głębokość [m]	Stratygrafia	Metoda	Składniki	g/l
2646,5–2662,5 m	anhydryt górny	pr. rurowy złoża	Cl	154,8991
			Br	0,4156
			HCO ₃ ⁻	1,342
			SiO ₄ ²⁻	3,6298
			$\mathrm{NH_4^+}$	0,305
			Ca^{2+}	8,3046
			Mg^{2+}	1,8896
			Na/K ⁺	89,3328

Tab. 5.32. Wyniki analiz wody w otworze Dusin 1 według dokumentacji wynikowej (Ryba i Szewc, 1977a).

Głebokość [m]		<i>G</i> () (
od	do	Stratygrafia	Objawy	
2586.0	2595.6		pojedyncze punktowe ślady ropy na kontaktach spękań, zapach siar-	
2300,0	2575,0		kowodoru	
2586,0	2595,6	dolomit główny	ślady ropy i gazu w izolowanych porach, zapach siarkowowdoru	
2595,6	2613,6		pojedyncze punktowe wykropliny w mikrospękaniach, zapach H ₂ S	
2613,6	2622,3		ślady ropy i gazu w mikrospękanianch, zapach siarkowodoru	
26223	2626.5		punktowe ślady degazacji (banieczki gazu), kroplowe wycieki ropy na	
2022,3	2020,5	2020,3	mikrospękaniach, zapach H ₂ S	
2626,5	2644,5	dolomit główny,	ślady ropy w mikrospękaniach	
2626,5	2644,5	anhydryt górny	pojedyncze wykropliny ropy oraz banieczki gazu, zapach H ₂ S	

Tab. 5.33. Objawy węglowodorów w rdzeniach w otworze Dusin 1 według dokumentacji wynikowej (Ryba i Szewc, 1977a).

Głębokość [m]	Stratygrafia	Metoda	Przypływ	Tempo przypływu [m ³ /h]
2584,0–2613,6		pr. rurowy złoża (w trakcie wiercenia)	brak przypływu	_
paker 2574,0	dolomit główny	pr. rurowy złoża (w trakcie wiercenia)	woda złożowa zgazowana gazem palnym ze śladami ropy i zapachem siarko- wodoru	0,33

Tab. 5.34. Rezultaty prób złożowych wykonanych w otworze Dusin 1 według dokumentacji wynikowej (Ryba i Szewc, 1977a).

5.10. GOSTYŃ 2

Głębokość otworu: 3447,0 m Rok zakończenia wiercenia: 1982 Rdzenie: 1505,0–3447,0 m, 184 skrzynki; NAG PIG-PIB, Archiwum Rdzeni Wiertniczych w Chmielniku

Stratygrafia (CBDG, 2021):

Głębokość [m]		Stuatygnafia
od	do	Stratygrana
0,0	54, 0	kenozoik
54,0	313,0	jura środkowa
313,0	1217,0	jura dolna
1217,0	2578,0	trias
1521,0	1640,0	\rightarrow kajper
1640,0	1881,0	<i>→wapień muszlowy</i>
1881,0	1985,0	<i>→formacja barwicka</i>
1985,0	2132,0	→formacja połczyńska
2132,0	2310,0	→formacja pomorska
2310,0	2578,0	→formacja bałtycka
2578,0	3314,0	perm
2578,0	2636,0	→formacja rewalska
2636,0	2662,5	→sól kam. najmłodsza dolna Na4a1
2662,5	2663,5	\rightarrow anh. pegmatytowy dolny A4a1
2663,5	2670,5	\rightarrow <i>it solny czerwony dolny T4a</i>
2670,5	2808,0	→sól kamienna młodsza Na3
2808,0	2822,5	→anhydryt główny A3
2822.5	28315	\rightarrow dolomit płytowy Ca3
2022,3	2034,3	<i>→szary ił solny T3</i>
2834,5	2836,0	→anhydryt kryjący A2r
2836,0	2907,0	→sól potasowa starsza K2

2836,0	2907,0	→sól kamienna starsza Na2
2907,0	2916,5	\rightarrow anhydryt podstawowy A2
2916,5	2945,5	→dolomit główny Ca2
2945,5	3108,0	→anhydryt górny A1g
3108,0	3186,5	→sól kam. najstarsza górna Na1g
3186,5	3212,5	→anhydryt środkowy A1s
3212,5	3218,5	→sól kam. najstarsza dolna Na1d
3218,5	3257,0	\rightarrow anhydryt dolny A1d
3257,0	3262,0	→wapień cechsztyński Ca1
3262,0	3262,5	\rightarrow zlepieniec podstawowy Zp1
3262,5	3314,0	→autun
3314,0	3447,0	karbon

Wyniki badań skał:

W dokumentacji wynikowej otworu Gostyń 2 (Wójcik i Sabura, 1983) znajdują się wyniki analiz petrograficznych dolomitu głównego i anhydrytu górnego z interwału 2931,0– 2959,0 m. Ponadto dostępne są wyniki analiz fizykochemicznych 95 próbek skalnych, w tym oznaczenia porowatości, przepuszczalności i zawartości bituminów (podsumowane w Tab. 5.35). W dokumentacji znajdują się również wyniki 3 analiz gazu i 1 analizy wody (Tab. 5.36–5.37).

Wyniki geofizyki otworowej:

W NAG PIG-PIB znajduje się dokumentacja wynikowa otworu Gostyń 2 (Wójcik i Sabura, 1983), która zawiera wyniki badań geofizyki wiertniczej wykonanych w następującym zakresie (dla podkreślonych profilowań w CBDG znajdują się pliki LAS):

- profilowanie krzywizny otworu (PK): 25–3425 m,
- <u>profilowanie średnicy otworu (PSr)</u>: 110–3438 m,
- mikroprofilowanie średnicy otworu (mPSr): 3249–3376 m,
- profilowanie potencjałów samoistnych (PS): 117–3436 m,
- standardowe profilowanie oporności (PO): 117–3436 m,
- sterowane profilowanie oporności (POst): 2775–3436 m,
- sterowane profilowanie oporności (log-POst): 25–2438 m,
- profilowanie oporności EL28 (PO): 120–3435 m,
- mikroprofilowanie oporności sterowane (mPOst): 2775–3436 m
- mikroprofilowanie oporności sterowane (logmPOst): 1491–3436 m,
- o profilowanie gamma (PG): 13-3468 m,
- profilowanie neutron–gamma (PNG): 18–3468 m,
- profilowanie neutron–gamma (logPNG): 25–3468 m,
- profilowanie akustyczne czasu interwałowego (PAdt): 1491–3438 m,
- profilowanie czasu akustycznego T (Pat): 10–2753 m,
- profilowanie czasu akustycznego T1 (Pat1): 1491–3438 m,
- profilowanie czasu akustycznego T2 (Pat2): 1491–3438 m,
- o profilowanie gazowe (PGaz): 0–3400 m.

Opracowanie pomiarów średnich prędkości w odwiercie Gostyń 2 (Nowak, 1982) zawiera natomiast wyniki pomiarów wykonanych w następującym zakresie (w CBDG dostępne są dla nich pliki LAS):

- profilowanie prędk. śr., czas interpolowany podwojony Tx2: 20–3340 m,
- profilowanie prędk. śr., czas interpolowany TW: 20–3340 m,
- profilowanie prędk. śr., czas pomierzony Tr_PW1: 40–3355 m,
- profilowanie prędk. śr., czas pomierzony Tr_PW2: 40–3355 m,
- profilowanie prędk. śr., czas pomierzony Tr_PW3: 40–3355 m,
- profilowanie prędk. śr., czas uśredniony Tr_PO: 40–3355 m,
- profilowanie prędk. śr., gradient czasu interpol. DT_VSP: 20–3340 m.

Objawy węglowodorów w trakcie wiercenia i próby złożowe: obserwacje obecności węglowodorów w płuczce oraz w rdzeniu oraz wyniki przeprowadzonyc prób złożowych zestawiono w Tab. 5.38–5.39.

Dokumentacje NAG PIG-PIB:

- Kłapciński, J., Juroszek, C., Sachanbiński, M. 1983. Petrografia, geochemia i występowanie skał wulkanicznych w wybranych otworach wiertniczych antyklinorium pomorskiego. Inw. 5699/2009, Arch. CAG PIG, Warszawa.
- Nowak, E. 1982. Opracowanie pomiarów średnich prędkości w odwiercie Gostyń 2. G79 VS, Arch. CAG PIG, Warszawa.
- Wójcik, Z., Sabura, M. 1982. Opracowanie pomiarów średnich prędkości w odwiercie Gostyń 2. Inw. 128219, Arch. CAG PIG, Warszawa.

Głębokość [m]	Stratygrafia	Liczba pomiarów	Porowatość min-max (średnia)	Przepuszczalność min-max (średnia)	Bituminy min-max (średnia)
			[%]	[nm ²]	[%]
2919,0–2959,0	dolomit główny,	69	0,14–6,20	0,53–7873,23	0,008–0,110
	anhydryt górny		(1,94)	(3,47)	(0,20)
3342,0–3400,0	karbon	26	0,72–9,19	9,17-4800,50	0,008–0,393
			(5,91)	(5,83)	(0,11)

Tab. 5.35. Podsumowanie wyników badań fizyczno-chemicznych próbek pobranych z interwału 2919,0–3400,0 m w otworze Gostyń 2 na podstawie dokumentacji wynikowej (Wójcik i Sabura, 1983).
Głębokość [m]	Stratygrafia	Metoda	Składniki	% obj.
			CH_4	20,62
			C_2H_6	0,05
			C_3H_8	0,01
3388,0–3447,0			$i-C_4H_{10}$	ślady
	karbon	pr. rurowy złoża	$n-C_4H_{10}$	0,005
			CO_2	ślady
			N_2	77,51
			He	0,28
			H_2	1,52
		pr. rurowy złoża	CH_4	20,60
	karbon		C_2H_6	0,062
			C_3H_8	0,01
			i-C ₄ H ₁₀	0,002
3388,0-3447,0			$n-C_4H_{10}$	0,005
			CO_2	ślady
			N_2	77,36
			He	0,30
			H_2	1,67
			CH_4	20,43
3388,0–3447,0			C_2H_6	0,05
			C_3H_8	0,01
	karbon	pr rurowa złoża	i-C ₄ H ₁₀	0,0019
	Karbon	pr. rurowy złoża	$n-C_4H_{10}$	0,0048
			N_2	77,88
			He	0,27
			H_2	1,22

Tab. 5.36. Analiz gazu wykonane w otworze Gostyń 2 według dokumentacji wynikowej (Wójcik i Sabura, 1983).

Głębokość [m]	Stratygrafia	Metoda	Składniki	g/l
3388,0–3447,0			Cl	152,7450
			Br	0,4422
	karbon z przewodu	z przewodu	HCO ₃ ⁻	0,2135
			SO_4^{2-}	0,4939
			$\mathrm{NH_4}^+$	0,0125
			Ca ²⁺	43,3347
			Mg^{2+}	2,0107
			Na/K ⁺	45,4037
			Al/Fe ³⁺	0,4490

Tab. 5.37. Skrócone wyniki analiz wody w otworze Gostyń 2 według dokumentacji wynikowej (Wójcik i Sabu-ra,1983).

Głębok	Głębokość [m] Structurancija		Objerry
od	do	Stratygrafia	Objawy
1910,0	1970,0	fm barwicka	ślady martwej ropy w szczelinach i mikrospękaniach, zapach $ m H_2S$
2919,0	2931,0	dolomit główny	ślady martwej ropy w szczelinach i mikrospękaniach, zapach H_2S

Tab. 5.38. Objawy węglowodorów w rdzeniach w otworze Gostyń 2 według dokumentacji wynikowej (Wójcik i Sabura, 1983).

Głębokość [m]	Stratygrafia	Metoda	Przypływ	Tempo przypłyu [m ³ /h]
2919,0-2949,0	dolomit główny	pr. rurowy złoża	70 l płuczki	—
3300,0-3364,0		pr. rurowy złoża	brak przypływu	-
3375,0-3286,0	karbon	pr. rurowy złoża	100 l filtratu	-
3388,0-3447,0		pr. rurowy złoża	2600 l solanki zgazowanej	-

Tab. 5.39. Rezultaty prób złożowych w otworze Gostyń 2 według dokumentacji wynikowej (Wójcik i Sabura, 1983).

5.11. GRYFICE 1

Głębokość otworu: 3367,0 m Rok zakończenia wiercenia: 1979 Rdzenie: 2981,0–3367,0 m, 55 skrzynek, NAG PIG-PIB, Archiwum Rdzeni Wiertniczych w Chmielniku

Stratygrafia (CBDG, 2021):

Głębokość [m]		Stratygrafia
od	do	Suatygralla
0,0	70, 0	kenozoik
70,0	120,0	jura dolna
954,0	2611,0	trias
054.0	1083.0	<i>→warstwy zbąszynieckie</i>
<i>75</i> 7 ,0	1005,0	→warstwy jarkowskie
1083,0	1506,0	→kajper
1506,0	1562,0	<i>→wapień muszlowy</i>
1562,0	1648,0	→wapień muszlowy dolny
1648,0	1813,0	→formacja barwicka
1813,0	2115,0	→formacja połczyńska
2115,0	2308,0	→formacja pomorska
2308,0	2611,0	→formacja bałtycka
2611,0	3367,0	perm
2611,0	2666,0	→formacja rewalska
2666,0	2667,5	→sól kam. najmł. stropowa Na4b2
2667,5	2692,5	<i>→ił solny czerwony górny T4b</i>
2692,5	2715,0	→sól kam. najmłodsza górna Na4a2
2715,0	2716,0	→anh. pegmatytowy górny A4a2
2716,0	2745,0	→sól kam. najmłodsza dolna Na4a1
2745,0	2746,0	\rightarrow anh. pegmatytowy dolny A4a1
2746,0	2747,5	→sól podścielająca Na4a0
2747,5	2769,5	\rightarrow <i>il solny czerwony dolny T4a</i>
2769,5	2869,5	→sól kamienna młodsza Na3
2869,5	2886,0	<i>→anhydryt główny A3</i>
2886.0	2891 5	\rightarrow dolomit płytowy Ca3
2000,0	2071,5	<i>→szary ił solny T3</i>
2891,5	2894,0	<i>→anhydryt kryjący A2r</i>
2894,0	2903,5	→sól kam. starsza kryjąca Na2r
2903,5	2923,5	→sól potasowa starsza K2
2923,5	2971,0	→sól kamienna starsza Na2
2971,0	2984,0	\rightarrow anhydryt podstawowy A2
2984,0	3012,5	→dolomit główny Ca2
3012,5	3243,5	→anhydryt górny Alg
3243,5	3280,0	→sól kamienna najstarsza Nal
3280,0	3334,0	\rightarrow anhydryt dolny A1d
33340	3340 5	<i>→wapień cechsztyński Cal</i>
5557,0	5540,5	\rightarrow lupek miedzionośny T1
3340,5	3362,5	<i>→czerwony spągowiec</i>
3362,5	3367,0	\rightarrow autun

Wyniki badań skał:

W dokumentacji wynikowej otworu Gryfice 1 (Binder i Szewc, 1979) znajdują się wyniki badań chemicznych 27 próbek z interwału 2985,0–3020,0 m, zamieszczono również rezultaty analiz fizykochemicznych 51 próbek z interwału 2985,0–3020,0 m (dolomit główny i anhydryt górny) oraz 23 próby czerwonego spągowca z interwału 3345,0–3362,5 m, uwzględniając parametry porowatości, przepuszczalności i zawartości bituninów (Tab. 5.40), badano również rozdział grupowy węglowodorów w 4 próbach. Dodatkowo wykonano 4 analizy gazu oraz 1 analizę wody złozowej (Tab. 5.41–5.42).

Wyniki geofizyki otworowej:

Dokumentacja wynikowa otworu Gryfice 1 (Wójcik i Sabura, 1983) zawiera wyniki badań geofizyki wiertniczej wykonanych w następującym zakresie (dla wymienionyc profilowań w CBDG brak plików LAS):

- mikroprof. opornosci sterowane zlogarytmowane (logmPOst): 2978–3334 m,
- profilowanie neutron-gamma zlogarytmowane (logPNG): 2597–3342 m,
- prof. oporności ster. zlogarytmowane (logPOst): 2662–3334 m,
- mikroprofilowanie oporności sterowane (mPOst): 2978–3334 m,
- profilowanie naturalnego promieniowania gamma (PG): 30–3355 m,
- o profilowanie gazowe (PGaz): 250–3367 m,
- profilowanie krzywizny odwiertu (PK): 25–3335 m,
- profilowanie neutron-gamma (PNG): 30–3342m,
- profilowania oporności standardowe (PO): 13–3334 m,
- profilowanie oporności sterowane (POst): 2662–3354 m,
- profilowanie potencjałów naturalnych (PS): 13–2620 m,
- profilowanie średnicy otworu (PSr): 13–3334 m,
- profilowanie temperatury (PT): 3300–3355 m,
- profilowanie temperatury po cementowaniu (PTc): 3–2896 m.

Opracowanie pomiarów średnich prędkości w odwiercie Gryfice 1 (Walasek, 1979) zawiera natomiast wyniki pomiarów wykonanych w następującym zakresie (w CBDG dostępne są dla nich pliki LAS):

 profilowanie prędk. śr., czas interpolowany podwojony Tx2: 20–3320 m,

- profilowanie prędk. śr., czas interpolowany TW: 20–3320 m,
- profilowanie prędk. śr., czas pomierzony Tr_PW1: 55–2590 m,
- profilowanie prędk. śr., czas pomierzony Tr_PW2: 55–3325 m,
- profilowanie prędk. śr., czas pomierzony Tr_PW3: 70–3325 m,
- profilowanie prędk. śr., czas uśredniony Tr_PO: 55–3325 m,
- profilowanie prędk. śr., gradient czasu interpol. DT_VSP: 20–3320 m.

Objawy węglowodorów w trakcie wiercenia i próby złożowe: obserwacje obecności węglowodorów w płuczce oraz w rdzeniu oraz wyniki przeprowadzonyc prób złożowych zestawiono w Tab. 5.43–5.44.

- Binder, I., Szewc, A. 1979. Dokumentacja wynikowa otworu Gryfice 1. Inw. 125095, Arch. CAG PIG, Warszawa.
- Łobza, A., Zamojski, J. 1971. Projekt badań geologicznych na antyklinorium pomorskim otwór badawczy Gryfice 1. Inw. 9534a, Arch. CAG PIG, Warszawa.
- Merta, H. 1985. Ocena utworów dolomitu głównego w obszarze Pomorza Zachodniego na podstawie wyników analiz geochemicznych skał. Inw. 5107/2009, Arch. CAG PIG, Warszawa.
- Walasek, B. 1979. Sprawozdanie z pomiarów średnich prędkości w odwiercie Gryfice 1. G142 VS, Arch. CAG PIG, Warszawa.

Głębokość [m]	Stratygrafia	Liczba pomiarów	Porowatość min-max (średnia) [%]	Przepuszczalność wertykalna min-max [mD]	Bituminy min-max (średnia) [%]
2985,0–3020,0	dolomit główny, anhydryt górny	51	0,07–3,30 (0,884)	<0,01–0,29	0,006–0,085 (0,024)
3345,0–3362,5	czerwony spągowiec	23	1,42–6,47 (2,51)	<0,01–0,06	ślady–0,04

Dokumentacje NAG PIG-PIB:

Tab. 5.40. Podsumowanie wyników badań fizyczno-chemicznych próbek pobranych z interwałów 2985,0–3020,0 m i 3345,0–3362,5 m w otworze Gryfice 1 na podstawie dokumentacji wynikowej (Binder i Szewc, 1979).

Głębokość [m]	Stratygrafia	Metoda	Składniki	% obj.
			CH_4	72,83
			C_2H_6	8,61
			C_3H_8	3,03
			i-C ₄ H ₁₀	0,62
			$n-C_4H_{10}$	0,96
	dolomit główny		neo-C ₅ H ₁₂	0,01
2897,0-3014,0	anhydryt górny	pr. rurowy złoża	i-C ₅ H ₁₂	0,32
	annyuryt gorny		$n-C_5H_{12}$	0,22
			$C_{6}H_{14}$	0,19
			CO_2	ślady
			N_2	12,76
			H_2	0,39
			He	0,06
	dolomit główny,		CH_4	76,69
			C_2H_6	7,03
			C_3H_8	2,71
			$i-C_4H_{10}$	0,58
			n-C ₄ H ₁₀	0,78
2897 0_3014 0		pr rurowy złoża	neo-C ₅ H ₁₂	0,01
2897,0-3014,0	anhydryt górny	pr. rutowy złoża	i-C ₅ H ₁₂	0,21
			n-C ₅ H ₁₂	0,19
			C ₆ H ₁₄	0,15
			CO_2	ślady
			N_2	10,72
			H_2	0,81

			He	0,06
			CH_4	36,73
			C ₂ H ₆	4,34
			C ₃ H ₈	1,53
			i-C ₄ H ₁₀	0,31
			n- C ₄ H ₁₀	0,48
	delemit elément		neo-C ₅ H ₁₂	0,01
2897,0-3014,0	anhydrut górny	pr. rurowy złoża	i- C ₅ H ₁₂	0,16
	annyuryt gorny		n- C ₅ H ₁₂	0,11
			$C_{6}H_{14}$	0,10
			N ₂	12,76
			H_2	0,39
			He	0,06
			H_2S	43,02
			CH_4	36,48
			C_2H_6	3,34
			C_3H_8	1,29
			i-C ₄ H ₁₀	0,27
			$n-C_4H_{10}$	0,37
	delemit glówny		neo-C ₅ H ₁₂	0,00
2897,0–3014,0	anhydryt górny	pr. rurowy złoża	i-C ₅ H ₁₂	0,13
	annyuryt gorny		$n-C_5H_{12}$	0,09
			$C_{6}H_{14}$	0,07
			N ₂	10,72
			H ₂	0,81
			He	0,06
			H_2S	46,36

Tab. 5.41. Wyniki analiz gazu w otworze Gryfice 1 według dokumentacji wynikowej (Binder i Szewc, 1979).

Głębokość [m]	Stratygrafia	Metoda	Składniki	g/l
2897,0–3014,0			Cl	191,8635
			Br⁻	1,0389
	dolomit główny, anhydryt górny	pr. rurowy złoża	HCO ₃ ⁻	0,6588
			SO_4^{2-}	2,889
			$\mathrm{NH_4}^+$	1,9125
			Ca ²⁺	5,1895
			Mg^{2+}	11,5659
			Na/K ⁺	96,0936
			pН	5,5
			mineralizacja	311,8

Tab. 5.42. Wyniki analiz wody w otworze Gryfice 1 według dokumentacji wynikowej (Binder i Szewc, 1979).

Głębok	ość [m]	Stuatuonafia	Obierry
od	do	Stratygrafia	Objawy
2987,9	2996,3	dolomit główny	intensywna luminescencja w promieniach lampy Wooda, punktowe ślady żółtobrunatnej ropy, silny zapach H ₂ S
3011,6	3014,0	dolomit główny, anhydryt górny	pojedyncze ślady brunatnej ropy, silny zapach H ₂ S
3014,0	3020,0	anhydryt górny	pojedyncze punktowe ślady brunatnej ropy, silny zapach $ m H_2S$
3014,0		anhydryt górny	płuczka silnie zgazowana H ₂ S
3020,0		anhydryt górny	płuczka z H ₂ S

Tab. 5.43. Rezultaty prób złożowych w otworze Gryfice 1 według dokumentacji wynikowej (Binder i Szewc, 1979).

Głębokość [m]	Stratygrafia	Metoda	Przypływ	Tempo prz. [m ³ /h]
2984,0–3009,0	dolomit główny	pr. rurowy złoża	2000 l wody złożowej słabo zgazowanej H ₂ S	1,0
3310,0	anhydryt dolny	pr. rurowy złoża	brak przypływu	

Tab. 5.44. Rezultaty prób złożowych przeprowadzonych w otworze Gryfice 1 według dokumentacji wynikowej (Binder i Szewc, 1979).

5.12. GRYFICE 2

Głębokość otworu: 3415,0 m Rok zakończenia wiercenia: 1974 Rdzenie: 903,0–3415,0 m, 67 skrzynek, NAG PIG-PIB, Archiwum Rdzeni Wiertniczych w Chmielniku

Stratygrafia (CBDG, 2021):

Głębokość [m]		Stratygrafia	
od	do	Stratygrana	
0,0	39,0	kenozoik	
39,0	868,0	jura dolna	
868,0	2512,0	trias	
868,0	995,0	→warst. zbąszynieckie i jarkowskie	
995,0	1386,0	\rightarrow kajper	
1386,0	1520,0	→wapień muszlowy	
1520,0	1690,0	→formacja barwicka	
1690,0	1991,0	→formacja połczyńska	
1991,0	2185,0	→formacja pomorska	
2185,0	2512,0	→formacja bałtycka	
2512,0	3415,0	perm	
2512,0	2575,0	→formacja rewalska	
2575,0	2585,0	→sól kam. najmł. stropowa Na4b2	
2585,0	2621,5	→ił solny czerwony górny T4b	
2621,5	2651,5	→sól kam. najmł. górna Na4a2	
2651,5	2652,5	→anh. pegmatytowy górny A4a2	
2652,5	2694,5	→sól kam. najmł. dolna Na4a1	
2694,5	2695,5	\rightarrow anh. pegmatytowy dolny A4a1	
2695,5	2697,0	→sól podścielająca Na4a0	
2697,0	2721,5	\rightarrow <i>it solny czerwony dolny T4a</i>	
2721,5	2859,0	→sól kamienna młodsza Na3	
2859,0	2885,0	→anhydryt główny A3	
2885,0	2887,5	→dolomit płytowy Ca3	
2887,5	2889,5	$\rightarrow il \ solny \ szary \ T3$	
2889,5	2892,5	→anhydryt kryjący A2r	
2892,5	2896,0	→sól kam. starsza kryjąca Na2r	
2896,0	2921,5	→sól potasowa starsza K2	
2921,5	2991,0	→sól kamienna starsza Na2	
2991,0	3006,0	\rightarrow anhydryt podstawowy A2	
3006,0	3035,0	→dolomit główny Ca2	
3035,0	3275,0	→anhydryt górny A1g	
3275,0	3349,0	→sól kamienna najstarsza Na1	
3349,0	3384,0	\rightarrow anhydryt dolny A1d	
3384,0	3390,6	→wapień cechsztyński Cal	
3390,6	3391,0	\rightarrow lupek miedzionośny Tl	
3391,0	3415,0	<i>→czerwony spągowiec</i>	

Wyniki badań skał:

W dokumentacji wynikowej otworu Gryfice 2 (Ryba i Jasiecka, 1974a) znajdują się opracowania mikropaleontologiczne 13 prób liasu z interwału 22,0–140,0 m, a także wyniki 1 analizy na zawartość bituminów w rdzeniu próbki z głębokości 1222,55 m. W dokumentacji wynikowej zamieszono również wyniki analiz petrofizycznych – porowatości, przepuszczalności i zawartości bituminów 76 próbek (w tym rozkład grupowy węglowodorów dla 5 próbek) z interwału 3013,3–3415,0 m (Tab. 5.45). Wykonano także 7 analiz gazu i 2 analizy wód złożowych (Tab. 5.46–5.47).

Wyniki geofizyki otworowej:

Dokumentacja wynikowa otworu Gryfice 2 (Ryba i Jasiecka, 1974a) zawiera wyniki badań geofizyki wiertniczej wykonanych w następującym zakresie (dla wymienionyc profilowań w CBDG brak plików LAS):

- mikroprofilowanie średnicy otworu (mPSr): 3336–3407 m,
- profilowanie akustyczne (PA): 1355–3407 m,
- profilowanie naturalnego promieniowania gamma (PG): 3–3410 m,
- profilowanie krzywizny odwiertu (PK): 25–3415 m,
- profilowanie neutron-gamma (PNG): 3–3410 m,
- profilowania oporności standardowe (PO): 18–3406 m,
- profilowanie oporności sterowane (POst): 2100–3405 m,
- profilowanie potencjałów naturalnych (PS): 18–3406 m,
- profilowanie średnicy otworu (PSr): 18–3406 m.

Objawy węglowodorów w trakcie wiercenia i próby złożowe: obserwacje obecności węglowodorów w płuczce oraz w rdzeniu oraz wyniki przeprowadzonyc prób złożowych zestawiono w Tab. 5.48–5.49.

Dokumentacje NAG PIG-PIB:

• Ryba, J., Jasiecka, B. 1974a. Dokumentacja wynikowa otworu Gryfice 2. Inw. 119589, Arch. CAG PIG, Warszawa.

Głębokość [m]	Stratygrafia	Liczba pomiarów	Porowatość min-max (średnia)	Przepuszczalność wertykalna min-max	Bituminy min-max (średnia)
			[%]	[mD]	[%]
3013,3–3048,0	dolomit główny, anhydryt górny	44	0,31–4,60 (1,38)	<0,014	0,0046–0,0346 (0,024)
3386,8–3398,5	wapień cechsztyń- ski, łupek mie- dzionośny, czer- wony spągowiec	9	0,34–1,11 (0,63)	<0,055	0,0047–0,0434
3398,5–3415,0	czerwony spągowiec	23	1,37–4,81 (1,63)	0,009–0,366 (0,091)	ślady–0,0355

Tab. 5.45. Podsumowanie wyników badań fizyczno-chemicznych próbek pobranych z interwału 3013,3–3415,0 m w otworze Gryfice 2 na podstawie dokumentacji wynikowej (Ryba i Jasiecka, 1974a).

Głębokość [m]	Stratygrafia	Metoda	Składniki	% obj.
			CH_4	ślady
002 0 000 0	tuine	de sono sia admonia	CO ₂	0,01
903,0–909,0	trias	degazacja rdzenia	N ₂	99,36
			H ₂	0,63
			CH ₄	0,06
1540.0 1540.0	tuine	de sono sia admonia	CO ₂	0,59
1540,0–1540,0	trias	degazacja rozema	N ₂	98,03
			H_2	1,32
			CH_4	15,7
			C_2H_6	2,67
			C_3H_8	0,87
2015 0 2019 2	dolomit akówny	dagazagia rdzania	N_2	56,33
5015,0-5018,5	dolomit glowity	degazacja ruzenia	CO_2	2,67
			H_2	21,01
			He	0,12
			Ar	0,63
		degazacja rdzenia	CH_4	67,86
			C_2H_6	9,25
			C_3H_8	2,67
			in- H_4H_{10}	ślady
3029,8-3030,3	dolomit główny		N_2	18,99
			CO_2	0,48
			H_2	0,5
			He	ślady
			Ar	0,25
			CH_4	ślady
3038 7			O_2	20,13
5058,7	annyaryt gorny	aparatura gazowa	N_2	78,69
			H_2	1,18
	wanich cochertuń		CH_4	7,78
	ski hunek mio		C_2H_6	0,07
3386,8–3393,0	dzionośny czer-	degazacja rdzenia	N_2	90,98
	wony spagowiec		H_2	0,21
	wony spagowice		Ar	0,96
	czerwony		CH ₄	2,52
3407,0-3410,0	czerwony	degazacja rdzenia	C_2H_6	0,49
	spągowiec	spągowice	N ₂	96,06

H ₂	0,33
Ar	0,49
CO ₂	0,11

Tab. 5.46. Wyniki analiz gazu w otworze Gryfice 2 według dokumentacji wynikowej (Ryba i Jasiecka, 1974a).

Głębokość [m]	Stratygrafia	Metoda	Składniki	g/l
			Cl	189,2798
			Br⁻	0,7758
			HCO ₃ ⁻	1,2078
	anhydryt		SO_4^{2-}	1,5145
2004 0 3067 0	podstawowy,	pr ruroway złożo	$\mathrm{NH_4^+}$	0,575
2994,0-3007,0	dolomit główny,	pr. rurowy złoża	Ca ²⁺	4,6966
	anhydryt górny		Mg^{2+}	14,596
			Na/K ⁺	90,432
			pН	6,65
			mineralizacja	304,08
			Cl	128,6082
			Br	0,4662
			SO_4^{2-}	4,86
		nodozog naukonio no unikononiu	Ca ²⁺	4,8531
3038,7-3043,0	anhydryt górny	marszu anaratam rdzaniowym	Mg^{2+}	6,6176
		marszu aparatem tuzemowym	Na/K ⁺	66,271
			Al/Fe ³⁺	1,2309
			pН	6,8
			mineralizacja	215,3

Tab. 5.47. Wyniki analiz wody w otworze Gryfice 2 według dokumentacji wynikowej (Ryba i Jasiecka, 1974a).

Głębokość [m]	Stratygrafia	Objawy
2577,0-2630,0	PZ4	ślady węglowodorów w płuczce
2991,0–3035,0	anhydryt podstawowy, dolomit główny	zapach H_2S
3039,0	anhydryt górny	samowypływ zgazowanej wody złożowej 1,5–2,0 l/min z silnym zapachem H ₂ S

Tab. 5.48. Objawy węglowodorów zaobserwowane w otworze Gryfice 2 według dokumentacji wynikowej (Ryba i Jasiecka, 1974a).

Głębokość[m]	Stratygrafia	Metoda	Przypływ	Tempo przypływu [m ³ /h]
2980,0–3067,0	anhydryt główny	pr. rurowy złoża (w trakcie wiercenia)	woda złożowa słabo zgazowana z H ₂ S	0,3–1,0
3389,0–3415,0	wapień cechsztyński	pr. rurowy złoża (w trakcie wiercenia)	brak przypływu	

Tab. 5.49. Wyniki prób złożowych przeprowadzonych w otworze Gryfice 2 według dokumentacji wynikowej (Ryba i Jasiecka, 1974a).

5.13. GRYFICE 3

Głębokość otworu: 3190,0 m Rok zakończenia wiercenia: 1975 Rdzenie: 3127,0–3190,0 m, 39 skrzynek, NAG PIG-PIB, Archiwum Rdzeni Wiertniczych w Chmielniku

Stratygrafia (CBDG, 2021):

Głębok	ość [m]	_ Stratvarafia	
od	do	Stratygrana	
0,0	79,0	kenozoik	
79,0	995,0	jura dolna	
995,0	2697,0	trias	
995,0	1106,0	→warstwy zbąszynieckie →warstwy jarkowskie	
1006,0	1500,0	\rightarrow kajper	
1500,0	1645,0	→wapień muszlowy	
1645,0	1821,0	→formacja barwicka	
1821,0	2160,0	→formacja połczyńska	
2160,0	2372,0	→formacja pomorska	
2372,0	2697,0	→formacja bałtycka	
2697,0	3190,0	perm	
2697,0	2759,0	\rightarrow formacja rewalska	
2759,0	2767,0	→sól kam. najmł. stropowa Na4b2	
2767,0	2778,0	→ił solny czerwony górny T4b	
2778,0	2795,5	→sól kam. najmłodsza górna Na4a2	
2795,5	2796,5	\rightarrow anh. pegmatytowy górny A4a2	
2796,5	2819,0	→sól kam. najmłodsza dolna Na4a1	
2819,0	2820,0	\rightarrow anh. pegmatytowy dolny A4a1	
2820,0	2831,5	\rightarrow <i>it solny czerwony dolny T4a</i>	
2831,5	3000,0	→sól kamienna młodsza Na3	
3000,0	3023,0	→anhydryt główny A3	
3023,0	3027,0	\rightarrow dolomit płytowy Ca3	
3027,0	3030,0	$\rightarrow il \ solny \ szary \ T3$	
3030,0	3032,5	→anhydryt kryjący A2r	
3032,5	3048,0	→sól kam. starsza kryjąca Na2r	
3048,0	3055,0	→sól potasowa starsza K2	
3055,0	3127,0	→sól kamienna starsza Na2	
3127,0	3136,5	\rightarrow anhydryt podstawowy A2	
3136,5	3170,0	→dolomit główny Ca2	
3170,0	3190,0	→anhydryt górny A1g	

Wyniki badań skał:

W dokumentacji wynikowej otworu Gryfice 3 (Binder i Sieradzka, 1975) znajdują się wyniki badań petrograficzno-chemicznych 30 próbek z interwału 3136,5–3172,6 m. Zamieszczono również wyniki analiz fizykochemicznych 51 prób skał z interwału 3136,55– 3169,85 m – porowatości, przepuszczalnośći i zawartości biruminów (w tym rozdział grupowy węglowodoroów 5 próbek) oraz 2 analizy gazu i 1 analizę wód złożowych (Tab. 5.50–5.52).

Wyniki geofizyki otworowej:

Dokumentacja wynikowa otworu Gryfice 3 (Binder i Sieradzka, 1975) zawiera wyniki badań geofizyki wiertniczej wykonanych w następującym zakresie (dla wymienionyc profilowań w CBDG brak plików LAS):

- profilowanie akustyczne amplitudy (PAa1): 104–3170 m,
- profilowanie akustyczne czasu interwałowego (PAdt): 104–3170 m,
- profilowanie czasu akustycznego T1 (PAt1): 104–3170 m,
- profilowanie naturalnego promieniowania gamma (PG): 22–3170 m,
- profilowanie krzywizny odwiertu (PK): 25–3175 m,
- profilowanie neutron-gamma (PNG): 22–3170 m,
- profilowania oporności standardowe (PO): 15–3174 m,
- profilowanie oporności sterowane (POst): 2 658–3174 m,
- profilowanie potencjałów naturalnych (PS): 15–2658 m,
- profilowanie średnicy otworu (PSr): 15–3174 m.

Objawy węglowodorów w trakcie wiercenia i próby złożowe: obserwacje obecności węglowodorów w płuczce oraz w rdzeniu oraz wyniki przeprowadzonyc prób złożowych zestawiono w Tab. 5.53–5.54.

Dokumentacje NAG PIG-PIB:

• Binder, I., Sieradzka, B. 1975. Dokumentacja wynikowa otworu Gryfice 3. Inw. 121158, Arch. CAG PIG, Warszawa.

Głębokość [m]	Stratygrafia	Liczba pomiarów	Porowatość min-max (średnia)	Przepuszczalność min-max	Bituminy min-max
			[%]	[mD]	[%]
3136,55–3169,85	dolomit główny	51	00,29–9,39 (2,32)	b. słaba–0,219	ślady–0,151

Tab. 5.50. Podsumowanie wyników badań fizyczno-chemicznych próbek pobranych z interwału 3136,55–3169,85 m w otworze Gryfice 3 na podstawie dokumentacji wynikowej (Binder i Sieradzka, 1975).

Głębokość [m]	Stratygrafia	Metoda	Składniki	% obj.
	anhydryt podstawowy, dolomit główny		CH_4	1,01
2120 5 2142 2		dogozogio reizonio	N_2	97,65
5159,5-5145,5		degazacja iuzenia	CO_2	0,06
			H_2	1,28
			CH_4	4,07
3152,6–3158,4	dolomit główny	degazacja rdzenia N2 CO2 H2	N_2	95,02
			0,02	
			H_2	0,89

Tab. 5.51. Wyniki analiz gazu w otworze Gryfice 3 według dokumentacji wynikowej (Binder i Sieradzka, 1975).

Głębokość [m]	Stratygrafia	Metoda	Składniki	g/l
			Cl	142,2349
			Br⁻	0,3143
			HCO ₃ ⁻	1,0004
3136,4–3172,3	anhydryt podstawowy, dolomit główny, anhydryt górny	przewód nad próbnikiem	SO_4^{2-}	3,1833
			$\mathrm{NH_4^+}$	0,26
			Ca ²⁺	2,8671
			Mg^{2+}	3,2656
			Na/K ⁺	84,442
			pН	6,7
			mineralizacja	241,4

Tab. 5.52. Wyniki analiz wody w otworze Gryfice 3 według dokumentacji wynikowej (Binder i Sieradzka, 1975).

Głębokość [m]	Stratygrafia	Objawy
3143,3-3145,7	dolomit główny	punktowe ślady ropy
3158,4–3166,3	dolomit główny	punktowe ślady degazacji
3167,3	dolomit główny	krótkotrwały przypływ płuczki zabarwionej na czarno

Tab. 5.53. Objawy węglowodorów zaobserwowane w otworze Gryfice 3 według dokumentacji wynikowej (Binder i Sieradzka, 1975).

Głębokość[m]	Stratygrafia	Metoda	Przypływ	Tempo przypływu [m ³ /h]
3136,0–3182,0	anhydryt podstawowy	pr. rurowy złoża (w trakcie wiercenia)	śladowy przypływ gazu palnego z H ₂ S	_

Tab. 5.54. Wyniki prób złożowych przeprowadzonych w otworze Gryfice 3 według dokumentacji wynikowej (Binder i Sieradzka, 1975).

5.14. JARSZEWO 1

Głębokość otworu: 2998,7 m Rok zakończenia wiercenia: 1974 Rdzenie: 1384,0–2998,7 m, 39 skrzynek, NAG PIG-PIB, Archiwum Rdzeni Wiertniczych w Chmielniku

Stratygrafia (CBDG, 2021):

Głębokość [m]		Stratzgrafia			
od	do	Stratygrana			
0,0	35,0	kenozoik			
313,0	856,0	jura dolna			
856,0	2165,0	trias			
856.0	985.0	<i>→warstwy zbąszynieckie</i>			
050,0	705,0	<i>→warstwy jarkowskie</i>			
985,0	1097,0	\rightarrow kajper			
1097,0	1237,0	<i>→wapień muszlowy</i>			
1237,0	1405,0	→formacja barwicka			
1405,0	1668,0	→formacja połczyńska			
1668,0	1848,0	→formacja pomorska			
1848,0	2165,0	<i>→formacja bałtycka</i>			
2165,0	2998,7	perm			
2165,0	2205,0	→formacja rewalska			
2205,0	2214,5	→sól kam. najmł. stropowa Na4b2			
2214,5	2236,0	<i>→ił solny czerwony górny T4b</i>			
2236,0	2254,5	→sól kam. najmłodsza górna Na4a2			
2254,5	2255,5	\rightarrow anh. pegmatytowy górny A4a2			
2255,5	2278,5	→sól kam. najmłodsza dolna Na4a1			
2278,5	2280,0	\rightarrow anh. pegmatytowy dolny A4a1			
2280,0	2298,0	\rightarrow <i>it solny czerwony dolny T4a</i>			
2298,0	2420,0	→sól kamienna młodsza Na3			
2420,0	2435,0	→anhydryt główny A3			
2435.0	2440.0	\rightarrow dolomit płytowy Ca3			
2433,0	2440,0	\rightarrow szary ił solny T3			
2440,0	2442,5	<i>→anhydryt kryjący A2r</i>			
2442,5	2445,5	→sól kam. starsza kryjąca Na2r			
2445,5	2447,5	→sól potasowa starsza K2			
2447,5	2515,0	→sól kamienna starsza Na2			
2515,0	2525,0	\rightarrow anhydryt podstawowy A2			
2525,0	2548,0	→dolomit główny Ca2			
2548,0	2758,5	→anhydryt górny Alg			
2758,5	2844,0	<i>→anhydryt środkowy A1s</i>			
2844,0	2865,0	→sól kamienna najstarsza Na1			
2865,0	2909,0	\rightarrow anhydryt dolny A1d			
2909.0	2915.0	\rightarrow hupek miedzionośny T1			
,0		→wapień cechsztyński Ca1			
2915,0	2994,5	→czerwony spągowiec			
2994,5	2998,7	$\rightarrow autun$			

Wyniki badań skał:

W dokumentacji wynikowej otworu Jarszewo 1 (Binder i Jasiecka, 1974) znajdują się wyniki badań mikrofaunistycznych 43 próbek z interwału 36,0–792,0 m. Ponadto dostępne są analizy fizyko-chemiczne 2 próbek pstrego piaskowca z interwału 1804,0–180,05 m, 53 próbek anhydrytu podstawowego i dolomitu głównego z interwału 2518,5–2547,9 m, 18 próbek czerwonego spągowca z interwału 2928,0–2945,0 m wraz parametrami porowatości i przepuszczalności (wraz z rozdziałem grupowym węglowodorów 5 próbek), a także 2 analizy gazu i jedną analizę wód złożowych (Tab. 5.55–5.57).

Wyniki geofizyki otworowej:

Dokumentacja wynikowa otworu Jarszewo 1 (Binder i Jasiecka, 1974) zawiera wyniki badań geofizyki wiertniczej wykonanych w następującym zakresie (dla wymienionyc profilowań w CBDG brak plików LAS):

- profilowanie akustyczne (PA): 150–2420 m,
- profilowanie naturalnego promieniowania gamma (PG): 5–2980 m,
- profilowanie krzywizny odwiertu (PK): 25–2980 m,
- profilowanie neutron-gamma (PNG): 5–2980 m,
- profilowania oporności standardowe (PO): 149–2982 m,
- profilowanie oporności sterowane (POst): 1124–2892 m,
- profilowanie potencjałów naturalnych (PS): 149–2982 m,
- profilowanie średnicy otworu (PSr): 149–2982 m.

Dokumentacja pomiarów średnich prędkości, w odwiercie Jarszewo 1 (Klecan, 1974) zawiera wyniki pomiarów wykonanych w następującym zakresie (w CBDG dostępne są dla nich pliki LAS):

- profilowanie prędk. śr., czas interpolowany podwojony Tx2: 20–2900 m,
- profilowanie prędk. śr., czas interpolowany TW: 20–2900 m,
- profilowanie prędk. śr., czas pomierzony Tr_PW1: 65–2900 m,
- profilowanie prędk. śr., czas pomierzony Tr_PW2: 65–2900 m,
- profilowanie prędk. śr., czas pomierzony Tr_PW3: 65–2900 m,
- profilowanie prędk. śr., czas uśredniony Tr_PO: 65–2900 m,
- profilowanie prędk. śr., gradient czasu interpol. DT_VSP: 20–2900 m.

Objawy węglowodorów w trakcie wiercenia i próby złożowe: obserwacje obecności węglowodorów w płuczce oraz w rdzeniu oraz wyniki przeprowadzonyc prób złożowych zestawiono w Tab. 5.58–5.59.

Dokumentacje NAG PIG-PIB:

- Binder, I., Jasiecka, B. 1974. Dokumentacja wynikowa otworu badawczego Jarszewo 1. Inw. 119558, Arch. CAG PIG, Warszawa.
- Fuliński, M. 1982. Dokumentacja pomiarów gęstości objętościowej i porowatości otwartej skał, rok 1981. Inw. 45709, ObO/1823, Arch. CAG PIG, Warszawa.
- Klecan, A. 1974. Sprawozdanie z pomiarów średnich prędkości. J50 VS, Arch. CAG PIG, Warszawa.
- Rosowiecka, O. 2011. Opracowanie modelu rozkładu gęstości głównych jednostek geologicznych kraju. Inw. 3603/2014, Arch. CAG PIG, Warszawa.

Głębokość [m]	Stratygrafia	Liczba pomiarów	Porowatość min-max (średnia)	Przepuszczalność min-max (średnia)	Bituminy min-max (średnia)
			[%]	[mD]	[%]
1804,0-1805,0	trias	2			0,0120-0,0057
2518,5–2547,9	anhydryt podstawowy, dolomit główny	53	0,14–5,73 (1,33)	b. słaba–0,2	0,0032–0,0276 (0,0055)
2928,0-2945,0	czerwony spągowiec	18	4,09–7,07 (5,33)	0,028–0,734 (0,165)	0,0039–0,0066 (0,0052)

Tab. 5.55. Podsumowanie wyników badań fizyczno-chemicznych próbek skalnych w interwale 1804,0–2945,0 m w otworze Jarszewo 1 na podstawie dokumentacji wynikowej (Binder i Jasiecka, 1974).

Głębokość [m]	Stratygrafia	Metoda	Składniki	% obj.
			CH_4	9,75
	annydryt	degazacja rdzenia	C_2H_6	0,97
24226 24416	główny, dołomit płytowy, szary ił solny, anhydryt kryjący		C_3H_8	0,22
2432,0–2441,0			N_2	87,71
			H_2	0,35
			Ar	1
2930,3–2938,0			CH_4	ślady
			N_2	92,9
	czerwony spągowiec	degazacja rdzenia	H_2	4,8
			Ar	1,05
			CO_2	1,25
			He	ślady

Tab. 5.56. Wyniki analiz gazu w otworze Jarszewo 1 według dokumentacji wynikowej (Binder i Jasiecka, 1974).

Głębokość [m]	Stratygrafia	Metoda	Składniki	g/l
			Cl	189,3564
2428 0 2541 2		solanka pobrana ze spodu otworu	Ca ²⁺	4,1672
2428,0-2341,5	D72 D73	podczas odpuszczania	Mg^{2+}	2,3654
			pН	7,55
2428,0–2541,3	spąg r 25, r 22	solanka pobrana ze spodu otworu podczas odpuszczania	Cl	189,3564
			Ca ²⁺	5,4288
			Mg^{2+}	7,4978
			pН	6,7

Tab. 5.57. Wyniki analiz wody w otworze Jarszewo 1 według dokumentacji wynikowej (Binder i Jasiecka, 1974).

Głębokość [m]	Stratygrafia	Objawy
2518,5–2535,5	anhydryt podstawowy, dolomit główny	na kontaktach lamin zaobserwowano nikłe ślady odgazowania i objawy luminescencji
2541,3	dolomit główny	samowypływ płynu z otworu w ilości około 300 l/min
2544,6	dolomit główny	płuczka o czarnej barwie i zapachu H ₂ S 100 l/min

2544,6-2547,9	dolomit główny	zanik płuczki 5200 l/10 min
2930,0–2938,0	czerwony spągowiec	punktowe ślady gazu w rdzeniu
2939,0	czerwony spągowiec	nagły zanuik płuczki 3,5 m ³

Tab. 5.58. Objawy węglowodorów zaobserwowane w otworze Jarszewo 1 według dokumentacji wynikowej (Binder i Jasiecka, 1974).

Głębokość[m]	Stratygrafia	Metoda	Przypływ	Tempo przypływu [m ³ /h]
2907,0–2989,0	spąg cechsztynu, czerwony spągowiec	pr. rurowy złoża (w trakcie wiercenia)	brak przypływu	_

Tab. 5.59. Wyniki prób złożowych przeprowadzonych w otworze Jarszewo 1 według dokumentacji wynikowej (Binder i Jasiecka, 1974).

5.15. KALEŃ 1

Głębokość otworu: 3232,0 m Rok zakończenia wiercenia: 2000 Rdzenie: 2749,0–3232,0 m, 123 skrzynki, PGNiG S.A., Archiwum Rdzeni Wiertniczych w Chmielniku. Stratygrafia na spodzie: karbon

Geofizyka otworowa, wyniki badań skał, objawy węglowodorów i wyniki prób złożowych: Dane geologiczne z otworu Kaleń 1, zgromadzone w dokumentacji wynikowej (Nowicka, 2000) i w opracowaniu średnich prędkości i pionowego profilowania sejsmicznego (Nussbeutel i Czaja, 2000), są

5.16. KAMIEŃ POMORSKI 3

Głębokość otworu: 2405,0 m Rok zakończenia wiercenia: 1973 Rdzenie: 1177,0–2390,5 m, 42 skrzynki, NAG PIG-PIB, Archiwum Rdzeni Wiertniczych w Chmielniku

Stratygrafia (CBDG, 2021):

Głębok	ość [m]	Stuatygnafia	
od	do	Sıraıygrana	
0,0	40,0	kenozoik	
40,0	655,0	jura dolna	
655,0	1995,5	trias	
655,0	695,0	→warstwy wielichowskie	
695,0	789,0	→warstwy zbąszynieckie →warstwy jarkowskie	
789,0	969,0	\rightarrow kajper	
969,0	1105,0	<i>→wapień muszlowy</i>	

własnością inwestora (PGNiG S.A.) i nie mogą zostać zaprezentowane w niniejszym opracowaniu.

Dokumentacje:

- Nowicka, A. 2000. Dokumentacja wynikowa otworu Kaleń 1. Inw. 134704, Arch. CAG PIG, Warszawa.
- Nussbeutel, D., Czaja, E. 2000. Opracowanie pomiarów średnich prędkości i pionowego profilowania sejsmicznego w odwiercie Kaleń 1. K2 VS, Arch. CAG PIG, Warszawa.

1105,0	1269,0	→formacja barwicka
1269,0	1510,0	→formacja połczyńska
1510,0	1681,5	→formacja pomorska
1681,5	1995,5	<i>→formacja bałtycka</i>
1995,5	2405,0	perm
1995,5	2038,0	\rightarrow formacja rewalska
2038,0	2047,0	→sól kam. najmł.stropowa Na4b2
2047,0	2068,5	<i>→ił solny czerwony górny T4b</i>
2068,5	2086,0	→sól kam. najmłodsza górna Na4a2
2086,0	2087,0	→anh. pegmatytowy górny A4a2
2087,0	2113,5	→sól kam. najmłodsza dolna Na4a1
2113,5	2114,5	\rightarrow anh. pegmatytowy dolny A4a1
2114,5	2131,0	\rightarrow <i>il solny czerwony dolny T4a</i>
2131,0	2178,0	→sól kamienna młodsza Na3
2178,0	2276,0	→anhydryt główny A3
2276.0	2282.5	\rightarrow dolomit płytowy Ca3
2270,0	2202,3	\rightarrow szary ił solny T3
2282,5	2287,0	→anhydryt kryjący A2r
2287,0	2344,0	→sól kamienna starsza Na2

		→sól potasowa starsza K2
2344,0	2352,0	\rightarrow anhydryt podstawowy A2
2352,0	2384,0	→dolomit główny Ca2
2384,0	2405,0	→anhydryt górny A1g

Wyniki badań skał:

W dokumentacji wynikowej otworu Kamień Pomorski 3 (Ryba i Szewc, 1974) znajdują się wyniki analiz chemicznych i petrograficznych 44 próbek dolomitu głównego. Zamieszczono też wyniki analiz fizykochemicznych 45 prób z interwału 2352,0–2390,5 m wraz z parametrami porowatości, przepuszczalności i zawartości bituminów, a także 4 analizy gazu i 2 analizy wody złożowej (Tab. 5.60–5.62).

Wyniki geofizyki otworowej:

Dokumentacja wynikowa otworu Kamień Pomorski 3 (Ryba i Szewc, 1974) zawiera wyniki badań geofizyki wiertniczej wykonanych w następującym zakresie (dla wymienionych profilowań w CBDG brak plików LAS):

- profilowanie akustyczne (PA): 1950–2258 m,
- profilowanie naturalnego promieniowania gamma (PG): 135–2404 m,
- profilowanie krzywizny odwiertu (PK): 600–2400 m,
- o profilowanie neutron-gamma (PNG): 135–2404 m,
- profilowania oporności standardowe (PO): 148–2405 m,
- profilowanie oporności sterowane (POst): 1096–2405 m,
- profilowanie potencjałów naturalnych (PS): 148–2405 m,

 profilowanie średnicy otworu (PSr): 148–2405 m.

Dokumentacja pomiarów średnich prędkości w odwiercie Kamień Pomorski 3 (Bukowicki, 1974) zawiera wyniki pomiarów wykonanych w następującym zakresie (w CBDG dostępne są dla nich pliki LAS):

- profilowanie prędk. śr., czas interpolowany podwojony Tx2: 20–2240 m,
- profilowanie prędk. śr., czas interpolowany TW: 20–2240 m,
- profilowanie prędk. śr., czas pomierzony Tr_PW1: 63–2253 m,
- profilowanie prędk. śr., czas uśredniony Tr_PO: 63–2253 m,
- profilowanie prędk. śr., gradient czasu interpol. DT_VSP: 20–2240 m.

Objawy węglowodorów w trakcie wiercenia i próby złożowe: obserwacje obecności węglowodorów w płuczce oraz w rdzeniu oraz wyniki przeprowadzonyc prób złożowych zestawiono w Tab. 5.63–5.64.

Dokumentacje NAG PIG-PIB:

- Bukowicki, J. 1974. Sprawozdanie z pomiarów średnich prędkości i pionowe profilowanie sejsmiczne w odwiercie Kamień Pomorski 3. K19 VS, Arch. CAG PIG, Warszawa.
- Ryba, J., Szewc, A. 1974. Dokumentacja wynikowa otworu poszukiwawczego Kamień Pomorski 3. Inw. 118973, Arch. CAG PIG, Warszawa.

Głębokość [m]	Stratygrafia	Liczba pomiarów	Porowatość min-max (średnia)	Przepuszczalność min-max (średnia)	Bituminy min-max (średnia)
			[%]	[mD]	[%]
2352,5–2353,8		1	1,60	0,169	0,0242
2353,8–2357,4	dolomit główny	6	0,35–6,16 (1,88)	b. słaba–0,225	0,0265-0,1204 (0,0773)
2357,4–2361,3		8	0,62–1,03 (0,76)	b. słaba-0,333	0,090–0,0452 (0,0292)
2361,8–2365,4		4	0,62–1,10 (0,76)	b. słaba	0,0124–0,0179 (0,0148)
2365,4–2369,8		5	0,14–0,34 (0,29)	b. słaba–0,015	0,0122–0,0184 (0,0146)
2369,8–2373,9		8	0,07–0,90 (0,40)	brak–0,007	0,0135–0,0339 (0,0435)
2373,9–2378,9		6	0,21–3,33 (1,12)	b. słaba–0,270	0,010–0,0182 (0,0144)

			0 21_0 42		0.009_0.0146
2378,9–2383,5		3	(0,38)	b. słaba	(0,0112)
2383,5–2390,5	dolomit główny, anhydryt górny		0,3,5–0,48 (0,40)	b. słaba	0,011–0,0136 (0,0075)

Tab. 5.60. Podsumowanie wyników badań fizyczno-chemicznych próbek skalnych w interwale 2352,5–2390,5 m w otworze Kamień Pomorski 3 na podstawie dokumentacji wynikowej (Ryba i Szewc, 1974).

Głębokość [m]	Stratygrafia	Metoda	Składniki	% obj.
2257 4	dolomit główny	dogozogio pługzki	N_2	94,95
2337,4	dolollin glowily	degazacja płuczki	CO_2	5,05
			CH ₄ 13,31	
			$\begin{array}{c cccc} \hline C_2H_6 & 1,93 \\ \hline C_3H_8 & 0,77 \\ \hline N_2 & 66,81 \\ \hline H_2 & 9,38 \\ \hline CO_2 & 1.08 \\ \hline \end{array}$	1,93
2252 8 2257 1	dolomit główny	dogozacio rdzonio	C_3H_8	0,77
2333,8–2337,4	dololilit glowily	degazacja rdzenia $\begin{array}{c c} C_3H_8 \\ \hline N_2 \\ \hline H_2 \end{array}$	66,81	
			$\begin{array}{c ccccc} N_2 & 66,81 \\ \hline H_2 & 9,38 \\ \hline CO_2 & 1.08 \\ \hline \end{array}$	9,38
			CO_2	1,08
2353,5–2405,0		CO ₂ CH ₄	69,25	
			C_2H_6	% 00]. 94,95 5,05 13,31 1,93 0,77 66,81 9,38 1,08 69,25 2,34 0,02 16,25 11,38 0,4 0,36
	dolomit aláwny		C_3H_8	0,02
	anhydryt górny	pr. rurowy złoża	N_2	16,25
	annyaryt gorny		H_2	11,38
			He	0,4
			CO_2	0,36

Tab. 5.61. Wyniki analiz gazu w otworze Kamień Pomorski 3 według dokumentacji wynikowej (Ryba i Szewc, 1974).

Głębokość [m]	Stratygrafia	Metoda	Składniki	g/l
			Cl	153,7499
			Br⁻	0,1456
			SO_4	3,6792
			Ca ²⁺	3,0061
2374,5	dolomit główny	podczas płukanai otworu	Mg^{2+}	1,5199
			Na/K ⁺	93,611
2405,0			Al/Fe ³⁺	1,284
			pН	4,5
			mineralizacja	261,4
			Cl	192,0654
			Br⁻	0,1278
			HCO ₃	1,7202
			SO_4^{2-}	1,2963
	anhudmut aámu		$\mathrm{NH_4}^+$	0,9
	2405,0 annydryt gorny	pr. rurowy złoża	Ca ²⁺	3,5071
			Mg^{2+}	13,557
			Na/K ⁺	95,056
			pН	6,5
			mineralizacja	308,2

|--|

Głębokość [m]	Stratygrafia	Objawy
1698,-1752,50	pstry piaskowiec	zwiększona zawartość węglowodorów w płuczce
2352,0–2405,0	dolomit główny, anhydryt górny	słaba luminescencja w próbkach rdzeni
2352,0–2384,0	dolomit główny	samowypływ płuczkiz solanką 10-24 l/h, żółto-brunatna luminescencja, silny zapach H ₂ S, słaby zapach bituminów
2352,0-2370,0	dolomit główny	punktowe ślady brunatnej ropy w rdzeniach
2352,0-2384,0	dolomit główny	nieliczne ślady degazacji
2405,0	anhydryt górny	samowypływ płuczki 20–24 l/h

Tab. 5.63. Objawy węglowodorów zaobserwowane w otworze Kamień Pomorski 3 według dokumentacji wynikowej (Ryba i Szewc, 1974).

Głębokość[m]	Stratygrafia	Metoda	Przypływ	Tempo przypływu [m ³ /h]
2353,5-2405,0		pr. rurowy złoża	słaby przpływ powietrza	
2353,5–2405,0	dolomit główny, anhydryt górny	pr. rurowy złoża	420 l płynu ze śladami gazu palnego, silny zapach węglowodorów	

Tab. 5.64. Wyniki prób złożowych przeprowadzonych w otworze Kamień Pomorski 3 według dokumentacji wynikowej (Ryba i Szewc, 1974).

5.17. KAMIEŃ POMORSKI 7

Głębokość otworu: 3410,0 m **Rok zakończenia wiercenia:** 1978 **Rdzenie:** 2355,7–3109,0 m, 36 skrzynek, NAG PIG-PIB, Archiwum Rdzeni Wiertniczych w Chmielniku

Stratygrafia (CBDG, 2021):

Głębokość [m]		Stratygrafia
od	do	Stratygrana
0,0	44,0	kenozoik
44,0	686,0	jura dolna
686,0	2026,0	trias
829,0	1016,0	\rightarrow kajper
1016,0	1148,0	<i>→wapień muszlowy</i>
1148,0	1305,0	<i>→formacja barwicka</i>
1305,0	1550,0	<i>→formacja połczyńska</i>
1550,0	1718,0	→formacja pomorska
1718,0	2026,0	→formacja bałtycka
2026,0	3230,0	perm
2026,0	2060,0	→formacja rewalska
2060,0	2069,5	→sól kam. najmł. stropowa Na4b2
2069,5	2087,5	→ił solny czerwony górny T4b
2087,5	2103,0	→sól kam. najmłodsza górna Na4a2
2103,0	2104,0	→anh. pegmatytowy górny A4a2
2104,0	2132,0	→sól kam. najmłodsza dolna Na4a1
2132,0	2133,0	\rightarrow anh. pegmatytowy dolny A4a1
2133,0	2148,0	\rightarrow <i>it solny czerwony dolny T4a</i>
2148,0	2191,5	→sól kamienna młodsza Na3
2191,5	2306,5	→anhydryt główny A3
2206 5	22120	\rightarrow dolomit płytowy Ca3
2300,5	2515,0	\rightarrow szary ił solny T3
2313,0	2316,0	→anhydryt kryjący A2r
2216.0	22510	→sól kamienna starsza Na2
2310,0	2331,0	→sól potasowa starsza K2
2351,0	2360,0	\rightarrow anhydryt podstawowy A2
2360,0	2390,0	→dolomit główny Ca2
2390,0	2520,0	→anhydryt górny A1g
2520,0	2659,0	→sól kamienna najstarsza Na1
2659,0	2702,0	\rightarrow anhydryt dolny Ald
2702,0	2706,0	→wapień cechsztyński Ca1
2706,0	2707,5	\rightarrow lupek miedzionośny Tl
2707,5	2709,0	→czerwony spągowiec
2709,0	3230,0	→autun
3230,0	3410,0	karbon

Wyniki badań skał:

W dokumentacji wynikowej otworu Kamień Pomorski 7 (Ryba i Szpurgis, 1978) znajdują się wyniki analiz petrograficznych 20 prób dolomitu głównego i wstępne opracowanie paleontologiczne utworów karbonu. Ponadto wykonano 66 analiz fizykochemicznych prób rdzeni z interwału 2356,75–3363,45 m, uwzględniając porowatość, przepuszczalność i zawartość bituminów, a także 2 analizy gazu (Tab. 5.65–5.66).

Wyniki geofizyki otworowej:

W NAG PIG-PIB znajduje się dokumentacja wynikowa otworu Kamień Pomorski 7 (Ryba i Szpurgis, 1978), która zawiera wyniki badań geofizyki wiertniczej wykonanych w następującym zakresie (dla podkreślonych profilowań w CBDG znajdują się pliki LAS):

- mikroprof. opornosci sterowane zlogarytm. (logmPOst): 2355–3201 m,
- profilowanie neutron-gamma zlogarytm. (logPNG): 3200–3402 m,
- prof. oporności ster. odwrócone zlogarytm. logPOst odwr.): 2705–2755 m,
- prof. oporności ster. zlogarytm. (logPOst): 2355–3201 m,
- mikroprofilowanie oporności sterowane (mPOst): 2355–3402 m,
- profilowanie akustyczne czasu interwałowego (PAdt): 2140–3400 m,
- profilowanie czasu akustycznego T1 (PAt1): 2140–3400 m,
- profilowanie czasu akustycznego T2(PAt2): 2303–3400 m,
- profilowanie naturalnego promieniowania gamma (PG): 0–3403 m,
- profilowanie krzywizny odwiertu (PK): 25–3400 m,
- <u>profilowanie neutron-gamma (PNG)</u>: 0–3403 m,

- profilowania oporności standardowe (PO): 127–3402 m,
- profilowanie oporności EL03(PO): 125–3402 m,
- prof. oporności ster. odwrócone (POst odwr.): 2705–2755 m,
- profilowanie oporności sterowane (POst): 1960–3402 m,
- profilowanie potencjałów naturalnych (PS): 127–1987 m,
- profilowanie średnicy otworu (PSr): 125–3395 m.

Sprawozdanie z pomiarów średnich prędkości w odwiercie Kamień Pomorski 7 (Klecan, 1978a) zawiera natomiast wyniki pomiarów wykonanych w następującym zakresie (w CBDG dostępne są dla nich pliki LAS):

- profilowanie prędk. śr., czas interpolowany podwojony Tx2: 20–3260 m,
- profilowanie prędk. śr., czas interpolowany TW: 20–3260 m,
- profilowanie prędk. śr., czas pomierzony Tr_PW1: 95–3275 m,
- profilowanie prędk. śr., czas pomierzony Tr_PW2: 95–3300 m,
- profilowanie prędk. śr., czas pomierzony Tr_PW3: 95–2765 m,

- profilowanie prędk. śr., czas uśredniony Tr_PO: 95–3275 m,
- profilowanie prędk. śr., gradient czasu interpol. DT_VSP: 20–3260 m.

Objawy węglowodorów w trakcie wiercenia i próby złożowe: obserwacje obecności węglowodorów w płuczce oraz w rdzeniu oraz wyniki przeprowadzonyc prób złożowych zestawiono w Tab. 5.67–5.68.

Dokumentacje NAG PIG-PIB:

- Juroszek, C., Kłapciński, J., Sachanbiński, M. 1981. Petrografia, geochemia i występowanie skał wulkanicznych w wybranych otworach wiertniczych północnej części monokliny przedsudeckiej, synklinorium szczecińskiego i zachodniej części antyklinorium pomorskiego, woj. lubuskie, wielkopolskie, zachodniopomorskie. Inw. 5389/2009, Arch. CAG PIG, Warszawa.
- Klecan, A. 1978a. Sprawozdanie z pomiarów średnich prędkości w odwiercie Kamień Pomorski 7. K20 VS, Arch. CAG PIG, Warszawa.
- Ryba, J., Szpurgis, Z. 1978. Dokumentacja wynikowa otworu poszukiwawczego Kamień Pomorski 7. Inw. 124475, Arch. CAG PIG, Warszawa.

Głębokość [m]	Stratygrafia	Liczba pomiarów	Porowatość min-max (średnia)	Przepuszczalność min-max (średnia)	Bituminy min-max (średnia)
			[%]	[mD]	[%]
2356,75–2384,25	anhydryt podsta- wowy, dolomit główny	57	0,07–12,88 (11,24)	<0,01–0,62 (0,067)	0,010–0,058 (0,025)
2701,05–2704,05	anhydryt dolny, wapień cechsztyń- ski	5	0,09–2,72 (0,70)	<0,01–0,01	ślady–0,011
3296,55–3363,45	karbon	4	0,21–7,11 (3,93)	0,01–0,83	ślady–0,022

Tab. 5.65. Podsumowanie wyników badań fizyczno-chemicznych próbek skalnych w interwale 2356,75–3363,45 m w otworze Kamień Pomorski 7 na podstawie dokumentacji wynikowej (Ryba i Szpurgis, 1978).

Głębokość [m]	Stratygrafia	Metoda	Składniki	% obj.
			CH ₄	15,87
			C_2H_6	0,01
3293,0-3305,0	karbon	pr. rurowa złoża	C ₃ H ₈	ślady
	Karbon	pr. rurowy 2102a	N_2	80,10
		$\begin{array}{c c} H_2 & 0 \\ \hline H_2 & 3 \\ \hline He & 0 \\ \end{array}$	3,19	
			He	0,83
			CH_4	28,78
3293,0–3305,0			C_2H_6	0,022
	karbon	pr. rurowy złoża	C_3H_8	ślady
			N_2	68,33
			H_2	2.09

Tab. 5.66. Wyniki analiz gazu w otworze Kamień Pomorski 7 według dokumentacji wynikowej (Ryba i Szpurgis, 1978).

Głębokość [m]	Stratygrafia	Objawy	
2351,0-2360,0	anhydryt podstawowy	intensywny zapach H ₂ S	
2360,0-2390,0	dolomit główny	punktowe ślady ropy, intensywny zapach H ₂ S	
2390,0-2520,0	anhydryt górny	zapach H ₂ S	
2744,7-2983,0	autun	ucieczki płuczki do 25 m ³ /20 min	
2825,0-3402,0	autun, karbon	zawartość bituminów 0,1–1,9% w profilowaniem ciągłym	

Tab. 5.67. Objawy węglowodorów zaobserwowane w otworze Kamień Pomorski 7 według dokumentacji wynikowej (Ryba i Szpurgis, 1978).

Głębokość[m]	Stratygrafia	Metoda	Przypływ	Tempo przypływu [m³/h]
2330,0–2399,2	sól starsza, anhy- dryt podstawowy, dolomit główny, anhydryt górny	pr. rurowy złoża	płuczka	0,176
3293,0-3305,0	karbon	pr. rurowy złoża	płyn ze śladami gazu palnego	0,13

Tab. 5.68. Wyniki prób złożowych przeprowadzonych w otworze Kamień Pomorski 7 według dokumentacji wynikowej (Ryba i Szpurgis, 1978).

5.18. KAMIEŃ POMORSKI 13

Głębokość otworu: 2672,0 m **Rok zakończenia wiercenia:** 1974 **Rdzenie:** 1218,0–2672,0 m, 40 skrzynek, NAG PIG-PIB, Archiwum Rdzeni Wiertniczych w Chmielniku

Stratygrafia (CBDG, 2021):

Głębokość [m]		Stratugnofia	
od	do	Stratygrana	
0,0	30,0	kenozoik	
30,0	658,0	jura dolna	
658,0	2034,0	trias	
686,0	742,0	→warstwy wielichowskie	
716,5	5 811,0	→warstwy zbąszynieckie	
		<i>→warstwy jarkowskie</i>	
811,0	1012,0	\rightarrow kajper	
1012,0	1143,0	→wapień muszlowy	
1143,0	1301,0	<i>→formacja barwicka</i>	

1301,0	1543,0	→formacja połczyńska
1543,0	1713,0	→formacja pomorska
1713,0	2034,0	→formacja bałtycka
2034,0	2672,0	perm
2034,0	2060,0	\rightarrow formacja rewalska
2060,0	2066,0	→sól kam. najmł. stropowa Na4b2
2066,0	2077,5	→ił solny czerwony górny T4b
2077,5	2092,0	→sól kam. najmłodsza górna Na4a2
2092,0	2093,0	→anh. pegmatytowy górny A4a2
2093,0	2112,0	→sól kam. najmłodsza dolna Na4a1
2112,0	2113,0	\rightarrow anh. pegmatytowy dolny A4a1
2113,0	2128,0	\rightarrow <i>it solny czerwony dolny T4a</i>
2128,0	2221,0	→sól kamienna młodsza Na3
2221,0	2237,0	→anhydryt główny A3
22270	22/20	\rightarrow dolomit płytowy Ca3
2237,0	2245,0	\rightarrow szary ił solny T3
2243,0	2244,5	→anhydryt kryjący A2r
2211 5	2321 5	→sól kamienna starsza Na2
2244,3	2321,3	→sól potasowa starsza K2
2321,5	2326,5	\rightarrow anhydryt podstawowy A2

2326,5	2356,0	→dolomit główny Ca2
2356,0	2531,0	→anhydryt górny A1g
2531,0	2576,5	→sól kamienna najstarsza Na1
2576,5	2652,0	\rightarrow anhydryt dolny A1d
2652,0	2658,5	→wapień cechsztyński Ca1 →łupek miedzionośny T1
2658,5	2662,5	→czerwony spągowiec
2662,5	2672,0	→autun

Wyniki badań skał:

W dokumentacji wynikowej otworu Kamień Pomorski 13 (Ryba i Jasiecka, 1974b) znajdują się wyniki analiz petrofizycznych 29 prób dolomitu głównego z interwału 2327,75– 2351,45 m wraz z oznaczeniem porowatości, przepuszczalności i zawartośći bituminów (oraz skład grupowy węglowodorów w 3 próbkach), a także 2 analizy gazu i 1 analiza wód złożowych (Tab. 5.69–5.71).

Wyniki geofizyki otworowej:

Dokumentacja wynikowa otworu Kamień Pomorski 13 (Ryba i Jasiecka, 1974b) zawiera wyniki badań geofizyki wiertniczej wykonanych w następującym zakresie (dla wymienionych profilowań w CBDG brak plików LAS):

- profilowanie naturalnego promieniowania gamma (PG): 0–2670 m,
- profilowanie krzywizny odwiertu (PK): 5–2670 m,
- profilowanie neutron-gamma (PNG): 0–2670 m,
- profilowania oporności standardowe (PO): 18–2671 m,

- profilowanie oporności sterowane (POst): 1078–2322 m,
- profilowanie potencjałów naturalnych (SP): 18–2671 m,
- profilowanie średnicy otworu (PSr): 18–2671 m.

Objawy węglowodorów w trakcie wiercenia i próby złożowe: obserwacje obecności węglowodorów w płuczce oraz w rdzeniu zestawiono w Tab. 5.72. Prób złożowych nie przeprowadzono.

Dokumentacje NAG PIG-PIB:

- Juroszek, C., Kłapciński, J., Sachanbiński, M. 1981. Petrografia, geochemia i występowanie skał wulkanicznych w wybranych otworach wiertniczych północnej części monokliny przedsudeckiej, synklinorium szczecińskiego i zachodniej części antyklinorium pomorskiego, woj. lubuskie, wielkopolskie, zachodniopomorskie. Inw. 5389/2009, Arch. CAG PIG, Warszawa.
- Pyzik, M., Mularczyk, A. 1981. Dokumentacja geologiczna złoża ropy naftowej "Kamień Pomorski" Dodatek nr 2. Inw. 45619, 3319/211, Arch. CAG PIG, Warszawa.
- Ryba, J., Jasiecka, B. 1974b. Dokumentacja wynikowa otworu poszukiwawczego Kamień Pomorski 13. Inw. 119469, Arch. CAG PIG, Warszawa.

Głębokość [m]	Stratygrafia	Liczba pomiarów	Porowatość min-max (średnia)	Przepuszczalność min-max (średnia)	Bituminy min-max (średnia)
			[%]	[mD]	[%]
2327,75–2351,45	dolomit główny	29	0,14-4,65 (0,91)	b. słaba–0,393	0,0074–0,0556 (0,0253)

Tab. 5.69. Podsumowanie wyników badań fizyczno-chemicznych próbek skalnych w interwale 2327,75–2351,45 m w otworze Kamień Pomorski 13 na podstawie dokumentacji wynikowej (Ryba i Jasiecka, 1974b).

Głębokość [m]	Stratygrafia	Metoda	Składniki	% obj.
	dolomit główny	z aparatu rdzeniowego	CH_4	2,96
			N_2	92,86
2329,0–2332,0			H_2	2,66
			Ar	1,18
			CO_2	0,34
			CH_4	ślady
2666,0–2672,0	autun	z aparatu rdzeniowego	N_2	82,77
			H_2	0,23
			He	0,16
			O_2	16,84

Tab. 5.70. Wyniki analiz gazu (w mieszaninie z powietrzem) w otworze Kamień Pomorski 13 według dokumentacji wynikowej (Ryba i Jasiecka, 1974b).

Głębokość [m]	Stratygrafia	Metoda	Składniki	g/l
	dolomit główny	podczas płukanai otworu	Cl	190,2586
			Br⁻	1,2254
			HCO ₃ ⁻	1,4274
2355,1			SO_4	1,1976
			Ca ²⁺	0,395
			Mg^{2+}	4,2913
			Na/K ⁺	15,874
			Al/Fe ³⁺	89,406
			pН	5,75
			mineralizacja	308,5

Tab. 5.71. Wyniki analiz wody w otworze Kamień Pomorski 13 według dokumentacji wynikowej (Ryba i Jasiecka, 1974b).

Głębokość [m]	Stratygrafia	Objawy		
2325,0–2347,6	anhydryt podstawowy, dolomit główny	punktowe ślady "martwej" ropy i gazu na powierzchniach spękań, luminescencja w promieniach lampy Wooda, intensywny zapach H_2S		
2347,6-2355,6	dolomit główny	intensywny przypływ płuczki około 44–300 l/h		
2350,6	dolomit główny	punktowe ślady zgazowanej ropy i zapach H ₂ S		
2660,1–2666,0	czerwony spągo- wiec, autun	ślady odgazowania		

Tab. 5.72. Objawy węglowodorów zaobserwowane w otworze Kamień Pomorski 13 według dokumentacji wynikowej (Ryba i Jasiecka, 1974b).

5.19. LASKA 2

Głębokość otworu: 3583,0 m Rok zakończenia wiercenia: 1980 Rdzenie: 1592,0–3551,0 m, 89 skrzynek, NAG PIG-PIB, Archiwum Rdzeni Wiertniczych w Chmielniku

Stratygrafia (CBDG, 2021):

Głębok	ość [m]	Stratuquafia
od	do	Stratygrana
0,0	104,0	kenozoik
104,0	176,5	jura górna
176,5	1428,0	jura środkowa
1428,0	2067,0	trias

1428,0	1506,0	→warstwy wielichowskie
1506.0	1722.5	<i>→warstwy zbąszyńskie</i>
1500,0	1722,3	<i>→warstwy jarkowskie</i>
1722,5	2067,0	\rightarrow kajper
2067,0	3456,0	perm
2067.0	28510	→sól potasowa starsza K2
2007,0	2631,0	→sól kamienna starsza Na2
2851,0	2855,0	\rightarrow anhydryt podstawowy A2
2855,0	2873,0	→dolomit główny Ca2
2873,0	2957,0	→anhydryt górny A1g
2957,0	3033,0	→sól kamienna najstarsza Na1
3033,0	3084,0	\rightarrow anhydryt dolny A1d
3084,0	3089,9	→wapień cechsztyński Ca1
3089,9	3091,5	\rightarrow łupek miedzionośny Tl

3091,5	3190,0	→czerwony spągowiec górny
3190,0	3456,0	→czerwony spągowiec dolny
3456,0	3583,0	karbon/wizen
3456,0	3583,0	\rightarrow fm wapieni z Czaplinka

Wyniki badań skał:

W dokumentacji wynikowej otworu Laska 2 (Wójcik, 1980) znajdują się wyniki analiz fizykochemicznych 42 prób rdzeni z interwału 2859,55–3549,25 m wraz z oznaczeniem porowatości, przepuszczalności i zawartości bituminów (w tym 3 analizy rozdziału grupowego węglowodorów), a także 7 analiz gazu, 2 analizy wód złożowych i 1 analiza filtratu płuczkowego (Tab. 5.73–5.75). W dokumentacji zamieszczono również charakterystykę petrograficzną czerwonego spągowca, a także charakterystykę geochemiczną dolomitu głównego.

Wyniki geofizyki otworowej:

Dokumentacja wynikowa otworu Laska 2 (Wójcik, 1980) zawiera wyniki badań geofizyki wiertniczej wykonanych w następującym zakresie (dla podkreślonych profilowań w CBDG znajdują się pliki LAS):

- profilowanie neutron-gamma zlogarytm. (logPNG): 1720–3473 m,
- prof. oporności ster. zlogarytm. (logPOst): 1763–3103 m,
- mikroprofilowanie średnicy otworu (mPSr): 3035–3111 m,
- profilowanie naturalnego promieniowania gamma (PG): 20–3473 m,
- profilowanie gazowe (PGaz): 1054–3565 m,
- profilowanie krzywizny odwiertu (PK): 25–3100 m,
- <u>profilowanie neutron-gamma (PNG)</u>: 35–3473 m,
- profilowania oporności standardowe (PO): 8–3471 m,
- profilowanie oporności EL03 (PO): 5–3470 m,
- profilowanie oporności sterowane (POst): 1 763–3109 m,
- profilowanie potencjałów naturalnych (PS): 8–3471 m,
- profilowanie średnicy otworu (PSr): 5–3471 m,
- profilowanie temperatury po cementowaniu (PTc): 5–2780 m.

Opracowanie wyników średnich prędkości w odwiercie Laska 2 (Walasek, 1981) zawiera natomiast wyniki pomiarów wykonanych w następującym zakresie (w CBDG dostępne są dla nich pliki LAS):

- profilowanie prędk. śr., czas interpolowany podwojony Tx2: 20–2820 m,
- profilowanie prędk. śr., czas interpolowany TW: 20–2820 m,
- profilowanie prędk. śr., czas pomierzony Tr_PW1: 728–2813 m,
- profilowanie prędk. śr., czas pomierzony Tr_PW2: 728–2828 m,
- profilowanie prędk. śr., czas pomierzony Tr_PW3: 728–2828 m,
- profilowanie prędk. śr., czas uśredniony Tr_PO: 728–2828 m,
- profilowanie prędk. śr., gradient czasu interpol. DT_VSP: 20–2820 m.

Objawy węglowodorów w trakcie wiercenia i próby złożowe: obserwacje obecności węglowodorów w płuczce oraz w rdzeniu oraz wyniki przeprowadzonyc prób złożowych zestawiono w Tab. 5.76–5.77.

Dokumentacje NAG PIG-PIB:

- Fuliński, M. 1982. Dokumentacja pomiarów gęstości objętościowej i porowatości otwartej skał, rok 1981. Inw. 45709, ObO/1823, Arch. CAG PIG, Warszawa.
- Juroszek, C., Kłapciński, J., Sachanbiński, M. 1981. Petrografia, geochemia i występowanie skał wulkanicznych w wybranych otworach wiertniczych północnej części monokliny przedsudeckiej, synklinorium szczecińskiego i zachodniej części antyklinorium pomorskiego, woj. lubuskie, wielkopolskie, zachodniopomorskie. Inw. 5389/2009, Arch. CAG PIG, Warszawa.
- Rosowiecka, O. 2011. Opracowanie modelu rozkładu gęstości głównych jednostek geologicznych kraju. Inw. 3603/2014, Arch. CAG PIG, Warszawa.
- Walasek, B. 1981. Opracowanie pomiarów średnich prędkości w odwiercie Laska 2. L7 VS, Arch. CAG PIG, Warszawa.
- Wójcik, Z. 1980. Dokumentacja wynikowa otworu Laska 2. Inw. 126414, Arch. CAG PIG, Warszawa.

Głębokość [m]	Stratygrafia	Liczba pomiarów	Porowatość min-max (średnia)	Przepuszczalność pozioma min-max (średnia)	Bituminy min-max (średnia)
			[%]	[µD]	[%]
2859,55–2872,55	dolomit główny	21	0,27–5,17 (2,35)	22,88–1318,23	0,043–0,416 (0,137)
3084,55–3091,15	wapień cechsztyń- ski, łupek mie- dzionośny	6	0,36–0,99 (0,60)	2,21–50,84	0,008–0,024 (0,0125)
3092,05-3134,25	czerwony spągo- wiec	11	2,18–3,64 (3,01)	3,91–84,74	0,004–0,018 (0,007)
3466,0-3549,25	karbon	4	1,4–1,89	4,24–5,65	ślady

Tab. 5.73. Podsumowanie wyników badań fizyczno-chemicznych próbek skalnych w interwale 2859,55–3549,25 m w otworze Laska 2 na podstawie dokumentacji wynikowej (Wójcik, 1980).

Głębokość [m]	Stratygrafia	Metoda	Składniki	% obj.
			CH_4	4,96
			C_2H_6	0,01
			C ₃ H ₈	0,01
			i-C ₄ H ₁₀	0,01
	1 /		$n-C_4H_{10}$	0,04
2070 0 2115 0	spąg cechsztynu,	z zalewki w obciążnikach w czasie	i-C ₅ H ₁₂	0,04
3078,0-3115,0	czerwony	wyciągania przewodu	n-C ₅ H ₁₂	0,04
	spągowieć goiny		C ₆ H ₁₄	0,07
			N_2	91,55
			He	1,18
			H_2	2,02
			Ar	0,06
			CH_4	11,36
			C_2H_6	0,02
			C_3H_8	0,01
			$i-C_4H_{10}$	0,04
	ana a a a harturu		n- C ₄ H ₁₀	0,09
2078 0 2115 0	spąg cechsztynu,	zalewki w obciążnikach w czasie	$i-C_5H_{12}$	0,11
30/8,0-3115,0	czerwony spągowiec górny spąg cechsztynu, czerwony spągowiec górny	wyciągania przewodu	$n-C_5H_{12}$	0,12
			$C_{6}H_{14}$	0,87
			N_2	83,96
			He	1,19
			H_2	2,20
			Ar	0,04
			CH_4	9,93
		degazacja rdzenia	C_2H_6	0,03
			C_3H_8	0,04
3083,0-3097,0			$i-C_4H_{10}$	0,01
			n- C ₄ H ₁₀	0,02
			N_2	89,91
			H_2	0,05
			CH_4	9,13
			C_2H_6	0,02
			C_3H_8	0,01
	czerwony		$i-C_4H_{10}$	0,01
3429,0-3475,0	spągowiec dolny,	z przewodu	n- C ₄ H ₁₀	0,02
	karbon		N ₂	79,52
			He	0,74
			H_2	10,25
			Ar	0,10
	czerwony		CH_4	6,72
3429,0-3475,0	spągowiec dolny,	z przewodu	C_2H_6	0,01
	karbon		C_3H_8	0,01

			$i-C_4H_{10}$	<0,01
			$n - C_4 H_{10}$	0,01
			N_2	80,71
			He	0,69
			H_2	11,60
			Ar	0,17
			CH_4	23,17
			C_2H_6	1,10
			C ₃ H ₈	0,40
3469,0			i-C ₄ H ₁₀	0,32
	karbon	degazacja płuczki	$n - C_4 H_{10}$	0,77
			i-C ₅ H ₁₂	0,63
			$n-C_5H_{12}$	0,39
			N_2	70,78
			He	1,12
			H_2	1,33
			CH_4	2,38
			C_2H_6	0,01
			C_3H_8	0,01
			$i-C_4H_{10}$	0,01
3469,0	karbon	degazacja płuczki	$n - C_4 H_{10}$	0,03
			i-C ₅ H ₁₂	0,05
			n-C ₅ H ₁₂	0,04
			N ₂	96,65
			H ₂	0,82

Tab. 5.74. Wyniki analiz gazu w otworze Laska 2 według dokumentacji wynikowej (Wójcik, 1980).

Głębokość [m]	Stratygrafia	Metoda	Składniki	g/l
			Cl	164,2496
			Br⁻	0,6394
	spąg cechsztynu,		Ca ²⁺	28,5325
3072,0-3115,0	czerwony	pr. rurowy złoża	Mg^{2+}	0,4658
	spągowiec górny		Na/K ⁺	73,287
			pН	6,47
			mineralizacja	272,5
	czerwony spągowiec dolny, karbon	autoklawa	Cl	161,1315
			Br⁻	0,5661
2420 0 2475 0			Ca ²⁺	26,0622
5429,0-5475,0			Na/K ⁺	74,2249
			pН	6,42
			mineralizacja	265,0
3429,0–3475,0	czerwony		Cl	171,6264
	spągowiec dolny, karbon	filtart płuczki	Ca^{2+}	2,3886
			pН	7,25

Tab. 5.75. Wyniki analiz wody w otworze Laska 2 według dokumentacji wynikowej (Wójcik, 1980).

Głębokość [m]	Stratygrafia	Objawy
2859,5-2865,5	dolomit główny	punktowe ślady zgazowanej ropy na kontaktach lamin i w mikrospękaniach
3110,0–3110,0	czerwony spągowiec górny	profilowanie aparaturą gazową wykazało 0,1% obj. bituminów
3112,0–3115,0	czerwony spagowiec górny	zanik 20 m ³ płuczki

Tab. 5.76. Objawy węglowodorów zaobserwowane w otworze Laska 2 według dokumentacji wynikowej (Wójcik, 1980).

Głębokość[m]	Stratygrafia	Metoda	Przypływ	Tempo przypływu [m ³ /h]
2856,0–2895,5	dolomit główny, anhydryt górny	pr. rurowy złoża (w trakcie wiercenia)	brak przypływu	
3078,0–3115,0	spąg cechsztynu, czerwony spągo- wiec górny	pr. rurowy złoża (w trakcie wiercenia)	solanka zgazowana ga- zem palnym	0,12
3429,0–3475,0	karbon	pr. rurowy złoża (w trakcie wiercenia)	solanka zmieszana z płuczka	b. słabe

Tab. 5.77. Wyniki prób złożowych przeprowadzonych w otworze Laska 2 według dokumentacji wynikowej (Wójcik, 1980).

5.20. REKOWO 1

Głębokość otworu: 2667,0 m **Rok zakończenia wiercenia:** 1974 **Rdzenie:** 994,0–2667,0 m, 13 skrzynek, NAG PIG-PIB, Archiwum Rdzeni Wiertniczych w Chmielniku

Stratygrafia (CBDG, 2021):

Głębokość [m]		Stuaturanefia	
od	do	Stratygrana	
0,0	70,0	kenozoik	
70,0	917,0	jura	
917,0	2 102,0	trias	
917,0	967,5	\rightarrow warstwy wielichowskie	
967,5	1 026,0	<i>→warstwy jarkowskie</i>	
1 026,0	1 067,0	→kajper	
1 067,0	1 208,0	→wapień muszlowy górny	
1 208,0	1 377,0	→formacja barwicka	
1 377,0	1 624,0	→formacja połczyńska	
1 624,0	1 798,0	→formacja pomorska	
1 798,0	2 102,0	→formacja bałtycka	
2 102,0	2 667,0	perm	
2 102,0	2 135,0	\rightarrow formacja rewalska	
2 135,0	2 146,0	→sól kam. najmł. stropowa Na4b2	
2 146,0	2 159,0	<i>→ił solny czerwony górny T4b</i>	
2 159,0	2 212,5	→sól kam. najmł. górna Na4a1	
2 212,5	2 255,0	\rightarrow <i>il solny czerwony dolny T4a</i>	
2 255,0	2 278,0	→sól kam. młodsza górna Na3g	
2 278,0	2 397,5	→sól kam. młodsza dolna Na3d	
2 397,5	2 420,0	<i>→anhydryt główny A3</i>	
2 120 0	2 126 5	→dolomit płytowy Ca3	
2 420,0	2 420,3	\rightarrow szary ił solny T3	
2 426,5	2 428,5	→anhydryt kryjący A2r	
2 428 5	2 6 5 8 5	→sól potasowa starsza K2	
2 720,3	2 030,3	→sól kamienna starsza Na2	
2 658,5	2 666,0	\rightarrow anhydryt podstawowy A2	
2 666,0	2 667,0	→dolomit główny Ca2	

Wyniki badań skał:

W dokumentacji wynikowej otworu Rekowo 1 (Wójcik i Knitter, 1975b) znajdują się wyniki analizy mikropaleontologicznej 8 próbek z interwału 68,0–130,0 m, a także wyniki analiz fizykochemicznych (porowatości, przepuszczalności, zawartośći bituminów i skład grupowy) 4 próbek rdzeni dolomitu głównego z interwału 2666,9–2667,6 m oraz 1 analiza gazu i 2 analizy ropy (Tab. 5.78–5.79).

Wyniki geofizyki otworowej:

Dokumentacja wynikowa otworu Rekowo 2 (Wójcik i Knitter, 1975b) zawiera wyniki badań geofizyki wiertniczej wykonanych w następującym zakresie (dla podkreślonych profilowań w CBDG znajdują się pliki LAS):

- profilowanie naturalnego promieniowania gamma (PG): 0–2660 m,
- profilowanie krzywizny odwiertu (PK): 25–2660 m,
- <u>profilowanie neutron-gamma (PNG)</u>: 0–2660 m,
- profilowania oporności standardowe (PO): 90–2658 m,
- profilowanie oporności EL03 (PO): 90–2658 m,
- profilowanie potencjałów naturalnych (PS): 93–2005 m,
- profilowanie średnicy otworu (PSr): 90–2642 m.

Objawy węglowodorów w trakcie wiercenia i próby złożowe: obserwacje obecności węglowodorów w płuczce oraz w rdzeniu oraz wyniki przeprowadzonyc prób złożowych zestawiono w Tab. 5.80–5.81. Otwór przekazano do eksploatacji.

Dokumentacje NAG PIG-PIB:

 Binder, I. 1994. Dokumentacja geologiczna w kat. B złoża ropy naftowej "Rekowo", gm. Kamień Pomorski, woj. Szczecińskie. Inw. 710/95, Arch. CAG PIG, Warszawa.

• Wójcik, Z., Knitter, K. 1975b. Dokumentacja wynikowa otworu badawczego Rekowo 1. Inw. 121160, Arch. CAG PIG, Warszawa.

Głębokość [m]	Stratygrafia	Liczba pomiarów	Porowatość min-max	Przepuszczalność min-max	Bituminy min-max
			[%]	[mD]	[%]
2666,9–2667,6	dolomit główny	4	0,50-3,10	b. słaba–1,163	0,0234-0,4735

Tab. 5.78. Podsumowanie wyników badań fizyczno-chemicznych próbek skalnych w interwale 2666,9–2667,6 m w otworze Rekowo 1 na podstawie dokumentacji wynikowej (Wójcik i Knitter, 1975b).

Głębokość [m]	Stratygrafia	Metoda	Składniki	
			CH_4	53,22% obj.
			C_2H_6	12,26% obj.
			C_3H_8	12,01% obj.
			iC_4H_{10}	2,37% obj.
2667.0	dolomit alávyny	w czasie próbnej	nC_4H_{10}	5,10% obj.
2007,0	dolollin glowily	eksploatacji	CO_2	0,53% obj.
			CO	2,59% obj.
			N_2	5,00% obj.
			H_2	ślady
			H_2S	6,32% obj.
	dolomit główny		gęstość	0,872 g/ml
			węglow. nasycone	67,2%
2667.0		w czasie próbnej eksploatacji	w. aromatyczne	20,8%
2007,0			w. heterogeniczne	9,5%
			asfalteny	2,5%
			zaw. siarki	brak
			gęstość	0,878
			w. nasycone	72,7%
2667.0	dolomit główny	w cząsie próbnej eksploatacji	w. aromatyczne	18,7%
2007,0	dolollin glowily	w ezasie problej ekspioataeji	w. heterogeniczne	4,7%
			asfalteny	3,9%
			zaw. siarki	_

Tab. 5.79. Wyniki analiz gazu (w czystym gazie) i ropy w otworze Rekowo 1 według dokumentacji wynikowej (Wójcik i Knitter, 1975b).

Głębokość [m]	Stratygrafia	Objawy
	anhydryt podsta-	zapach ropy i H_2S ;
2665,0-2667,0	wowy,	ropa z obiegu 5000 l i 12 000 l płuczki zgazowanej i zaropionej;
	dolomit główny	zanik płuczki 7700 l
2666,0	dolomit główny	przypływ płuczki 2800 l/3 min.

Tab. 5.80. Objawy węglowodorów zaobserwowane w otworze Rekowo 1 według dokumentacji wynikowej (Wójcik i Knitter, 1975b).

Głębokość[m]	Stratygrafia	Metoda	Przypływ	Tempo przypływu [t/doba]
2666,0–2667,0 (paker 2645,5)	dolomit główny	paker eksploatacyjny	przemysłowy przypływ ropy	50–80 (do 11.06.1975 r. wydobyto 3580 t ropy i 458,9 tys. Nm ³ gazu)

Tab. 5.81. Wyniki prób złożowych przeprowadzonych w otworze Rekowo 1 według dokumentacji wynikowej (Wójcik i Knitter, 1975b).

5.21. REKOWO 2

Głębokość otworu: 3141,5 m **Rok zakończenia wiercenia:** 1975 **Rdzenie:** 2705,5–3121,8 m, 67 skrzynek, NAG PIG-PIB, Archiwum Rdzeni Wiertniczych w Chmielniku

Stratygrafia (CBDG, 2021):

Głębokość [m]		Stratygrafia		
od	do	Stratygrana		
0,0	64,0	kenozoik		
64,0	250,0	jura środkowa		
250,0	914,0	jura dolna		
914,0	2126,5	trias		
914,0	965,0	\rightarrow warstwy wielichowskie		
065.0	1014.0	<i>→warstwy zbąszyńskie</i>		
905,0	1014,0	<i>→warstwy jarkowskie</i>		
1014,0	1077,0	\rightarrow kajper		
1077,0	1218,5	→wapień muszlowy górny		
1218,5	1395,0	→formacja barwicka		
1395,0	1640,5	→formacja połczyńska		
1640,5	1816,0	→formacja pomorska		
1816,0	2126,5	→formacja bałtycka		
2126,5	3141,5	perm		
2126,5	2158,5	→formacja rewalska		
2158,5	2168,0	→sól kam. najmł. stropowa Na4b2		
2168,0	2186,0	<i>→ił solny czerwony górny T4b</i>		
2186,0	2207,5	→sól kam. najmł. górna Na4a2		
2207,5	2209,0	→anh. pegmatytowy górny A4a2		
2209,0	2235,5	→anh. pegmatytowy górny A4a2		
2235,5	2237,5	\rightarrow anh. pegmatytowy dolny A4a1		
2237,5	2262,0	\rightarrow <i>il solny czerwony dolny T4a</i>		
2262,0	2458,5	→sól kamienna młodsza Na3		
2458,5	2507,0	<i>→anhydryt główny A3</i>		
2507,0	2522,5	\rightarrow dolomit płytowy Ca3		
2522,5	2526,0	$\rightarrow il \ solny \ szary \ T3$		
2526,0	2532,5	<i>→anhydryt kryjący A2r</i>		
2532,5	2559,0	→sól kam. starsza kryjąca Na2r		
2559,0	2588,0	→sól potasowa starsza K2		
2588,0	2652,0	→sól kamienna starsza Na2		
2652,0	2705,0	\rightarrow anhydryt podstawowy A2		
2705,0	2727,0	→dolomit główny Ca2		
2727,0	2948,0	<i>→anhydryt górny A1g</i>		
2948,0	2962,0	→sól kamienna najstarsza Nal		
2062.0	2014 5	→wapień cechsztyński Ca1		
2902,0	5014,5	\rightarrow <i>lupek miedzionośny T1</i>		
3014,5	3106,0	→czerwony spągowiec górny		
3106,0	3141,5	→czerwony spągowiec dolny		

Wyniki badań skał:

W dokumentacji wynikowej otworu Rekowo 2 (Wójcik i Knitter, 1975c) znajdują się wyniki analizy petrograficzno-chemicznej 24 próbek dolomitu głównego i anhydrytu górnego. Dokumentacja zawiera równiez wyniki analiz fizykochemicznych 39 próbek rdzeni z interwału 2705,5–2741,5 m wraz z oznaczeniem porowatości, przepuszczalności, zasolenia i zawartości bituminów (dla 5 próbek pomierzono skład grupowo-węglowodorowy), a także wyniki analiz fizykochemicznych 39 próbek rdzeni z interwału 3020,25–3052,35 m wraz z oznaczeniem porowatości, przepuszczalności, zawartości siarki i bituminów (dla 3 próbek pomierzono skład grupowo-węglowodorowy) oraz 4 analizy gazu (Tab. 5.82–5.83).

Wyniki geofizyki otworowej:

Dokumentacja wynikowa otworu Rekowo 2 (Wójcik i Knitter, 1975c) zawiera wyniki badań geofizyki wiertniczej wykonanych w następującym zakresie (dla podkreślonych profilowań w CBDG znajdują się pliki LAS):

- mikroprofilowanie oporności sterowane (mPOst): 2700–3125 m,
- mikroprofilowanie średnicy otworu (mPSr): 2862–3062 m,
- profilowanie akustyczne czasu interwałowego (PAdt): 1094–2655 m,
- profilowanie czasu akustycznego T1 (PAt1): 1094–2655 m,
- profilowanie czasu akustycznego T2(PAt2): 1094–2655 m,
- profilowanie naturalnego promieniowania gamma (PG): 1–3128 m,
- profilowanie krzywizny odwiertu (PK): 5–3125 m,
- profilowanie neutron-gamma (PNG): 6–3128 m,
- profilowania oporności standardowe (PO): 4–3125 m,
- profilowanie oporności EL03(PO): 5–3125 m,
- prof. oporności ster. odwrócone (POst odwr.): 2656–3125 m,
- profilowanie oporności sterowane (POst): 2656–2727 m,
- profilowanie potencjałów naturalnych (PS): 4–2006 m,
- profilowanie średnicy otworu (PSr): 0–3125 m.

Sprawozdanie z pomiarów średnich prędkości w odwiercie Rekowo 2 (Klecan, 1975a) zawiera wyniki pomiarów wykonanych w następującym zakresie (w CBDG dostępne są dla nich pliki LAS):

- profilowanie prędk. śr., czas interpolowany podwojony Tx2: 20–3100 m,
- profilowanie prędk. śr., czas interpolowany TW: 20–3100 m,
- profilowanie prędk. śr., czas pomierzony Tr_PW1: 90–3110 m,
- profilowanie prędk. śr., czas pomierzony Tr_PW2: 90–3090 m,
- profilowanie prędk. śr., czas uśredniony Tr_PO: 90–3110 m,
- profilowanie prędk. śr., gradient czasu interpol. DT_VSP: 20–3100 m.

Objawy węglowodorów w trakcie wiercenia i próby złożowe: obserwacje obecności węglowodorów w płuczce oraz w rdzeniu oraz wyniki przeprowadzonyc prób złożowych zestawiono w Tab. 5.84–5.85.

Dokumentacje NAG PIG-PIB:

- Binder, I. 1994. Dokumentacja geologiczna w kat. B złoża ropy naftowej "Rekowo", gm. Kamień Pomorski, woj. Szczecińskie. Inw. 710/95, Arch. CAG PIG, Warszawa.
- Fuliński, M. 1982. Dokumentacja pomiarów gęstości objętościowej i porowatości otwartej skał, rok 1981. Inw. 45709, ObO/1823, Arch. CAG PIG, Warszawa.
- Karwowski, L., Kłapciński, J. 1975. Fauna z osadów cechsztyńskich z wybranych otworów wiertniczych w zachodniej i północnej Polsce. Inw. 5266/2009, Arch. CAG PIG, Warszawa.
- Klecan, A. 1975a. Sprawozdanie z pomiarów średnich prędkości w otworze Rekowo-2. CAG PIG, Warszawa.
- Rosowiecka, O. 2011. Opracowanie modelu rozkładu gęstości głównych jednostek geologicznych kraju. Inw. 3603/2014, Arch. CAG PIG, Warszawa.
- Wójcik, Z., Knitter, K. 1975c. Dokumentacja wynikowa otworu rozpoznawczego Rekowo 2. Inw. 121785, Arch. CAG PIG, Warszawa.

Głębokość [m]	Stratygrafia	Liczba pomiarów	Porowatość min-max (średnia)	Przepuszczalność min-max (średnia)	Bituminy min-max (średnia)
			[%]	[mD]	[%]
2705,5–2741,5	dolomit główny, anhydryt górny	39	0,14–7,59 (1,22)	b. słaba–0,405	0,003–0,087 (0,023)
3020,25–3052,35	czerwony spągowiec górny	39	0,36–7,16 (4,34)	0,01–0,26 (0,07)	ślady–0,0054

Tab. 5.82. Podsumowanie wyników badań fizyczno-chemicznych próbek skalnych w interwale 2705,5–3052,35 m w otworze Rekowo 2 na podstawie dokumentacji wynikowej (Wójcik i Knitter, 1975c).

Głębokość [m]	Stratygrafia	Metoda	Składniki	% obj.
			CH_4	26,15
			C_2H_6	2,67
2714,5-2723,5	dolomit główny	aparat rdzeniowy	C_3H_8	1,44
			N_2	69,05
			CO_2	0,42
	dolomit główny, anhydryt górny	aparat rdzeniowy	CH_4	13,12
			C_2H_6	1,3
2723,5-2732,5			C_3H_8	0,83
			N_2	83,45
			CO_2	0,4
3020 2 3038 2	czerwony	aparat relignious	N_2	16,2
5020,2-5058,2	spągowiec górny	aparat Tuzeniowy	O_2	83,8
	ozorwony		N_2	87,45
3020,2–3038,2	spągowiec górny	aparat rdzeniowy	O_2	12,06
			CO_2	0,49

Tab. 5.83. Wyniki analiz gazu w otworze Rekowo 2 według dokumentacji wynikowej (Wójcik i Knitter, 1975c).

Głębokość [m]	Stratygrafia	Objawy
2705,0–2727,0	dolomit główny	punktowe ślady odgazowania, zapach bituminów i H ₂ S; w środkowej partij kroplowe wycjeki ropy

Tab. 5.84. Objawy węglowodorów zaobserwowane w otworze Rekowo 2 według dokumentacji wynikowej (Wójcik i Knitter, 1975c).

Głębokość[m]	Stratygrafia	Metoda	Przypływ	Tempo przypływu [m ³ /h]
2710,0–2766,0	dolomit główny, anhydryt górny	pr. rurowy złoża	brak przypływu	_
3018,0–3068,0	czerwony spągowiec górny	pr. rurowy złoża	brak przypływu	-

Tab. 5.85. Wyniki prób złożowych przeprowadzonych w otworze Rekowo 2 według dokumentacji wynikowej (Wójcik i Knitter, 1975c).

5.22. REKOWO 3

Głębokość otworu: 2697,0 m Rok zakończenia wiercenia: 1976 Rdzenie: 2646,0–2691,0 m, 39 skrzynek, NAG PIG-PIB, Archiwum Rdzeni Wiertniczych w Chmielniku

Stratygrafia (CBDG, 2021):

Głębokość [m]		Stratuonofia
od	do	Stratygrana
0,0	49,5	kenozoik
49,5	224,0	jura środkowa
224,0	936,0	jura dolna
936,0	2121,5	trias
936,0	992,0	→warstwy wielichowskie
992,0	1042,5	→warstwy zbąszyńskie →warstwy jarkowskie
1042,5	1072,0	\rightarrow kajper
1077,0	1218,5	<i>→wapień muszlowy</i>
1223,0	1393,0	→formacja barwicka
1393,0	1639,0	→formacja połczyńska
1639,0	1810,0	→formacja pomorska
1810,0	2121,5	→formacja bałtycka
2121,5	2697,0	perm
2121,5	2153,5	→formacja rewalska
2153,5	2163,0	→sól kam. najmł. stropowa Na4b2
2163,0	2179,0	<i>→ił solny czerwony górny T4b</i>
2179,0	2200,0	→sól kam. najmłodsza górna Na4a2
2200,0	2201,0	→anh. pegmatytowy górny A4a2
2201,0	2228,0	→sól kam. najmłodsza dolna Na4a1
2228,0	2230,0	\rightarrow anh. pegmatytowy dolny A4a1
2230,0	2231,0	→sól podścielająca Na4a0
2231,0	2267,0	\rightarrow <i>il solny czerwony dolny T4a</i>
2267,0	2425,0	→sól kamienna młodsza Na3
2425,0	2454,0	→anhydryt główny A3
2454,0	2463,0	\rightarrow dolomit płytowy Ca3 \rightarrow szary ił solny T3
2463,0	2465,5	→anhydryt kryjący A2r
2465,5	2477,5	→sól kam. starsza kryjąca Na2r
2477,5	2519,0	→sól potasowa starsza K2
2519,0	2638,0	→sól kamienna starsza Na2

2519,0	2638,0	→sól potasowa starsza K2
2638,0	2645,0	\rightarrow anhydryt podstawowy A2
2645,0	2667,0	→dolomit główny Ca2
2667,0	2697,0	→anhydryt górny A1g

Wyniki badań skał:

W dokumentacji wynikowej otworu Rekowo 3 (Wójcik i Stefańska, 1976a) znajdują się wyniki analiz mikrofaunistycznych 17 prób okruchowych z interwału 100,0–270,0 m. Zamieszczono także wyniki analiz petrograficzno-chemicznych oraz fizykochemicznych 53 próbek z interwału 2650,55–2669,05 m wraz z wynikami porowatości, przepuszczalności, zawartości siarki i biruminów (w tym rozdział grupowy 4 próbek), wykonano również jedną analizę gazu (Tab. 5.86–5.87).

Wyniki geofizyki otworowej:

Dokumentacja wynikowa otworu Rekowo 3 (Wójcik i Stefańska, 1976a) zawiera wyniki badań geofizyki wiertniczej wykonanych w następującym zakresie (dla podkreślonych profilowań w CBDG znajdują się pliki LAS):

- mikroprofilowanie oporności sterowane (mPOst): 2640–2690 m,
- profilowanie akustyczne czasu interwałowego (PAdt): 2590–2690 m,
- profilowanie czasu akustycznego T1 (PAt1): 2590–2690 m,
- profilowanie czasu akustycznego T2(PAt2): 2590–2690 m,
- <u>profilowanie naturalnego promieniowania</u> <u>gamma (PG)</u>: 0–2690 m,
- profilowanie krzywizny odwiertu (PK): 125–2690 m,

- <u>profilowanie neutron-gamma (PNG)</u>: 0–2690 m,
- profilowania oporności standardowe (PO): 138–2690 m,
- profilowanie oporności EL03 (PO): 0–2690 m,
- profilowanie oporności sterowane (POst): 2640–2690 m,
- profilowanie potencjałów naturalnych (PS): 138–2690 m,
- profilowanie średnicy otworu (PSr): 5–2690 m.

Objawy węglowodorów w trakcie wiercenia i próby złożowe: obserwacje obecności węglowodorów w płuczce oraz w rdzeniu oraz wyniki przeprowadzonyc prób złożowych zestawiono w Tab. 5.88–5.89.

Dokumentacje NAG PIG-PIB:

- Binder, I. 1994. Dokumentacja geologiczna w kat. B złoża ropy naftowej "Rekowo", gm. Kamień Pomorski, woj. Szczecińskie. Inw. 710/95, Arch. CAG PIG, Warszawa.
- Wójcik, Z., Stefańska, K. 1976a. Dokumentacja wynikowa otworu rozpoznawczego Rekowo 3. Inw. 122329, Arch. CAG PIG, Warszawa.

Głębokość [m]	Stratygrafia	Liczba pomiarów	Porowatość min-max (średnia)	Przepuszczalność min-max	Bituminy min-max (średnia)
			[%]	[mD]	[%]
2650 55 2660 05	dolomit główny,	52	0,07-5,94	h alaha 0.222	0,007–0,466
2030,33-2009,03	anhydryt górny	53	(1,85)	0. siaba-0,555	(0,077)

Tab. 5.86. Podsumowanie wyników badań fizyczno-chemicznych próbek skalnych w interwale 2650,55–2669,05 m w otworze Rekowo 3 na podstawie dokumentacji wynikowej (Wójcik i Stefańska, 1976a).

Głębokość [m]	Stratygrafia	Metoda	Składniki	% obj.
2630,0–2673,0		aparat rdzeniowy	CH_4	36,03
			C_2H_6	19,74
	sól starsza, anhy- dryt podstawowy, dolomit główny		C_3H_8	19,91
			$C_4 H_{10}$	3,92
			$C_{5}H_{12}$	8,19
			CO	4,91
			CO_2	0,14
			N_2	6,92
			H ₂	0,22

Tab. 5.87. Wyniki analiz gazu w otworze Rekowo 3 według dokumentacji wynikowej (Wójcik i Stefańska, 1976).

Głębokość [m]	Stratygrafia	Objawy	
2646,0-2670,0	dolomit główny	punktowe ślady ropy oraz ślady odgazowania na powierzchni rdzeni	

Tab. 5.88. Objawy węglowodorów zaobserwowane w otworze Rekowo 3 według dokumentacji wynikowej (Wójcik i Stefańska, 1976a).

Głębokość[m]	Stratygrafia	Metoda	Przypływ	Tempo przypływu [m ³ /h]
2630,0–2673,0	sól starsza, anhy- dryt podstawowy, dolomit główny	pr. rurowy złoża (w trakcie wiercenia)	brak przypływu	_

Tab. 5.89. Wyniki prób złożowych przeprowadzonych w otworze Rekowo 3 według dokumentacji wynikowej (Wójcik i Stefańska, 1976a).

5.23. REKOWO 4

Głębokość otworu: 2736,0 m **Rok zakończenia wiercenia:** 1975 **Rdzenie:** 2676,4–2718,4 m, 40 skrzynek, NAG PIG-PIB, Archiwum Rdzeni Wiertniczych w Chmielniku

Stratygrafia (CBDG, 2021):

Głębokość [m]		Stricturanofic
od	do	Stratygrana
0,0	49,5	kenozoik
49,5	224,0	jura środkowa
224,0	936,0	jura dolna
936,0	2111,5	trias
936,0	992,0	→warstwy wielichowskie
992,0	1042,5	→warstwy zbąszyńskie →warstwy jarkowskie
1042,5	1072,0	\rightarrow kajper
1072,0	1214,0	→wapień muszlowy
1214,0	1380,5	→formacja barwicka
1380,5	1630,0	→formacja połczyńska
1630,0	1802,0	→formacja pomorska
1802,	2111,5	→formacja bałtycka
2111,5	2736,0	perm
2111,5	2145,5	→formacja rewalska
2145,5	2155,5	→sól kam. najmł. stropowa Na4b2
2155,5	2172,5	→ił solny czerwony górny T4b
2172,5	2192,0	→sól kam. najmłodsza górna Na4a2
2192,0	2193,0	→anh. pegmatytowy górny A4a2
2193,0	2224,0	→sól kam. najmłodsza dolna Na4a1
2224,0	2225,0	\rightarrow anh. pegmatytowy dolny A4a1
2225,0	2248,0	\rightarrow <i>il solny czerwony dolny T4a</i>
2248,0	2417,5	→sól kamienna młodsza Na3
2417,5	2465,0	→anhydryt główny A3
2465,0	2473,0	→dolomit płytowy Ca3 →szary ił solny T3
2473,0	2474,5	\rightarrow anhydryt kryjący A2r
2474,5	2478,0	→sól kam. starsza kryjąca Na2r
2478,0	2510,0	→sól potasowa starsza K2
2510,0	2672,0	→sól kamienna strasza Na2
2672,0	2680,0	\rightarrow anhydryt podstawowy A2
2680,0	2710,0	→dolomit główny Ca2
2710,0	2736,0	→anhydryt górny A1g

Wyniki badań skał:

W dokumentacji wynikowej otworu Rekowo 4 (Wójcik i Knitter, 1975d) znajduje się opis mikroskopowy 34 próbek skalnych anhydrytu podstawowego, dolomitu głównego i anhydrytu górnego z interwału 2676,4–2718,4 m. W dokumentacji zamieszczono równiez wyniki analiz fizykochemicznych 58 próbek dolomitu głównego z interwału 2681,95– 2705,65 m wraz z oznaczeniami porowatości, przepuszczalności, zawartości siarki i bituminów (wraz z rozdziałem grupowym 5 próbek), a także 1 analizę gazu (Tab. 5.90–5.91).

Wyniki geofizyki otworowej:

Dokumentacja wynikowa otworu Rekowo 4 (Wójcik i Knitter, 1975d) zawiera wyniki badań geofizyki wiertniczej wykonanych w następującym zakresie (dla podkreślonych profilowań w CBDG znajdują się pliki LAS):

- profilowanie akustyczne czasu interwałowego (Adt): 140–2730 m,
- profilowanie czasu akustycznego T1 (PAt1): 143–2730 m,
- profilowanie czasu akustycznego T2(PAt2): 143–1 081 m,
- profilowanie naturalnego promieniowania gamma (PG): 0–2733 m,
- profilowanie krzywizny odwiertu (PK): 5–2725 m,
- profilowanie neutron-gamma (PNG): 0–2733 m,
- profilowania oporności standardowe (PO): 6–2733 m,
- profilowanie oporności EL03 (PO): 5–2730 m,
- profilowanie oporności sterowane (POst): 2040–2733 m,
- profilowanie potencjałów naturalnych (PS): 6–2733 m,
- profilowanie średnicy otworu (PSr): 5–2733 m.

Objawy węglowodorów w trakcie wiercenia i próby złożowe: obserwacje obecności węglowodorów w płuczce oraz w rdzeniu oraz wyniki przeprowadzonyc prób złożowych zestawiono w Tab. 5.92–5.93.

Dokumentacje NAG PIG-PIB:

- Binder, I. 1994. Dokumentacja geologiczna w kat. B złoża ropy naftowej "Rekowo", gm. Kamień Pomorski, woj. Szczecińskie. Inw. 710/95, Arch. CAG PIG, Warszawa.
- Wójcik, Z., Knitter, K. 1975d. Dokumentacja wynikowa otworu rozpoznawczego Rekowo 4. Inw. 121786, Arch. CAG PIG, Warszawa.

Głębokość [m]	Stratygrafia	Liczba pomiarów	Porowatość min-max (średnia)	Przepuszczalność min-max	Bituminy min-max (średnia)
			[%]	[mD]	[%]
2681 05 2705 65	dolomit główny	50	0,07–10,38	b. słaba–55,742	0,020-0,488
2001,93-2703,03	dolollin glowny	58	(1,39)	(<1,0)	(0,097)

Tab. 5.90. Podsumowanie wyników badań fizyczno-chemicznych próbek skalnych w interwale 2681,95–2705,65 m w otworze Rekowo 4 na podstawie dokumentacji wynikowej (Wójcik i Knitter, 1975d).

Głębokość [m]	Stratygrafia	Metoda	Składniki	% obj.
2676,4–2695,6	anhydryt podsta- wowy, dolomit główny	aparat rdzeniowy	CH_4	8,61
			C_2H_6	0,88
			C_3H_8	0,56
			CO_2	0,35
			N_2	88,91
			H_2	0,69

Tab. 5.91. Wyniki analiz gazu w otworze Rekowo 4 według dokumentacji wynikowej (Wójcik i Knitter, 1975d).

Głębokość [m]	Stratygrafia	Objawy
2679,5–2710,0	dolomit główny	punktowe ślady odgazowania oraz ślady martwej ropy na powierzchni rdzeni, na świeżych przełamach silny zapach bituminów

Tab. 5.92. Objawy węglowodorów zaobserwowane w otworze Rekowo 4 według dokumentacji wynikowej (Wójcik i Knitter, 1975d).

Głębokość[m]	Stratygrafia	Metoda	Przypływ	Tempo przypływu [m ³ /h]
2660,0–2736,0	anhydryt podsta- wowy, dolomit główny, anhydryt górny	pr. rurowy złoża (w trakcie wiercenia)	brak przypływu	_
2657,0–2709,6	dolomit główny	pr. rurowy złoża (w trakcie wiercenia)	brak przypływu	_

Tab. 5.93. Wyniki prób złożowych przeprowadzonych w otworze Rekowo 4 według dokumentacji wynikowej (Wójcik i Knitter, 1975d).

5.24. REKOWO 6

Głębokość otworu: 2746,0 m Rok zakończenia wiercenia: 1976 Rdzenie: 2698,5–2721,8 m, 26 skrzynek, NAG PIG-PIB, Archiwum Rdzeni Wiertniczych w Chmielniku

Stratygrafia (CBDG, 2021):

Głębokość [m]		Stratugnofia	
od	do	Stratygrana	
0,0	67,0	kenozoik	
67,0	245,0	jura środkowa	
245,0	957,0	jura dolna	
957,0	2035,5	trias	
957,0	1012,0	→warstwy wielichowskie	
1012,0	1059,0	→warstwy zbąszyńskie →warstwy jarkowskie	
1059,0	1100,0	\rightarrow kajper	
1100,0	1243,0	→wapień muszlowy	
1243,0	1410,0	→formacja barwicka	

1410,0	1622,0	→formacja połczyńska
1622,0	1790,0	→formacja pomorska
1790,0	2035,5	→formacja bałtycka
2035,5	2746,0	perm
2035,5	2123,5	→formacja rewalska
2123,5	2132,5	→sól kam. najmł. stropowa Na4b2
2132,5	2147,5	→ił solny czerwony górny T4b
2147,5	2167,0	→sól kam. najmłodsza górna Na4a2
2167,0	2168,0	→anh. pegmatytowy górny A4a2
2168,0	2196,5	→sól kam. najmłodsza dolna Na4a1
2196,5	2197,5	\rightarrow anh. pegmatytowy dolny A4a1
2197,5	2225,0	\rightarrow <i>il solny czerwony dolny T4a</i>
2225,0	2383,5	→sól kamienna młodsza Na3
2383,5	2407,0	→anhydryt główny A3
2407.0	2412.0	\rightarrow dolomit płytowy Ca3
2407,0	2412,0	\rightarrow szary ił solny T3
2412,0	2415,0	→anhydryt kryjący A2r
2415,0	2419,5	→sól kam. starsza kryjąca Na2r
2419,5	2461,5	→sól potasowa starsza K2
2461,5	2690,0	→sól kamienna starsza Na2

2690,0	2700,0	\rightarrow anhydryt podstawowy A2
2700,0	2720,0	→dolomit główny Ca2
2720,0	2746,0	→anhydryt górny A1g

Wyniki badań skał:

W dokumentacji wynikowej otworu Rekowo 6 (Wójcik, 1976) znajdują się wyniki analiz mikrofaunistycznych 16 próbek z interwału 28,0–200,0 m oraz petrograficzno-chemicznych 15 próbek z interwału 2697,0–2721,8 m. Ponadto załączono wyniki analiz fizykochemicznych 39 prób dolomitu głównego i anhydrytu górnego z interwału 2701,75– 2721,55 m wraz z oznaczeniami porowatości, przepuszczalności, zawartości siarki i bituminów (w tym skład grupowy 5 próbek), oraz 7 analiz gazu i 1 analizę wód złożowych (Tab. 5.94–5.96).

Wyniki geofizyki otworowej:

Dokumentacja wynikowa otworu Rekowo 6 (Wójcik, 1976) zawiera wyniki badań geofizyki wiertniczej wykonanych w następującym zakresie (dla podkreślonych profilowań w CBDG znajdują się pliki LAS):

- mikroprofilowanie oporności sterowane (mPOst): 2696–2718 m,
- profilowanie akustyczne czasu interwałowego (PAdt): 2646–2719 m,
- profilowanie czasu akustycznego T1 (PAt1): 2646–2719 m,
- o profilowanie czasu akustycznego T2(PAt2): 2646–2719 m,

- profilowanie naturalnego promieniowania gamma (PG): 5–2738 m,
- profilowanie krzywizny odwiertu (PK): 25–2675 m,
- <u>profilowanie neutron-gamma (PNG)</u>: 5–2738 m,
- profilowania oporności standardowe (PO): 10–2718 m,
- profilowanie oporności EL03 (PO): 10–2736 m,
- prof. oporności ster. odwrócone (POst odwr.): 2696–2718 m,
- profilowanie oporności sterowane (POst): 2696–2718 m,
- profilowanie potencjałów naturalnych (PS): 10–2119 m,
- profilowanie średnicy otworu (PSr): 0–2737 m.

Objawy węglowodorów w trakcie wiercenia i próby złożowe: obserwacje obecności węglowodorów w płuczce oraz w rdzeniu oraz wyniki przeprowadzonyc prób złożowych zestawiono w Tab. 5.97–5.98.

Dokumentacje NAG PIG-PIB:

- Binder, I. 1994. Dokumentacja geologiczna w kat. B złoża ropy naftowej "Rekowo", gm. Kamień Pomorski, woj. Szczecińskie. Inw. 710/95, Arch. CAG PIG, Warszawa.
- Wójcik, Z. 1976. Dokumentacja wynikowa otworu rozpoznawczego Rekowo 6. Inw. 122664, Arch. CAG PIG, Warszawa.

Głębokość [m]	Stratygrafia	Liczba pomiarów	Porowatość min-max (średnia)	Przepuszczalność min-max (średnia)	Bituminy min-max (średnia)
			[%]	[mD]	[%]
2701 75 2721 55	dolomit główny,	20	1,09–28,80	0,13-2,147	0,01-1,131
2701,75-2721,55	anhydryt górny	39	(10,15)	(0,451)	(0,478)

Tab. 5.94. Podsumowanie wyników badań fizyczno-chemicznych próbek skalnych w interwale 2701,75–2721,55 m w otworze Rekowo 6 na podstawie dokumentacji wynikowej (Wójcik, 1976).

Głębokość [m]	Stratygrafia	Metoda	Składniki	% obj.
		pr. rurowy złoża	CH_4	67,26
			C_2H_6	11,29
	anhydryt podstawowy, dolomit główny		C_3H_8	7,7
			$C_{4}H_{10}$	0,75
2697,0–2707,4			$C_{5}H_{12}$	1,64
			CO_2	
			N_2	10,99
			H_2	0,29
			Ar	0,08
2697,0-2721,8	anhydryt	przewód	CH_4	74,83

	podstawowy,		C_2H_6	5,07
	dolomit główny,		C ₃ H ₈	2,13
	anhydryt górny		C_4H_{10}	0,17
			C_5H_{12}	0.36
			$\frac{12}{CO_2}$	_
			N ₂	16.84
			H ₂	0.4
			He	0.2
			СН	74.10
				5 12
			$C_2\Pi_6$	2.40
	anhydryt			2,49
2607.0.2721.9	podstawowy,		$C_4 H_{10}$	0,21
2097,0-2721,8	dolomit główny,	przewod	C_5H_{12}	0,55
	anhydryt górny			-
			<u>N</u> 2	16,99
			<u>H</u> 2	0,45
			Не	0,2
			CH ₄	23,47
			C_2H_6	6,9
			C ₃ H ₈	10,37
2703,2–2705,3	dolomit główny	degazacja rdzenia	C_4H_{10}	4,18
			$C_{5}H_{12}$	6,34
			CO_2	4,64
			N ₂	37,51
			H_2	6,59
			He	_
			CH_4	31,95
			C_2H_6	7,44
			C_3H_8	7.7
			C4H10	1.72
2705.3-2707.4	dolomit główny	degazacia rdzenia	C_5H_{12}	3.23
2700,0 2707,1	woronno gro mij	aeguzueja razenna	CO_2	1.08
			<u> </u>	46.88
			H ₂	ślady
			He	
			CH	68.05
				11.3
			$C_2\Pi_6$	7.66
				7,00
2707 4	dalamit alárrar	przewód nad	$C_4 \Pi_{10}$	0,65
2707,4	dolomit glowny	próbnikiem	C ₅ H ₁₂	1,45
				-
			<u>N2</u>	9,29
			<u>H</u> ₂	0,51
			Ar	0,03
			CH ₄	74,72
			C ₂ H ₆	4,91
			C ₃ H ₈	1,98
			C_4H_{10}	ślady
2721,8	anhydryt górny	przewód	$C_{5}H_{12}$	_
			CO ₂	-
			N_2	17,68
			H ₂	0,5
			He	0,2

Tab. 5.95. Wyniki analiz gazu (w czystym gazie) w otworze Rekowo 6 według dokumentacji wynikowej (Wójcik, 1976).

Głębokość [m]	Stratygrafia	Metoda	Składniki	g/l
			Cl	70,5737
			Br⁻	0,3463
			HCO ₃	1,0736
2697,0–2707,4	anhydryt podstawowy, dolomit główny	pr. rurowy złoża	SO_4^-	1,0333
			Ca^{2+}	0,1925
			$\mathrm{NH_4}^+$	0,0706
			Al/Fe ³⁺	7,5589
			Ca ²⁺	1,0655
			Mg^{2+}	35,7477
			Na/K ⁺	70,5737
			pН	6,5
			mineralizacja	117,7

Tab. 5.96. Wyniki analiz wody w otworze Rekowo 6 według dokumentacji wynikowej (Wójcik, 1976).

Głębokość [m]	Stratygrafia	Objawy
2701,0–2721,0	dolomit główny, anhydryt górny	punktowe ślady, niekiedy martwej ropy oraz ślady odgazowania
2703,6	dolomit główny	samowypływ płuczki zgazowanej ze śladami ropy 150 l/min

Tab. 5.97. Objawy węglowodorów zaobserwowane w otworze Rekowo 6 według dokumentacji wynikowej (Wójcik, 1976).

Głębokość[m]	Stratygrafia	Metoda	Przypływ	Tempo przypływu [m ³ /h]
2670,0–2707,4	sól kamienna starsza, anhydryt podstawowy, dolomit główny	pr. rurowy złoża	760 l płynu złożowego zgazowanego gazem palnym, silny zapach H ₂ S	bardzo słabe
2670,0–2721,0	sól kamienna starsza, anhydryt 0,0–2721,0 podstawowy, pr. rurowy złoża dolomit główny, anhydryt górny		1500 l płynu złożowego zgazowanego gazem palnym, silny zapach H ₂ S	_

Tab. 5.98. Wyniki prób złożowych przeprowadzonych w otworze Rekowo 6 według dokumentacji wynikowej (Wójcik, 1976).

5.25. SKARCHOWO 1

Głębokość otworu: 2667,0 m Rok zakończenia wiercenia: 1976 Rdzenie: 2585,3–2667,0 m; 85 skrzynek, NAG PIG-PIB, Archiwum Rdzeni Wiertniczych w Chmielniku

Stratygrafia (CBDG, 2021):

Głębol	kość [m]	Stratygrafia	
od	do	Stratygrana	
0,0	24,0	kenozoik	
24,0	175,0	jura środkowa	
175,0	890,0	jura dolna	
890,0	2189,5	trias	
890,0	932,5	→warstwy wielichowskie	
032 5	1035.0	<i>→warstwy zbąszyńskie</i>	
932,3	1055,0	<i>→warstwy jarkowskie</i>	
1035,0	1123,0	\rightarrow kajper	
1123,0	1267,0	<i>→wapień muszlowy</i>	

	1267,0	1435,0	→formacja barwicka
	1435,0	1695,0	→formacja połczyńska
	1695,0	1870,0	→formacja pomorska
	1870,0	2189,5	→formacja bałtycka
1	2189,5	2667,0	perm
	2189,5	2225,5	→formacja rewalska
	2225,5	2235,5	→sól kam. najmł. stropowa Na4b2
	2235,5	2252,5	<i>→ił solny czerwony górny T4b</i>
	2252,5	2273,5	→sól kam. najmłodsza górna Na4a2
	2273,5	2274,5	→anh. pegmatytowy górny A4a2
	2274,5	2299,0	→sól kam. najmłodsza dolna Na4a1
	2299,0	2300,0	\rightarrow anh. pegmatytowy dolny A4a1
	2300,0	2320,0	\rightarrow <i>il solny czerwony dolny T4a</i>
	2320,0	2432,0	→sól kamienna młodsza Na3
	2432,0	2453,5	→anhydryt główny A3
	2453 5	2460 5	\rightarrow dolomit płytowy
_	2433,3	2400,5	\rightarrow szary ił solny
	2460,5	2462,5	→anhydryt kryjący A2r
	2462 5	25840	→sól kamienna starsza Na2
1	2402,5	2304,0	→sól potasowa starsza K2

2584,0	2590,0	\rightarrow anhydryt podstawowy A2
2590,0	2647,0	→dolomit główny Ca2
2647,0	2667,0	→anhydryt górny A1g

Wyniki badań skał:

W dokumentacji wynikowej otworu Skarchowo 1 (Ryba i Szewc, 1977b) znajdują się wyniki analiz mikropaleontologicznych 24 próbek z interwału 26,0-567,0 m oraz opracowanie petrograficzno-chemiczne anhydrytu podstawowego, dolomitu głównego i anhydrytu górnego na podstawie 60 próbek z interwału 2588,5-2651,5 m. Ponadto załączono wyniki analiz fizykochemicznych 118 próbek rdzeni z interwału 2589,25-2647,85 m, w tym oznaczenia porowatości, przepuszczalności, zawartości siarki i bituminów (włączając 9 analiz rozkładu grupowego), a także 2 analizy wód złożowych (Tab. 5.99-5.100).

Wyniki geofizyki otworowej:

Dokumentacja wynikowa otworu Skarchowo 1 (Ryba i Szewc, 1977b) zawiera wyniki badań geofizyki wiertniczej wykonanych w następującym zakresie (dla podkreślonych profilowań w CBDG znajdują się pliki LAS):

• profilowanie akustyczne (PA): 2589–2666 m,

- profilowanie akustyczne czasu interwałowego (PAdt): 2581–2666 m,
- profilowanie naturalnego promieniowania gamma (PG): 0–2666 m,
- profilowanie krzywizny odwiertu (PK): 5–2650 m,
- <u>profilowanie neutron-gamma (PNG)</u>: 0–2666 m,
- profilowania oporności standardowe (PO): 19–2664 m,
- profilowanie oporności EL03 (PO): 15–2664 m,
- profilowanie oporności sterowane (POst): 2589–2665 m,
- profilowanie potencjałów naturalnych (PS): 19–2193 m,
- profilowanie średnicy otworu (PSr): 15–2666 m.

Objawy węglowodorów w trakcie wiercenia i próby złożowe: obserwacje obecności węglowodorów w płuczce oraz w rdzeniu oraz wyniki przeprowadzonyc prób złożowych zestawiono w Tab. 5.101–5.102.

Dokumentacje NAG PIG-PIB:

• Ryba, J., Szewc, A. 1977b. Dokumentacja wynikowa otworu poszukiwawczego Skarchowo 1. Inw. 123097, Arch. CAG-PIG, Warszawa.

Głębokość [m]	Głębokość [m] Stratygrafia		Porowatość min-max (średnia)	Przepuszczalność min-max	Bituminy min-max (średnia)
			[%]	[mD]	[%]
2589,25–2647,85	anhydryt podstawowy, dolomit główny, anhydryt górny	118	0,21–17,37 (3,614)	0,0–0,20 (93 próbki nieprzepuszczalne)	0,002–0,160 (0,038)

Tab. 5.99. Podsumowanie wyników badań fizyczno-chemicznych próbek skalnych w interwale 2589,25–2647,85 m w otworze Skarchowo 1 na podstawie dokumentacji wynikowej (Ryba i Szewc, 1977b).

Głębokość [m]	Stratygrafia	Metoda	Składniki	g/l
2588,0–2667,0	anhydryt podstawowy, dolomit główny, anhydryt górny	pr. rurowy złoża	Cl	129,67
			Br⁻	0,4662
			HCO ₃ ⁻	1,9520
			SO ₄	3,9179
			$\mathrm{NH_4}^+$	1,0375
			Al/Fe ³⁺	0,6066
			Ca ²⁺	7,6224
			Mg^{2+}	3,0937
			Na/K ⁺	70,11750
			pH	7,38
			mineralizacja	223,34
2588,0-2667,0	anhydryt	pr. rurowy złoża	Cl	141,2140

podstawowy,	Br	0,6260
dolomit główny,	HCO ₃ ⁻	1,6470
anhydryt górny	SO_4	3,1236
	$\mathrm{NH_4^+}$	1,1925
	Al/Fe ³⁺	0,0979
	Ca ²⁺	8,0859
	Mg^{2+}	4,9375
	Na/K ⁺	73,6210
	pН	7,02
	mineralizacja	238,8

Tab. 5.100. Wyniki analiz wody w otworze Skarchowo 1 według dokumentacji wynikowej (Ryba i Szewc, 1977b).

Głębokość [m]	Stratygrafia	Objawy
2589,5–2594,9	anhydryt podstawowy, dolomit główny	punktowe wykropliny ropy na spękaniach rdzeni, wyraźna luminescencja, intensywny zapach węglowodorów i H_2S
2589,5–2594,9	anhydryt podstawowy, dolomit główny	żółtobrunatna luminescencja oraz zapach H_2S , niekiedy bituminów w rdzeniach

Tab. 5.101. Objawy węglowodorów zaobserwowane w otworze Skarchowo 1 według dokumentacji wynikowej (Ryba i Szewc, 1977b).

Głębokość[m]	Stratygrafia	Metoda	Przypływ	Tempo przypływu [m ³ /h]
2590,0–2648,5	dolomit główny, anhydryt górny	pr. rurowy złoża	2700 l płuczki z solanką	0,04
2588,0	anhydryt podstawowy	pr. rurowy złoża	32 l wody złożowej	0,04

Tab. 5.102. Wyniki prób złożowych przeprowadzonych w otworze Skarchowo 1 według dokumentacji wynikowej (Ryba i Szewc, 1977b).

5.26. STRZEŻEWO 1

Głębokość otworu: 4521,0 m Rok zakończenia wiercenia: 1978 Rdzenie: 3764,0–4233,0 m, 1 skrzynka, NAG PIG-PIB, Archiwum Rdzeni Wiertniczych w Halinowie; 1226,0–4521,0 m, 362 skrzynki, NAG PIG-PIB, Archiwum Rdzeni Wiertniczych w Chmielniku

Głębokość [m]		Studenero C.	
od	do	Stratygrana	
0,0	45,0	kenozoik	
45,0	256,0	jura środkowa	
256,0	930,0	jura dolna	
930,0	2495,0	trias	
930,0	997,5	<i>→warstwy wielichowskie</i>	
997,0	1173,0	<i>→warstwy zbąszyńskie</i>	
		<i>→warstwy jarkowskie</i>	
1173,0	1338,0	\rightarrow kajper	
1338,0	1482,5	→warstwy sulechowskie	
1482,5	1591,0	→wapień muszlowy	
1591,0	1760,0	<i>→formacja barwicka</i>	
1760,0	2025,0	→formacja połczyńska	

2025,0	2202,0	→formacja pomorska
2202,0	2495,0	→formacja bałtycka
2495,0	3199,0	perm
2495,0	2529,0	→formacja rewalska
2529,0	2530,0	\rightarrow anhydryt graniczny A4a
2530,0	2537,0	→sól kam. najmł. górna Na4a2
2537,0	2538,0	→anh. pegmatytowy górny A4a2
2538,0	2569,0	→sól kam. najmł. dolna Na4a1
2569,0	2570,0	\rightarrow anh. pegmatytowy dolny A4a1
2570,0	2576,0	\rightarrow <i>il solny czerwony dolny T4a</i>
2576,0	2670,0	→sól kamienna młodsza Na3
2670,0	2676,5	→sól potasowa starsza K2
2676,5	2760,0	→sól kamienna starsza Na2
2760,0	2768,0	\rightarrow anhydryt podstawowy A2
2768,0	2823,0	→dolomit główny Ca2
2823,0	3105,0	\rightarrow anhydryt dolny A1d
3105,0	3109,0	→wapień cechsztyński Ca1
		<i>→łupek miedzionośny T1</i>
3109,0	3199,0	→czerwony spągowiec dolny
3199,0	3890,0	karbon górny
3890,0	4518,0	fran
4518,0	4521,0	żywet

Stratygrafia (CBDG, 2021):

Wyniki badań skał:

W dokumentacji wynikowej otworu Strzeżewo 1 (Ryba i Szewc, 1978a) znajduja się wypetrograficzno-chemicznych niki analiz 23 prób z dolomitu głównego z interwału 2768,0-2823,0 m, mikrosopowy opis 12 próbek z interwału 3464,0-4521,0 m, wyniki 21 analiz mikropaleontologicznych osadów jury z interwału 48,0-170,0 m, wstępne opracowanie paleontologiczne osadów z interwałów 3756,0-3830,0 m i 4165,0-4459,0 m oraz opracowanie mikropaleontologiczne 11 próbek z interwału 3922,0-4453,0 m. Wykonano oznaczenia zawartości bituminów także 161 próbek z interwału 2876,05-3373,0 m oraz 54 próbek z interwału 3464,0-4521,25 m, w tym 5 analiz składu grupowego. Niestety, w dokumentacji znajduje się jedynie podsumowanie pomiarów firzykochemicznych, bez danych źródłowych (Tab. 5.103). Zamieszczono też 4 analizy gazu i jedna analize wód złożowych (Tab. 5.104-5.105).

Ponadto, w dokumentacjach Poprawy (2010) oraz Kiersnowskiego i Poprawy (2010) znajdują się wyniki badań materii organicznej skał karbonu, które zostały podsumowane w Tab. 5.106.

Wyniki geofizyki otworowej:

W NAG PIG-PIB znajduje się dokumentacja wynikowa otworu Strzeżewo 1 (Ryba i Szewc, 1978a), która zawiera wyniki badań geofizyki wiertniczej wykonanych w następującym zakresie (dla wymienionych profilowań w CBDG brak plików LAS):

- mikroprofilowanie oporności sterowane (mPOst): 3000–3643 m,
- mikroprofilowanie średnicy otworu (mPSr): 3453–3837 m,
- profilowanie akustyczne (PA): 171–3454 m,
- profilowanie akustyczne czasu interwałowego (PAdt): 2519–3324 m,
- profilowanie czasu akustycznego T1 (PAt1): 2519–3324 m,
- profilowanie ekscentryczności (PEksc): 2520–3167 m,
- profilowanie naturalnego promieniowania gamma (PG): 0–4510 m,
- profilowanie krzywizny odwiertu (PK): 25–4510 m,

- o profilowanie neutron-gamma (PNG): 35–4510 m,
- profilowania oporności standardowe (PO): 171–4512 m,
- profilowanie oporności sterowane (POst): 2519–4505 m,
- profilowanie potencjałów naturalnych (PS): 171–4512 m,
- profilowanie średnicy otworu (PSr): 170–4512 m.

Sprawozdanie z pomiarów średnich prędkości w odwiercie Strzeżewo 1 (Klecan, 1978b) zawiera natomiast wyniki pomiarów wykonanych w następującym zakresie (w CBDG dostępne są dla nich pliki LAS):

- profilowanie prędk. śr., czas interpolowany podwojony Tx2: 20–2600 m,
- profilowanie prędk. śr., czas interpolowany TW: 20–2600 m,
- profilowanie prędk. śr., czas pomierzony Tr_PW1: 105–2610 m,
- profilowanie prędk. śr., czas pomierzony Tr_PW2: 105–2610 m,
- profilowanie prędk. śr., czas pomierzony Tr_PW3: 105–2610 m,
- profilowanie prędk. śr., czas uśredniony Tr_PO: 105–2610 m,
- profilowanie prędk. śr., gradient czasu interpol. DT_VSP: 20–2600 m.

Objawy węglowodorów w trakcie wiercenia i próby złożowe: obserwacje obecności węglowodorów w płuczce oraz w rdzeniu oraz wyniki przeprowadzonyc prób złożowych zestawiono w Tab. 5.107–5.108.

Dokumentacje NAG PIG-PIB:

- Dybova–Jachowicz, S., Pokorski, J. 1984. Stratygrafia karbonu i dolnego permu w otworze wiertniczym Strzeewo 1. *Geological Quarterly*, **28**, 589–616.
- Kiersnowski, H., Poprawa, P. 2010. Rozpoznanie basenów węglowodorowych Polski pod kątem możliwości występowania i zasobów oraz możliwości koncesjonowania poszukiwań niekonwencjonalnych złóż gazu ziemnego - etap I. Inw. 2439/2011, Arch. CAG PIG, Warszawa.
- Klecan, A. 1978b. Sprawozdanie z pomiarów średnich prędkości w odwiercie Strze-
żewo 1. S127 VS, Arch. CAG PIG, Warszawa.

- Matyja, H. 1993. Upper Devonian of Western Pomerania. *Acta Geologica Polonica*, **43**, 27–94.
- Poprawa, P. 2010. Historia oraz geneza zdarzeń termicznych w basenie polskim i jego osadowym podłożu - ich znaczenie

dla rekonstrukcji procesów generowania węglowodorów. Inw. 2935/2011, Arch. CAG PIG, Warszawa.

• Ryba, J., Szewc, A. 1978a. Dokumentacja wynikowa otworu poszukiwawczego Strzeżewo 1. Inw. 124334, Arch. CAG PIG, Warszawa.

Głębokość [m]	Stratygrafia	Liczba pomiarów	Porowatość min-max (średnia)	Przepuszczalność min-max	Bituminy min-max (średnia)
			[%]	[mD]	[%]
2768,0–2823,0	dolomit główny	98	0,054–6,164 (1,040)	0,0–4,45 (88 próbek – brak przepuszczalności)	0,015–0,249 (0,074)
3199,0–3890,0	karbon	129	0,1–11,4 (3,7)	0,0–6,3 (17 próbek – brak przepuszczalności)	ślady–0,024 (0,014)
3890,0–4521,0	dewon	29	_	_	0,002–0,017 (0,007)

Tab. 5.103. Podsumowanie wyników badań fizyczno-chemicznych próbek skalnych w interwale 2768,0–4521,0 m w otworze Strzeżewo 1 na podstawie dokumentacji wynikowej (Ryba i Szewc, 1978a).

Głębokość [m]	Stratygrafia	Metoda	Składniki	% obj.
			CH ₄	17,41
			C_2H_6	0,02
			C_3H_8	0,002
3450.0 3524.0	karbon		$i-C_4H_{10}$	0,0004
3430,0-3324,0	Karbon	pr. rurowy złoża	$In-C_4H_{10}$	0,0007
			N ₂	81,27
			H ₂	0,594
			He	0,701
2302 0 2320 5			CH ₄	13,62
	karbon	degazacja próby rdzeniowej	C ₂ H ₆	0,018
			C ₃ H ₈	0,014
5502,0-5520,5			$In-C_4H_{10}$	0,0157
			N2	86,237
			H ₂	0,092
			CH ₄	16,589
			C_2H_6	0,013
			C ₃ H ₈	0,0004
3535,0-3587,5	karbon	pr. rurowy złoża	N ₂	81,932
			H ₂	0,351
			He	0,967
			Ar	0,448
			CH_4	24,906
3535,0–3587,5	karbon	pr. rurowy złoża	O ₂	6,31
			N_2	68,784

Tab. 5.104. Wyniki analiz gazu (w czystym gazie) w otworze Strzeżewo 1 według dokumentacji wynikowej (Ryba i Szewc, 1978a).

Głębokość [m]	Stratygrafia	Metoda	Składniki	g/l
3535,0–3587,5	karbon	pr. rurowy złoża	Cl	117,889
			Br⁻	0,8258
			HCO ₃ ⁻	0,2562
			SO_4	1,1111
			$\mathrm{NH_4}^+$	0,0375

	Al/Fe ³⁺	0.2825
	Ca ²⁺	34,6198
	Mg^{2+}	1,6061
	Na/K ⁺	34,1597
	рН	5,7
	mineralizacja	191,0

Tab. 5.105. Wyniki analiz wody w otworze Strzeżewo według dokumentacji wynikowej (Ryba i Szewc, 1978a).

Doźć no	S1	S3	Tmax min-may	HI min-may	OI min-may	PI min-may	TOC min-max	
Źródło	miarów	[mgHC/	[mgCO ₂ /		[mgHC/	[mgCO ₂ /	[mgHC/	[0/ wog]
		gSkały]	gSkały]	[·C]	gTOC]	gTOC]	gSkały]	[% wag.]
Poprawa, 2010	3	0,05–0,06	0,34–1,89	426	56–63	45-410	0,1–0,18	0,02–0,96
Kiersnowski i Poprawa, 2010	14							0,00,7

Tab. 5.106. Podsumowanie wyników badań pirolitycznych przeprowadzonych w otworze Strzeżewo 1 w utworach karbonu (Kiersnowski i Poprawa, 2010; Poprawa, 2010).

Głębokość [m]	Stratygrafia	Objawy
2786,0–2822,0	dolomit główny	zapach bituminów oraz punktowe wycieki ropy naftowej z mikroszczelin, pojedyncze ślady degazacji w rdzeniach
3510,0-3520,0	karbon	zanik płuczki

Tab. 5.107. Objawy węglowodorów zaobserwowane w otworze Strzeżewo 1 według dokumentacji wynikowej (Ryba i Szewc, 1978a).

Głębokość[m]	Stratygrafia	Metoda	Przypływ	Tempo prz. [m ³ /h]
2768,0–2890,0	dolomit główny, anhydryt górny	pr. rurowy złoża (w trakcie wiercenia)	brak przypływu	
3295,0-3329,0	karbon	pr. rurowy złoża (w trakcie wiercenia)	brak przypływu	
3444,0–3518,0	karbon	pr. rurowy złoża (w trakcie wiercenia)	płuczka ze śladami gazu	0,127
3535,0–3587,5	karbon	pr. rurowy złoża (w trakcie wiercenia)	1,9 m ³ słabo zgazowanej wody złożowej	0,74
3190,0–3304,0	czerwony spągowiec, karbon	pr. rurowy złoża (po zakończeniu wiercenia)	brak przypływu	
3180,0–3304,0	czerwony spągowiec, karbon	pr. rurowy złoża (po zakończeniu wiercenia)	brak przypływu	

Tab. 5.108. Wyniki prób złożowych przeprowadzonych w otworze Strzeżewo 1 według dokumentacji wynikowej (Ryba i Szewc, 1978a).

5.27. ŚWIERZNO 1

Głębokość otworu: 3103,0 m Rok zakończenia wiercenia: 1973 Rdzenie: 1478,5–3103,0 m, 74 skrzynki, NAG PIG-PIB, Archiwum Rdzeni Wiertniczych w Chmielniku

Stratygrafia (CBDG, 2021):

Głębokość [m]		Stratugnofia	
od	do	Stratygrana	
0,0	20,0	kenozoik	
20,0	54,0	paleogen – neogen	
54,0	104,0	jura środkowa	
104,0	776,0	jura dolna	

776,0	2300,0	trias
776,0	852,5	\rightarrow warstwy wielichowskie
852,5	963,0	→warstwy zbąszyńskie →warstwy jarkowskie
963,0	1234,0	\rightarrow kajper
1234,0	1367,5	→wapień muszlowy
1367,5	1547,5	→formacja barwicka
1547,5	1811,0	→formacja połczyńska
1811,0	1992,5	→formacja pomorska
1992,5	2300,0	→formacja bałtycka
2300,0	3103,0	perm
2300,0	2333,5	→formacja rewalska
2333,5	2334,0	→sól kam. najmł. stropowa Na4b2
2334,0	2352,5	→ił solny czerwony górny T4b

Wyniki badań skał:

W dokumentacji wynikowej otworu Świerzno 1 (Wójcik i in., 1973) znajdują się jedynie wyniki analiz fizykochemicznych 27 próbek rdzenia z interwału 2595,55–3102,95 m, w tym analizy porowatości, przepuszczalności, zasolenia i zawartości bituminów z rozdziałem grupowym 2 próbek (Tab. 109).

Wyniki geofizyki otworowej:

W NAG PIG-PIB znajduje się dokumentacja wynikowa otworu Świerzno 1 (Wójcik i in., 1973), która zawiera wyniki badań geofizyki wiertniczej wykonanych w następującym zakresie (dla podkreślonych profilowań w CBDG są dostępne pliki LAS):

- o profilowanie akustyczne (PA): 800–3095 m,
- profilowanie akustyczne czasu interwałowego (PAdt): 2292–3086 m,
- profilowanie naturalnego promieniowania gamma (PG): 2–3099 m,
- o profilowanie gazowe (PGaz): 27-3075 m,
- profilowanie gamma-gamma gęstościowe (PGG): 10–165 m,
- profilowanie krzywizny odwiertu (PK): 25–3095 m,
- o karotaż magnetyczny (PM): 300-1300 m,
- profilowanie neutron-gamma (PNG): 4–3099 m,

- profilowania oporności standardowe (PO): 27–3095 m,
- profilowanie oporności EL03 (PO): 25–3095 m,
- profilowanie oporności sterowane (POst): 2275–3095 m,
- profilowanie potencjałów naturalnych (PS): 27–3095 m,
- profilowanie średnicy otworu (PSr): 0-3095 m,
- o profilowanie temperatury (PT): 5–2490 m.

Sprawozdanie z pomiarów średnich prędkości w odwiercie Świerzno 1 (Burchat, 1973) zawiera natomiast wyniki pomiarów wykonanych w następującym zakresie (w CBDG dostępne są dla nich pliki LAS):

- profilowanie prędk. śr., czas interpolowany podwojony Tx2: 20–3000 m,
- profilowanie prędk. śr., czas interpolowany TW: 20–3000 m,
- profilowanie prędk. śr., czas pomierzony Tr_PW1: 119–3014 m,
- profilowanie prędk. śr., czas pomierzony Tr_PW2: 149–3014 m,
- profilowanie prędk. śr., czas pomierzony Tr_PW3: 119–3014 m,
- profilowanie prędk. śr., czas uśredniony Tr_PO: 119–3014 m,
- profilowanie prędk. śr., gradient czasu interpol. DT_VSP: 20–3000 m.

Objawy węglowodorów w trakcie wiercenia i próby złożowe: obserwacje obecności węglowodorów w rdzeniu zestawiono w Tab. 5.110. Nie przeprowadzono prób złożowych ze względu na brak poziomów o wyraźnych własnościach kolektorskich. Zanotowane objawy bituminów są zbyt słabe, by można było oczekiwać pozytywnych wyników.

Dokumentacje NAG PIG-PIB:

- Burchat, B. 1973. Dokumentacja pomiarów średnich prędkości, odwiert: Świerzno 1. Ś24 VS, Arch. CAG PIG, Warszawa.
- Wójcik, Z., Sielmużycka, A., Szewc, A. 1973. Dokumentacja wynikowa otworu badawczego Świerzno 1. Inw. 117479, Arch. CAG PIG, Warszawa.

Głębokość [m]	Stratygrafia	Liczba pomiarów	Porowatość min-max (średnia) [%]	Przepuszczalność min-max [mD]	Bituminy min-max (średnia) [%]
2595,55–2609,9	dolomit płytowy, szary ił solny, sól starsza,	8	2,72–8,21 (5,89)	b. słaba–0,392	0,0089–0,0474 (0,0192)
3085,0-3102,95	czerwony spągowiec	19	2,31–9,83 (6,33)	b. słaba–0,302	śladowe–0,0078

Tab. 5.109. Podsumowanie wyników badań fizyczno-chemicznych próbek skalnych w interwale 2595,55–2609,9 m w otworze Świerzno 1 na podstawie dokumentacji wynikowej (Wójcik i in., 1973).

Głębokość [m]	Stratygrafia	Objawy
25262 25422	sól kamienna	żółto-brunatna luminescencja na kontakcie lamin
2550,5-2542,5	młodsza	substancji ilastej w rdzeniach
2589,7-2593,3	anhydryt główny	rozproszona mleczno-biała luminescencja w tle skalnym w rdzeniach
2593,3-2596,9	anhydryt główny	rozproszona mleczno-biała luminescencja w tle skalnym w rdzeniach
2697 5 2714 5		punktowe ślady odgazowania, zapach bituminów oraz silny zapach H_2S
2007,3-2714,3	dolomit główny	w rdzeniach
2687,5-2714,5	dolomit główny	prof. obiegowe wykazało obecność 1% węglowodorów w płuczce

Tab. 5.110. Objawy węglowodorów zaobserwowane w otworze Świerzno 1 według dokumentacji wynikowej (Wójcik i in., 1973).

5.28. ŚWIERZNO 2

Głębokość otworu: 2772,2 m Rok zakończenia wiercenia: 1975 Rdzenie: 672,0–2770,2 m, 34 skrzynki, NAG PIG-PIB, Archiwum Rdzeni Wiertniczych w Chmielniku

Stratygrafia (CBDG, 2021):

Głębokość [m]		Structure Cin
od	do	Stratygrana
0,0	24,0	kenozoik
24,0	70,0	paleogen – neogen
24,0	70,0	jura środkowa
70,0	819,0	jura dolna
819,0	2354,0	trias
819,0	906,0	→warstwy wielichowskie
906.0	1043.0	<i>→warstwy zbąszyńskie</i>
900,0	1045,0	<i>→warstwy jarkowskie</i>
1100,0	1320,0	\rightarrow kajper dolny
1320,0	1448,0	<i>→wapień muszlowy</i>
1448,0	1613,0	→formacja barwicka
1613,0	1877,0	→formacja połczyńska
1877,0	2057,0	→formacja pomorska
2057,0	2354,0	→formacja bałtycka
2354,0	2772,2	perm
2354,0	2398,0	→formacja rewalska
2398,0	2407,0	→sól kam. najmł. stropowa Na4b2
2407,0	2432,5	<i>→ił solny czerwony górny T4b</i>
2432,5	2436,5	→sól kam. najmł. grn. ilasta Na4a2t
2436,5	2450,5	→sól kam. najmłodsza górna Na4a2
2450,5	2452,0	→anh. pegmatytowy górny A4a2
2452,0	2479,0	→sól kam. najmłodsza dolna Na4a1

2479,0	2480,0	\rightarrow anh. pegmatytowy dolny A4a1
2480,0	2503,0	\rightarrow <i>il solny czerwony dolny T4a</i>
2503,0	2661,0	→sól kamienna młodsza Na3
2661,0	2741,5	→sól kamienna starsza Na2 →sól potasowa starsza K2
2741,5	2748,0	\rightarrow anhydryt podstawowy A2
2748,0	2772,2	→dolomit główny Ca2

Wyniki badań skał:

W dokumentacji wynikowej otworu Świerzno 2 (Wójcik i Stefańska, 1976b) znajduje się opracowanie petrograficzno-geochemiczne dolomitu głównego na podstawie 8 płytek i 14 analiz składu mineralnego w interwale 2748,0–2767,8 m. Zamieszczono również wyniki analiz fizykochemicznych 20 próbek z interwału 2748,55–2766,85 m – porowatości, przepuszczalności, zawartości siarki i bituminów z rozdziałem grupowym 2 próbek, a także 7 analiz gazu, 3 analizy ropy naftowej oraz 1 analizę wody złożowej (Tab. 5.111–5.114).

Wyniki geofizyki otworowej:

W NAG PIG-PIB znajduje się dokumentacja wynikowa otworu Świerzno 2 (Wójcik i Stefańska, 1976b), która zawiera wyniki badań geofizyki wiertniczej wykonanych w następującym zakresie (dla podkreślonych profilowań w CBDG są dostępne pliki LAS):

- profilowanie akustyczne (PA): 1345–2480 m,
- profilowanie akustyczne czasu interwałowego (PAdt): 1322–2480 m,
- profilowanie naturalnego promieniowania gamma (PG): 15–1888 m,
- profilowanie krzywizny odwiertu (PK): 1–2650 m,
- profilowanie neutron-gamma (PNG): 15–1888 m,
- profilowania oporności standardowe (PO): 17–2744 m,
- profilowanie oporności EL03 (PO): 15–2744 m,
- profilowanie oporności sterowane (POst): 2 275–2744 m,

 profilowanie średnicy otworu (PSr): 15–2480 m.

Objawy węglowodorów w trakcie wiercenia i próby złożowe: obserwacje obecności węglowodorów w płuczce oraz w rdzeniu oraz wyniki przeprowadzonyc prób złożowych zestawiono w Tab. 5.115–5.116.

Dokumentacje NAG PIG-PIB:

• Wójcik, Z., Stefańska, J. 1976b. Dokumentacja wynikowa otworu badawczego Świerzno 2. Inw. 122328, Arch. CAG PIG, Warszawa.

Głębokość [m]	Stratygrafia	Liczba pomiarów	Porowatość min-max (średnia)	Przepuszczalność min-max	Bituminy min-max (średnia)
			[%]	[mD]	[%]
2748,55–2766,85	dolomit główny	20	0,07–1,10 (0,34)	b. słaba–0,980	0,0152–0,0323 (0,0226)

Tab. 5.111. Podsumowanie wyników badań fizyczno-chemicznych próbek skalnych w interwale 2748,55–2766,85 m w otworze Świerzno 2 na podstawie dokumentacji wynikowej (Wójcik i Stefańska, 1976b).

Głębokość [m]	Stratygrafia	Metoda	Składniki	% obj.
	jura dolna	z rdzenia	N ₂	96,77
672,0-674,0			O ₂	2,09
			Ar	1,14
			CH_4	6,57
		dogozogia próbu	C_2H_6	0,63
2752,4–2755,1	dolomit główny	rdzoniowoj	C ₃ H ₈	0,08
		Tuzeniowej	N ₂	90,36
			H ₂	2,36
			CH_4	74,05
			C_2H_6	9,54
			C_3H_8	6,21
2767,8	dolomit główny	pr. rurowy złoża	C_4H_{10}	0,89
			C ₅ H ₁₂	1,73
			CO_2	ślady
			N ₂	7,58
	dolomit główny	manifold	CH_4	74,23
			C_2H_6	8,94
			C_3H_8	6,04
			C ₄ H ₁₀	0,13
2770.2			C ₅ H ₁₂	0,55
2770,2			CO_2	0,57
			N ₂	6,92
			H ₂	0,57
			He	0,05
			H2S	2
			CH ₄	37,51
			C_2H_6	9,48
2770.2	dolomit alówny	atomica ekenleateerine	C_3H_8	14,46
2770,2	doloinit giowny	giowica ekspioatacyjna	C_4H_{10}	3,55
			C ₅ H ₁₂	9,63
			СО	3,48

			CO_2	0,17
			N ₂	9,99
			H2S	12,73
			CH_4	6,57
			C_2H_6	0,63
2752,4-2755,1	dolomit główny	rdzeń	C_3H_8	0,08
			N ₂	90,36
			H ₂	2,36
		1	CH_4	69,16
			C_2H_6	10,71
			C_3H_8	6,21
			C_4H_{10}	0,33
0770 0			$C_{5}H_{12}$	0,78
2112,2	dolomit glowny	giowica ekspioatacyjna	CO_2	0,93
			N_2	4,93
			H ₂	0,5
			Ar	0,12
			H2S	6,33

Tab. 5.112. Wyniki analiz gazu (w czystym gazie) w otworze Świerzno 2 według dokumentacji wynikowej (Wójcik i Stefańska, 1976b).

Głebokość [m]	Stratygrafia	Metoda:	Parametr	
			Gęstość [g/ml]	0,834
			Zawartość siarki [%]	_
			Zawartość asfaltów [%]	brak
2770.2	dolomit alówny	sped manifoldy	Zawartość parafiny [%]	2,1
2770,2	dolollin glowily	spou mannoidu	Węglowodo	ry [%]
			nasycone	65,5
			aromatyczne	26,9
			heterogeniczne	17,6
			Gęstość [g/ml]	0,842
			Zawartość siarki [%]	—
	dolomit główny		Zawartość asfaltów [%]	ślady
		ropa pobrana ze zbiornika	Zawartość parafiny [%]	6,26
2770,2			Węglowodory [%]	
			nasycone	80,6
			aromatyczne	14,2
			heterogeniczne	3,8
			asfalteny [%]	1,4
			Gęstość [g/ml]	0,843
			Zawartość siarki [%]	—
			Zawartość asfaltów [%]	ślady
2770,2	dolomit główny	z otwou w czasie	Zawartość parafiny [%]	1,38
	dolollilit glowny	obiegowego odpuszczania	Węglowodory:	
			nasycone	67,6
			aromatyczne	21
			heterogeniczne	10,1

Tab. 5.113. Wyniki analiz ropy w otworze Świerzno 2 według dokumentacji wynikowej (Wójcik i Stefańska, 1976b).

Głebokość [m]	Stratygrafia	Metoda	Składniki	g/l
			Cl	107,6706
			HCO ₃ ⁻	4,087
			SO4 ²⁻	3,3335
		piyii z koryt w trakcie za-	Ca^{2+}	6,3126
			Na ⁺	62,554
			pH	7,5
			mineralizacja	189,0
2770,2	dolomit główny	filtrat z górnej warstwy	Cl	99,2667
		zbiornika	HCO ₃ ⁻	0,854

SO ₄ ²⁻
Ca ²⁺
Mg ²⁺
Na ⁺
pН
mineralizacja

Tab. 5.114. Wyniki analiz wody w otworze Świerzno 2 według dokumentacji wynikowej (Wójcik i Stefańska, 1976b).

Głębokość [m]	Stratygrafia	Objawy
2746,0–2767,8	anh. podstawowy, dolomit główny	punktowe ślady gazu
2763,3-2770,2	dolomit główny	zgazowanie płuczki i objawy ropy, samowypływ do 80 l/min
2772,2	dolomit głowny	samowypływ płuczki do 400 l/min

Tab. 5.115. Objawy węglowodorów zaobserwowane w otworze Świerzno 2 według dokumentacji wynikowej (Wójcik i Stefańska, 1976b).

Głębokość[m]	Stratygrafia	Metoda	Przypływ	Tempo przypływu [m ³ /h]
	sól starsza, anhy-	paker eksploatacyjny na gł.	próbna eksploatacja– 8	
2723,0–2770,2	dryt podstawowy,	2723,0 m, wielokrotne syfo-	miesięcy: 125 tys. ton	
	dolomit główny	nowanie	ropy, i 15,743 Nm ³ gazu	
2615,0–2772,2	sól młodsza, sól	przegłębienie otworu 2 m;	nieszczelność, próba	
	starsza, anhydryt	paker eksploatacyjny na gł.	nieudana – brak możli-	
	podstawowy, do-	2615,0 m, łyżkowanie, sy-	wości wyciągnięcia pake-	
	lomit główny	fonowanie	ra eksploatacyjnego	

Tab. 5.116. Wyniki prób złożowych przeprowadzonych w otworze Świerzno 2 według dokumentacji wynikowej (Wójcik i Stefańska, 1976b).

5.29. ŚWIERZNO 4

Głębokość otworu: 3238,5m Rok zakończenia wiercenia: 1975 Rdzenie: 2678,0–3238,5 m; 68 skrzynek, NAG PIG-PIB, Archiwum Rdzeni Wiertniczych w Chmielniku

Stratygrafia (CBDG, 2021):

Głębokość [m]		Stratygrafia
od	do	Stratygrana
0,0	54,0	kenozoik
54,0	120,5	jura środkowa
120,5	837,0	jura dolna
837,0	2338,0	trias
837,0	907,0	\rightarrow warstwy wielichowskie
007.0	1031,0	<i>→warstwy zbąszyńskie</i>
907,0		<i>→warstwy jarkowskie</i>
1031,0	1087,5	\rightarrow kajper
1087,5	1436,0	→wapień muszlowy
1436,0	1596,5	→formacja barwicka
1596,5	1863,0	→formacja połczyńska
1863,0	2044,0	→formacja pomorska
2044,0	2338,0	→formacja bałtycka
2338,0	3195,0	perm
2338,0	2390,0	→formacja rewalska
2390,0	2400,0	→sól kam. najmł. stropowa Na4b2
2400,0	2426,5	<i>→ił solny czerwony górny T4b</i>

2426,5	2446,0	→sól kam. najmłodsza górna Na4a2
2446,0	2447,0	→anh. pegmatytowy górny A4a2
2447,0	2475,0	→sól kam. najmłodsza dolna Na4a1
2475,0	2476,5	\rightarrow anh. pegmatytowy dolny A4a1
2476,5	2492,0	\rightarrow <i>it solny czerwony dolny T4a</i>
2492,0	2645,0	→sól kamienna młodsza Na3
2645,0	2667,5	<i>→anhydryt główny A3</i>
2667 5	2675 0	\rightarrow dolomit płytowy Ca3
2007,5	2075,0	\rightarrow szary ił solny T3
2675,0	2678,0	<i>→anhydryt kryjący A2r</i>
2678,0	2769,0	→sól kamienna starsza Na2
2769,0	2777,5	\rightarrow anhydryt podstawowy A2
2777,5	2811,5	→dolomit główny Ca2
2811,5	3012,5	→anhydryt górny A1g
3012,5	3045,0	→sól kam. najstarsza górna Na1g
3045,0	3087,0	<i>→anhydryt środkowy A1s</i>
3087,0	3095,0	→sól kam. najstarsza dolna Na1d
3095,0	3148,5	\rightarrow anhydryt dolny A1d
3148,5	3155,3	→wapień cechsztyński Ca1
3155,3	3156,0	\rightarrow łupek miedzionośny T1
3156,0	3195,0	→czerwony spągowiec górny
3195,0	3238,5	famen
3195,0	3238,5	→formacja krojanicka

Wyniki badań skał:

W dokumentacji wynikowej otworu Świerzno 4 (Ryba i Knitter, 1975) znajduje się opracowanie petrograficzne i skład mineralny 36 próbek skalnych anhydrytu podstawowego, dolomitu głównego i anhydrytu górnego z interwału 2776,0–2819,4 m. Zamieszczono również wyniki badań fizykochemicznych 85 próbek rdzeni z interwału 2778,3–3237,75 m, w tym wyniki pomiarów porowatości, przepuszczalności zawartości siarki i bituminów z rozdziałem grupowym 7 próbek, a także 7 analiz gazu, 2 analizy wód złożowych oraz 2 analizy płuczki i 2 analizy filtratu (Tab. 5.117–5.119).

Wyniki geofizyki otworowej:

W NAG PIG-PIB znajduje się dokumentacja wynikowa otworu Świerzno 4 (Ryba i Knitter, 1975), która zawiera wyniki badań geofizyki wiertniczej wykonanych w następującym zakresie (dla podkreślonych profilowań w CBDG dostępne są pliki LAS):

- profilowanie akustyczne (PA): 2776–3186 m,
- profilowanie akustyczne czasu interwałowego (PAdt): 2757–3188 m,
- profilowanie naturalnego promieniowania gamma (PG): 0–3235 m,
- profilowanie krzywizny odwiertu (PK): 25–3235 m,
- profilowanie neutron-gamma (PNG): 0–3235 m,
- profilowania oporności standardowe (PO): 89–3235 m,
- profilowanie oporności EL03 (PO): 85–3188 m,
- profilowanie oporności sterowane (POst): 2325–3235 m,

- profilowanie potencjałów naturalnych (PS): 89–2348 m,
- profilowanie średnicy otworu (PSr): 85–3235 m.

Dokumentacja pomiarów średnich prędkości w odwiercie Świerzno 4 (Klecan, 1975b) zawiera wyniki pomiarów wykonanych w następującym zakresie (w CBDG dostępne są dla nich pliki LAS):

- profilowanie prędk. śr., czas interpolowany podwojony Tx2: 20–3180 m,
- profilowanie prędk. śr., czas interpolowany TW: 20–3180 m,
- profilowanie prędk. śr., czas pomierzony Tr_PW1: 79–3199 m,
- profilowanie prędk. śr., czas pomierzony Tr_PW2: 879–3019 m,
- profilowanie prędk. śr., czas uśredniony Tr_PO: 79–3199 m,
- profilowanie prędk. śr., gradient czasu interpol. DT_VSP: 20–3180 m.

Objawy węglowodorów w trakcie wiercenia i próby złożowe: obserwacje obecności węglowodorów w płuczce oraz w rdzeniu oraz wyniki przeprowadzonyc prób złożowych zestawiono w Tab. 5.120–5.121.

Dokumentacje NAG PIG-PIB:

- Klecan, A. 1975b. Dokumentacja pomiarów średnich prędkości, odwiert: Świerzno 4. Ś25 VS, Arch. CAG PIG, Warszawa,
- Ryba, J., Knitter, K. 1974. Dokumentacja wynikowa otworu rozpoznawczego Świerzno 4. Inw. 121159, Arch. CAG PIG, Warszawa.

Głębokość [m]	Stratygrafia	Liczba pomiarów	Porowatość min-max (średnia)	Przepuszczalność min-max	Bituminy min-max (średnia)
			[%]	[mD]	[%]
2778,3–2811,6	dolomit główny, anhydryt górny	47	0,07–6,22 (1,35)	b. słaba–0,138	0,003–0,066 (0,0138)
3149,25–3155,25	wapień cechsztyński	10	0,07-0,52 (0,24)	0,011–0,561	ślady–0,010
3156,0-3160,75	czerwony spągowiec	11	2,09–3,34 (2,83)	0,146–0,23	ślady–0,005

Tab. 5.117. Podsumowanie wyników badań fizyczno-chemicznych próbek skalnych w interwale 2778,3–3160,75 m w otworze Świerzno 4 na podstawie dokumentacji wynikowej (Ryba i Knitter, 1975).

Głebokość [m]	Stratygrafia	Metoda	Skła	dniki
	Stratygrana		CH	3.08
	sól starsza		C.H.	0.26
			C.H.	0,20
2764,8–2797,4	nodstawowy	degazacja próby rdzeniowej	$C_{3}\Pi_{8}$	0,17
	poustawowy,		<u> </u>	0,19
	dolollin glowily		<u>IN2</u>	95,72
			H ₂	0,58
			CH ₄	/8,/9
			C_2H_6	5,19
			C ₃ H ₈	3,57
	anhydryt		$1ZO-C_4H_{10}$	0,22
2776.0-2832.0	podstawowy,	pr. rurowy złoża	$n-C_4H_{10}$	0,49
2770,0 2002,0	dolomit główny,	Pro rando of Proza	CO	0,3
	anhydryt górny		CO ₂	0,1
			N ₂	7,08
			H ₂	4,16
			He	0,1
	anhydryt podstawowy, dolomit główny, anhydryt górny		CH_4	59,09
			C_2H_6	4,16
		pr. rurowy złoża	C ₃ H ₈	3,03
			$izo-C_4H_{10}$	0,15
			$n-C_4H_{10}$	0.58
2776.0-2832.0			CO	0.5
			CO2	0.6
			<u>N2</u>	10.83
			H ₂	2.1
			He	ślady
			H2S	18.36
			CH	0.48
	dolomit główny	degazacja próby rdzeniowej	C.H.	0,40
			C.H.	0,03
2790,6–2792,4				0,05
			N	0,10
				0.1
				0,1
				5.06
	anhydryt		$C_2\Pi_6$	3,00
2776,0-3200,0	podstawowy	pr. rurowy złoża		0,81
, ,	– famen	1		slady
			<u>N</u> 2	9,43
			H ₂	0,97
	wapień		CH ₄	0,2
	cechsztyński,		C ₂ H ₆	ślady
	łupek		CO ₂	0,13
3149,0–3155,0	miedzionośny,	degazacja próby rdzeniowej	N ₂	99,3
	czerwony spągowiec górny		H ₂	0,37

Tab. 5.118. Wyniki analiz gazu (w czystym gazie) w otworze Świerzno 4 według dokumentacji wynikowej (Ryba i Knitter, 1975).

Głębokość [m]	Stratygrafia	Metoda	Składniki	g/l
			Cl	193,0032
			CO_{3}^{2}	0,3
2832.0	anhudrut górnu	pr. rurowy złoża	HCO ₃ ⁻	1,1626
2852,0	annyuryt gorny		Ca ²⁺	5,0803
			Mg^{2+}	0,7019
			pН	8,5
2832,0	anhydryt górny		Cl	189,7092
		pr. rurowy złoża	Br	1,0656
			CO_{3}^{2}	0,96
			HCO ₃ ⁻	0,854

			SO_4^{2-}	1,2881
			$\mathrm{NH_4}^+$	0,8125
			Ca ²⁺	5,5833
			Mg^{2+}	12,909
			Na/K ⁺	93,388
			pН	8
			mineralizacja	309,4
			Ca ²⁺	4,025
2200.0	famen	filtrat, pr. rurowy złoża	Mg^{2+}	2,045
5200,0			zasolenie	286,65
			pН	286.65
			Ca ²⁺	0,704
3200,0	former	płuczka pobrana z koryt	Mg^{2+}	0,794
	tamen	podczas płukania otworu	zasolenie	297,13
			рH	7.6

Tab. 5.119. Wyniki analiz wód i filtratu płuczki w otworze Świerzno 4 według dokumentacji wynikowej (Ryba i Knitter, 1975).

Głębokość [m]	Stratygrafia	Objawy
2778,2-2781,3	dolomit główny	punktowe ślady degazacji w rdzeniach
2795,8	dolomit główny	wypływ płuczki silnie zgazowanej i skażonej H_2S
2777,5-2811,5	dolomit główny	żółta luminescencja i zapach H ₂ S

Tab. 5.120. Objawy węglowodorów zaobserwowane w otworze Świerzno 4 według dokumentacji wynikowej (Ryba i Knitter, 1975).

Głębokość[m]	Stratygrafia	Metoda	Przypływ	Tempo przypływu [m ³ /h]
2763,0–2832,0	sól starsza, anhydryt podstawowy, dolomit główny, anhydryt górny	pr. rurowy złoża (w trakcie wiercenia)	300 l wody złożowej ze śladami gazu	b.d.
2765,0-3200,0	sól starsza – famen	pr. rurowy złoża (w trakcie wiercenia)	1,73 m ³ płynu słabo zga- zowanego gazem palnym z zapachem H ₂ S	0,03

Tab. 5.121. Wyniki prób złożowych przeprowadzonych w otworze Świerzno 4 według dokumentacji wynikowej (Ryba i Knitter, 1975).

5.30. ŚWIERZNO 5

Głębokość otworu: 2883,6 m Rok zakończenia wiercenia: 1975 Rdzenie: 1035,0–2883,6 m, 85 skrzynek NAG PIG-PIB, Archiwum Rdzeni Wiertniczych w Chmielniku

Stratygrafia (CBDG, 2021):

Głębok	ość [m]	Stratygrafia	
od	do	Stratygrana	
0,0	46,0	kenozoik	
46,0	108,5	jura środkowa	
108,5	830,0	jura dolna	
830,0	2290,0	trias	
830,0	882,0	→warstwy wielichowskie	
882.0	002 5	<i>→warstwy zbąszyńskie</i>	
002,0	99 <u>2</u> ,3	<i>→warstwy jarkowskie</i>	

992,5	1266,0	\rightarrow kajper
1266,0	1397,0	<i>→wapień muszlowy</i>
1397,0	1558,5	→formacja barwicka
1558,5	1822,0	→formacja połczyńska
1822,0	1996,0	→formacja pomorska
1996,0	2290,0	→formacja bałtycka
2290,0	3195,0	perm
2290,0	2330,0	→formacja rewalska
2330,0	2337,5	→sól kam. najmł. stropowa Na4b2
2337,5	2354,0	→ił solny czerwony górny T4b
2354,0	2373,0	→sól kam. najmłodsza górna Na4a2
2373,0	2374,0	→anh. pegmatytowy górny A4a2
2374,0	2404,0	→sól kam. najmłodsza dolna Na4a1
2404,0	2405,0	\rightarrow anh. pegmatytowy dolny A4a1
2405,0	2421,0	\rightarrow <i>il solny czerwony dolny T4a</i>
2421,0	2652,5	→sól kamienna młodsza Na3
2652,5	2673,0	<i>→anhydryt główny A3</i>
2673,0	2694,0	\rightarrow dolomit płytowy Ca3

2694,0	2703,0	$\rightarrow il \ solny \ szary \ T3$
2703,0	2708,0	→anhydryt kryjący A2r
2708,0	2716,0	→sól kam. starsza kryjąca Na2r
2716,0	2734,0	→sól potasowa starsza K2
2734,0	2832,5	→sól kamienna starsza Na2
2832,5	2840,0	\rightarrow anhydryt podstawowy A2
2840,0	2872,0	→dolomit główny Ca2
2872,0	2883,6	→anhydryt górny A1g

Wyniki badań skał:

W dokumentacji otworu Świerzno 5 (Wójcik i Knitter, 1975e) znajdują się wyniki analiz petrograficzno-chemicznych prób dolomitu głównego z interwału 2845,0–2872,0 m. Zamieszczono również wyniki badań własności fizykochemicznych 72 próbek z interwału 2845,55–2878,45 m oraz 22 próbek z interwału 2674,6–2709,5 m, a także 4 analiz gazu ziemnego (Tab. 5.122–5.123).

Wyniki geofizyki otworowej:

Dokumentacja wynikowa otworu Świerzno 5 (Wójcik i Knitter, 1975e) zawiera wyniki badań geofizyki wiertniczej wykonanych w następującym zakresie (dla podkreślonych profilowań w CBDG znajdują się pliki LAS):

- profilowanie akustyczne (PA): 2655–2875 m,
- profilowanie akustyczne czasu interwałowego (PAdt): 2655–2875 m,
- profilowanie naturalnego promieniowania gamma (PG): 0–2875 m,
- profilowanie krzywizny odwiertu (PK): 25–2875 m,
- profilowanie neutron-gamma (PNG): 0–2875 m,

- profilowania oporności standardowe (PO): 119–2872 m,
- profilowanie oporności EL03 (PO): 115–2872 m,
- profilowanie oporności sterowane (POst): 2656–2872 m,
- profilowanie potencjałów naturalnych (PS): 890–2872 m,
- profilowanie średnicy otworu (PSr): 115–2872 m.

Objawy węglowodorów w trakcie wiercenia i próby złożowe: obserwacje obecności węglowodorów w rdzeniu oraz wyniki przeprowadzonyc prób złożowych zestawiono w Tab. 5.124–5.125.

Dokumentacje NAG PIG-PIB:

 Wójcik, Z., Knitter, K. 1975e. Dokumentacja wynikowa otworu badawczego Świerzno 5. Inw. 121163, Arch. CAG PIG, Warszawa.

Głębokość [m]	Stratygrafia	Liczba pomiarów	Porowatość min-max (średnia)	Przepuszczalność min-max	Bituminy min-max (średnia)
			[%]	[mD]	[%]
2674,6–2709,5	dolomit płytowy, ił solny szary, anhy- dryt kryjący, sól starsza	22	_	_	0,008–0,032 (0,018)
2845,0–2872,0	dolomit główny	72	0,22–11,05 (2,48)	b. słaba–7,502	0,006–0,037 (0,023)

Tab. 5.122. Podsumowanie wyników badań fizyczno-chemicznych próbek skalnych w interwale 2674,6–2872,0 m w otworze Świerzno 5 na podstawie dokumentacji wynikowej (Wójcik i Knitter, 1975e).

Głębokość [m]	Stratygrafia	Metoda	Składniki	% obj.
2658,3–2659,8	anhydryt główny	degazacja rdzenia	CH_4	25,26
			C_2H_6	9,05
			C_3H_8	5,1
			H_2	0,69
			N_2	0,69
2660,0-2662,7	anhydryt główny	degazacja rdzenia	CH_4	30,04

			C_2H_6	11,65
			C ₃ H ₈	9,36
			i- C ₄ H ₁₀	0,61
			$n-C_4H_{10}$	1,27
			CO ₂	0,3
			H ₂	46,44
			CH_4	11,44
			C ₂ H ₆	1,93
	dolomit płytowy		$\frac{C_2 - C_0}{C_3 H_8}$	0,73
		degazacja rdzenia	C4H10	ślady
2674,6-2680,5			N_2	85,55
			CO_2	0,1
			H ₂	0,24
			He	0,01
			CH_4	21,89
			C_2H_6	6,67
	1.1. 4.1.4		C ₃ H ₈	13,04
2693,7–2703,0	dolomit prytowy,	degazacja rdzenia	N ₂	65,98
	szary il solny		CO_2	2,21
			H ₂	0,2
			He	0.01

Tab. 5.123. Wyniki analiz gazu w otworze Świerzno 5 według dokumentacji wynikowej (Wójcik i Knitter, 1975e).

Głębokość [m]	Stratygrafia	Objawy
26805-2684,4	dolomit płytowy	punktowe ślady degazacji
2844,0-2878,6	dolomit główny, anhydryt górny	ślady odgazowania, zapach H_2S , miejscami tłuste plamy

Tab. 5.124. Objawy węglowodorów zaobserwowane w otworze Świerzno 5 według dokumentacji wynikowej (Wójcik i Knitter, 1975e).

Głębokość[m]	Stratygrafia	Metoda	Przypływ	Tempo przypłyu [m ³ /h]
2648,0–2657,0	sól kamienna młodsza, anhydryt główny	pr. rurowy złoża	brak przypływu	-

Tab. 5.125. Wyniki prób złożowych przeprowadzonych w otworze Świerzno 5 według dokumentacji wynikowej (Wójcik i Knitter, 1975e).

5.31. ŚWIERZNO 9

Głębokość otworu: 2883,6 m Rok zakończenia wiercenia: 1975 Rdzenie: 2030,0–2774,7 m, 10 skrzynek, NAG PIG-PIB, Archiwum Rdzeni Wiertniczych w Chmielniku

Stratygrafia (CBDG, 2021):

Głębokość [m]		Stratygrafia	
od	do	Stratygrana	
0,0	24,0	kenozoik	
24,0	69,0	paleogen, neogen	
69,0	136,0	jura środkowa	
136,0	815,0	jura dolna	
815,0	2247,5	trias	
815,0	902,0	\rightarrow warstwy wielichowskie	
902,0	1036,0	<i>→warstwy zbąszyńskie</i>	

		<i>→warstwy jarkowskie</i>
1036,0	1262,5	\rightarrow kajper
1262,5	1443,0	<i>→wapień muszlowy</i>
1443,0	1605,0	→formacja barwicka
1605,0	1871,0	→formacja połczyńska
1871,0	2052,0	→formacja pomorska
2052,0	2247,5	→formacja bałtycka
2247,5	2774,7	perm
2247,5	2389,5	→formacja rewalska
2389,5	2399,0	→sól kam. najmł. stropowa Na4b2
2399,0	2420,0	<i>→ił solny czerwony górny T4b</i>
2420,0	2438,5	→sól kam. najmł. górna Na4a2
2438,5	2439,0	→anh. pegmatytowy górny A4a2
2439,0	2467,5	→sól kam. najmł. dolna Na4a1
2467,5	2469,0	\rightarrow anh. pegmatytowy dolny A4a1
2469,0	2488,5	\rightarrow <i>it solny czerwony dolny T4a</i>
2488,5	2611,0	→sól kamienna młodsza Na3

2611,0	2637,0	<i>→anhydryt główny A3</i>
2637.0	2647 5	\rightarrow dolomit płytowy Ca3
2037,0	2047,5	\rightarrow szary ił solny T3
2647,5	2653,0	<i>→anhydryt kryjący A2r</i>
2653,0	2763,5	→sól kamienna starsza Na2
2653,0	2763,5	→sól potasowa starsza K2
2763,5	2769,0	\rightarrow anhydryt podstawowy A2
2769,0	2774,7	→dolomit główny Ca2

Wyniki badań skał:

W dokumentacji wynikowej otworu Świerzno 9 (Wójcik i Knitter, 1976) znajdują się wyniki analiz fizyczno-chemicznych i petrofizycznych 11 próbek dolomitu głównego z interwału 2769,1–2774,5 m (Tab. 5.126). Ponadto zamieszczono 3 analizy gazu ziemnego, 1 analizę ropy naftowej i 1 analizę wód złożowych (Tab. 5.127–5.129).

Wyniki geofizyki otworowej:

Dokumentacja wynikowa otworu Świerzno 9 (Wójcik i Knitter, 1976) zawiera wyniki badań geofizyki wiertniczej wykonanych w następującym zakresie (dla podkreślonych profilowań w CBDG znajdują się pliki LAS):

- profilowanie akustyczne (PA): 1280–2748 m,
- profilowanie akustyczne czasu interwałowego (PAdt): 1268–2748 m,

- profilowanie naturalnego promieniowania gamma (PG): 2–2763 m,
- profilowanie krzywizny odwiertu (PK): 25–2750 m,
- <u>profilowanie neutron-gamma</u> (PNG): 2–2763 m,
- profilowania oporności standardowe (PO): 5–2763 m,
- profilowanie oporności EL03 (PO): 0–2763 m,
- profilowanie oporności sterowane (POst): 2225–2763 m,
- profilowanie potencjałów naturalnych (PS): 5–2252 m,
- profilowanie średnicy otworu (PSr): 0–2757 m.

Objawy węglowodorów w trakcie wiercenia i próby złożowe: obserwacje obecności węglowodorów w rdzeniu oraz wyniki przeprowadzonyc prób złożowych zestawiono w Tab. 5.130–5.131.

Dokumentacje NAG PIG-PIB:

• Wójcik, Z., Knitter, K. 1976. Dokumentacja wynikowa otworu poszukiwawczego Świerzno 9. Inw. 122096, Arch. CAG PIG, Warszawa.

Głębokość [m]	[m] Stratygrafia	Liczba pomiarów	Porowatość min-max (średnia)	Przepuszczalność min-max	Bituminy min-max (średnia)
			[%]	[mD]	[%]
2760 1 2774 5	dolomit główny	11	1,23–4,5	h staba 0.040	0,014-0,041
2709,1-2774,5	dolollin glowily	11	(2,96)	0.51a0a-0.049	(0,023)

Tab. 5.126. Podsumowanie wyników badań fizyczno-chemicznych próbek skalnych w interwale 2769,1–2774,5 m w otworze Świerzno 9 na podstawie dokumentacji wynikowej (Wójcik i Knitter, 1976).

Głębokość [m]	Stratygrafia	Metoda	Składniki	% obj.
			CH_4	4,48
			C_2H_6	0,76
2766 5 2774 7	anhydryt podstawowy,	degazacia rdzenia	C_3H_8	0,41
2700,3-2774,7	dolomit główny	uegazaeja tuzema	N_2	93,56
			CO_2	0,54
			H_2	0,25
	dolomit główny	gaz pobrany w trakcie odpuszczania	CH_4	49,71
			C_2H_6	11,73
			C_3H_8	10,62
			C_4H_{10}	1,52
2774,7			$C_{5}H_{12}$	4,07
			CO	2,73
			CO_2	0,76
			N_2	2,68
			H_2S	15,92
77747	dolomit główny	nodozos nuch sozowase	CH_4	25,98
2774,7	dolomit główny	podezas prof. gazowego	C_2H_6	2,98

	C_3H_8	0,01
	CO_2	0,03
	O ₂	71

Tab. 5.127. Wyniki analiz gazu (w czystym gazie) w otworze Świerzno 9 według dokumentacji wynikowej (Wójcik i Knitter, 1976).

Głebokość [m]	Stratygrafia	Metoda:	Parametr	
			Gęstość [g/ml]:	0,855
	dolomit główny	ropa pobrana z manifoldu	Zawartość siarki [%]:	—
			Zawartość parafiny	1 20
			w ropie [%]:	1,20
2774,7			Węglowodory [%]:	
			nasycone	70,6
			aromatyczne	13,9
			heterogeniczne	11,4
			asfalteny	4,1

Tab. 5.128. Wyniki analiz ropy w otworze Świerzno 9 według dokumentacji wynikowej (Wójcik i Knitter, 1976).

Głebokość [m]	Stratygrafia	Metoda	Składniki	g/l
	dolomit główny	w czasie odpuszczania	Cl	197,2224
			Br	0,999
			SO_4^{2-}	1,8437
77747			$\mathrm{NH_4}^+$	_
2774,7			Ca ²⁺	4,6829
			Mg^{2+}	11,0569
			Na/K ⁺	104,48
			pH	6,15
			mineralizacja	324,0

Tab. 5.129. Wyniki analiz wody w otworze Świerzno 9 według dokumentacji wynikowej (Wójcik i Knitter, 1976).

Głębokość [m]	Stratygrafia	Objawy
2766,5–2774,7	dolomit główny	punktowe ślady gazu i ropy, luminescencja wykazała jaskrawe, żółte świece- nie
2769,0–2774,7	anhydryt podsta- wowy, dolomit główny	samowypływ płuczki 250 l/min; po zatłoczeniu ołuczki galenowej otrzymano 100 l ropy i niezmierzoną ilość płuczki zgazowanej, skażonej H ₂ S; zanik około 27 m ³ płuczki

Tab. 5.130. Objawy węglowodorów zaobserwowane w otworze Świerzno 9 według dokumentacji wynikowej (Wójcik i Knitter, 1976).

Głębokość[m]	Stratygrafia	Metoda	Przypływ	Tempo prz. [m ³ /h]
2729,0–2774,7	sól starsza, anhydryt podstawowy, dolo- mit główny	paker eksploatacyjny na głębokości 2729,0 m	ropa z gazem, solanka zgazowana	

Tab. 5.131. Wyniki prób złożowych przeprowadzonych w otworze Świerzno 9 według dokumentacji wynikowej (Wójcik i Knitter, 1976).

5.32. WRZOSOWO 1

Głębokość otworu: 3305,0 m **Rok zakończenia wiercenia:** 1975 **Rdzenie:** 1328,0–3141,3 m, 91 skrzynek, NAG PIG-PIB, Archiwum Rdzeni Wiertniczych w Chmielniku

Stratygrafia (CBDG, 2021):

Głębokość [m]		Stratzgrafia	
od	do	Stratygrana	
0,0	55,0	kenozoik	
55,0	232,0	jura środkowa	
232,0	840,5	jura dolna	

840,5	2299,0	trias
840,5	911,5	→warstwy wielichowskie
0115	1025.0	<i>→warstwy zbąszyńskie</i>
911,5	911,5 1025,0	<i>→warstwy jarkowskie</i>
1025,0	1295,0	→kajper
1295,0	1423,0	→wapień muszlowy
1423,0	1585,0	→formacja barwicka
1585,0	1836,0	→formacja połczyńska
1836,0	2006,0	→formacja pomorska
2006,0	2299,0	→formacja bałtycka
2299,0	3081,5	perm
2299,0	2335,0	→formacja rewalska
2335,0	2337,0	→sól kam. najmł. górna Na4a2
2337,0	2338,0	→anh. pegmatytowy górny A4a2
2338,0	2363,5	→sól kam. najmł. dolna Na4a1
2363,5	2365,0	\rightarrow anh. pegmatytowy dolny A4a1
2365,0	2370,0	\rightarrow <i>il solny czerwony dolny T4a</i>
2370,0	2536,0	→sól kamienna młodsza Na3
2536,0	2584,0	<i>→anhydryt główny A3</i>
2584,0	2595,0	\rightarrow dolomit płytowy Ca3
2595,0	2631,0	→anhydryt główny A3
2631.0	2640.0	\rightarrow dolomit płytowy Ca3
2031,0	2040,0	\rightarrow szary ił solny T3
2640,0	2643,0	→anhydryt kryjący A2r
2643,0	2730,0	→sól kamienna starsza Na2
2730,0	2742,5	\rightarrow anhydryt podstawowy A2
2742,5	2785,0	→dolomit główny Ca2
2785,0	2988,5	→anhydryt górny A1g
2988,5	2992,5	→sól kamienna najstarsza Na1
2992,5	3072,0	\rightarrow anhydryt dolny A1d
2072 0	3077.0	→wapień cechsztyński Ca1
5072,0	5077,0	\rightarrow lupek miedzionośny Tl
3077,0	3081,5	<i>→czerwony spągowiec górny</i>
3081,5	3305,0	karbon – westfal

Wyniki badań skał:

W dokumentacji wynikowej otworu Wrzosowo 1 (Ryba i Stefańska, 1976) znajdują się wyniki opracowań mikropaleontologicznych 11 prób okruchowych z interwału 60,0– 340,0 m. Zamieszczono także opracowania petrograficzno-chemiczne 36 prób dolomitu głównego z interwału 2742,5–2785,0 m oraz opracowania petrograficzne 3 prób ze stropowych partii karbonu. W dokumentacji wynikowej otworu zawarto również wyniki analiz fizykochemicznych (porowatości, przepuszczalności, zawartości siarki i biruminów) 134 próbek z interwału 2741,75–3246,45 m, a także 9 analiz gazu i 2 analizy wód złożowych (Tab. 5.132–5.134).

Wyniki geofizyki otworowej:

W NAG PIG-PIB znajduje się dokumentacja wynikowa otworu Wrzosowo 1 (Ryba i Stefańska, 1976), która zawiera wyniki badań geofizyki wiertniczej wykonanych w następującym zakresie (dla podkreślonych profilowań w CBDG znajdują się pliki LAS):

- \circ <u>średnica nominalna wiercenia (BS)</u>: 0-3304 m,
- mikroprofilowanie średnicy otworu (mPSr): 2731–3304 m,
- o profilowanie akustyczne (PA): 1352–3303 m,
- profilowanie akustyczne czasu interwałowego (PAdt): 1351–3304 m,
- profilowanie naturalnego promieniowania gamma (PG): 0–3303 m,
- profilowanie krzywizny odwiertu (PK): 25–3300 m,
- <u>profilowanie neutron-gamma (PNG)</u>: 0–3303 m,
- profilowania oporności standardowe (PO): 5–3302 m,
- profilowanie oporności EL03 (PO): 0-3302 m,
- prof. oporności ster. odwrócone kosa (POst odwr. kosa): 3075–3304 m,
- profilowanie oporności sterowane (POst): 2295–3303 m,
- profilowanie potencjałów naturalnych (PS): 5–3302 m,
- profilowanie średnicy otworu (PSr): 0–3304 m.

Sprawozdanie z pomiarów średnich prędkości w odwiercie Wrzosowo 1 (Klecan, 1975c) zawiera natomiast wyniki pomiarów wykonanych w następującym zakresie (w CBDG dostępne są dla nich pliki LAS):

- profilowanie prędk. śr., czas interpolowany podwojony Tx2: 20–2980 m,
- profilowanie prędk. śr., czas interpolowany TW: 20–2980 m,
- profilowanie prędk. śr., czas pomierzony Tr_PW1: 130–2990 m,
- profilowanie prędk. śr., czas pomierzony Tr_PW2: 130–2650 m,
- profilowanie prędk. śr., czas uśredniony Tr_PO: 130–2990 m,
- profilowanie prędk. śr., gradient czasu interpol. DT_VSP: 20–2980 m.

Objawy węglowodorów w trakcie wiercenia i próby złożowe: obserwacje obecności węglowodorów w płuczce oraz w rdzeniu oraz wyniki przeprowadzonyc prób złożowych zestawiono w Tab. 5.135–5.136.

Dokumentacje NAG PIG-PIB:

- Binder, I., Sikorski, B. 1975. Dokumentacja geologiczna złoża gazu ziemnego Wrzosowo w rejonie Kamienia Pomorskiego. Inw. 11409 CUG, Arch. CAG PIG, Warszawa.
- Klecan, A. 1975c. Sprawozdanie z pomiarów średnich prędkości w otworze Wrzo-

sowo 1. W130 VS, Arch. CAG PIG, Warszawa

 Ryba, J., Stefańska, J. 1976. Dokumentacja wynikowa otworu badawczego Wrzosowo 1. Inw. 122097, Arch. CAG PIG, Warszawa

Głębokość [m]	Stratygrafia	Liczba pomiarów	Porowatość min-max (średnia)	Przepuszczalność min-max (średnia)	Bituminy min-max (średnia)
			[%]	[mD]	[%]
2741,75–2787,63	dolomit główny,	94	0,36–11,75	b. słaba–1,169	0,015–0,059
	anhydryt górny		(3,158)		(0,0296)
2078 85 2081 25	czerwony	6	4,49-8,0	0,622–1,926	0,004-0,023
5078,85-5081,25	spągowiec	0	(6,03)	(1,393)	(0,0113)
3081,75–3246,45	larbon	24	1,44–13,43	0,024–2,247	0,004–0,017
	Karbon 34	(5.639)	(0.345)	(0.0098)	

Tab. 5.132. Podsumowanie	wyników badań fizyczno	-chemicznych próbek	skalnych w interwa	de 2741,75-3246,45 m
w otworze Wrzosowo 1 na po	odstawie dokumentacji wy	ynikowej (Ryba i Stefa	ańska, 1976).	

Głębokość [m]	Stratygrafia	Metoda	Składniki	% obj.
			CH_4	0,15
1500 0 1505 0		to a set of a set.	N ₂	91,97
1590,0–1597,0	pstry plaskowiec	degazacja rdzenia	CO ₂	ślady
			H ₂	1,36
			CH ₄	7,8
			C_2H_6	0,41
2743,4–2746,4	dolomit główny	degazacja rdzenia	N ₂	91,27
			CO ₂	0,23
			H ₂	0,29
			CH ₄	2,02
2752 4 2755 9	4 - 1 : 4 - 1 /	de como de comio	N ₂	97,68
2753,4-2755,8	dolomit główny	degazacja rdzenia	CO_2	0,27
			H ₂	0,03
	karbon	degazacja rdzenia	CH_4	0,76
2002 7 2005 2			N ₂	99,17
3083,7-3085,2			CO_2	ślady
			H ₂	0,07
	karbon	pr. rurowy złoża	CH_4	43,67
			C_2H_6	2,04
			C ₃ H ₈	0,58
3083,0-3149,0			Ar	0,1
, ,			CO_2	_
			N2	53.28
			He	0.3
			CH_4	46,64
			C ₂ H ₆	2,61
	spąg cechsztynu,		C ₃ H ₈	0,35
3075,0-3149,3	czerwony	podczas syfonowania otworu	Ar	ślady
	spągowiec,	1	CO ₂	ślady
	Karbon		N ₂	56,09
			He	0,31
	spag cechsztvnu.		CH_4	44
2075 0 2140 2	czerwony		C_2H_6	1,97
3075,0-3149,3	spągowiec, karbon	podczas syfonowania otworu	C ₃ H ₈	0,61
			Ar	brak

			CO ₂	ślady
			N ₂	53,42
			He	ślady
			CH_4	36,77
			C_2H_6	2,06
3141 5	karbon	pr. ruroway złożo	C_3H_8	0,69
5141,5 Kai	Karbon	pr. turowy 2102a	N_2	60,42
			CO_2	ślady
			H_2	0,06
			CH_4	25,59
3142,0–3195,0			C_2H_6	0,53
			C_3H_8	slady
	karbon	pr. rurowy złoża	Ar	0,11
			CO_2	ślady
			N ₂	70,56
			He	0.32

Tab. 5.133. Wyniki analiz gazu (w czystym gazie) w otworze Wrzosowo 1 według dokumentacji wynikowej (Ryba i Stefańska, 1976).

Głebokość [m]	Stratygrafia	Metoda	Składniki	g/l
			Cl	48,9348
			Br	brak
			HCO ₃ ⁻	2,745
			SO_4^{2-}	0,2963
3077,0-3082,0	czerwony		$\mathrm{NH_4}^+$	_
	spągowiec,	woda, pr. rurowy złoża	Al/Fe ³⁺	0,4839
	karbon		Ca ²⁺	1,9139
			Mg^{2+}	brak
			Na/K ⁺	30,1200
			pH	6,77
			mineralizacja	85,2
			Cl	25,1766
			Ca ²⁺	1,2114
	0700000		Mg^{2+}	brak
3077 0 3140 3	czerwony	filtrat physici	SO_4^{2-}	6,9305
3077,0-3149,3	spągowiec,	initiat piuczki	Al/Fe ³⁺	1,2589
	Karbon		Na/K ⁺	30
			pН	11,3
			mineralizacja	68,0

Tab. 5.134. Wyniki analiz wody i flitratu w otworze Wrzosowo 1 według dokumentacji wynikowej (Ryba i Stefańska, 1976).

Głębokość [m]	Stratygrafia	Objawy		
2730,0–2742,0	anhydryt podstawowy	zapach H ₂ S		
2742,0-2785,0	dolomit główny	zapach H ₂ S i bituminów, punktowe wykropliny ropy		
3150,0	westfal	wzrost wskazań w prof. obiegowym do 0,6%, w prof. ciągłym do 0,5% bituminów		

Tab. 5.135. Objawy węglowodorów zaobserwowane w otworze Wrzosowo 1 według dokumentacji wynikowej (Ryba i Stefańska, 1976).

Głębokość[m]	Stratygrafia	Metoda	Przypływ	Tempo przypływu [Nm ³ /min]
2705,0–2794,6	sól starsza, anhy- dryt podstawowy, dolomit główny, anhydryt górny	pr. rurowy złoża	zapięcie nieudane	_
2710,0–2809,0	sól starsza, anhy- dryt podstawowy,	pr. rurowy złoża	zapięcie nieudane	_

	dolomit główny, anhydryt górny			
3070,0–3141,5	spąg cechsztynu, czerwony spągowiec, karbon	pr. rurowy złoża	suchy gaz	_
3142,0–3195,0	karbon	pr. rurowy złoża	śladowy przypływ gazu palnego, 280 l płuczki spod pakera	_
3060,0–3150,0	spąg cechsztynu, czerwony spągowiec, karbon	pr. Halliburton 3" po zak	gaz palny	16,5

Tab. 5.136. Wyniki prób złożowych przeprowadzonych w otworze Wrzosowo 1 według dokumentacji wynikowej (Ryba i Stefańska, 1976).

5.33. WRZOSOWO 2

Głębokość otworu: 3127,3 m Rok zakończenia wiercenia: 1976 Rdzenie: 2674,0–3122,2 m, 109 skrzynek, NAG PIG-PIB, Archiwum Rdzeni Wiertniczych w Chmielniku

Stratygrafia (CBDG, 2021):

Głębokość [m]		Stratyonofia
od	do	Stratygrana
0,0	34,0	kenozoik
34,0	180,5	jura środkowa
180,5	820,0	jura dolna
820,0	895,0	trias
820,0	895,0	→warstwy wielichowskie
805 0	1001.0	<i>→warstwy zbąszyńskie</i>
095,0	1001,0	→warstwy jarkowskie
1001,0	1252,0	\rightarrow kajper
1252,0	1383,0	→wapień muszlowy
1383,0	1547,0	→formacja barwicka
1547,0	1798,0	→formacja połczyńska
1798,0	1969,0	→formacja pomorska
1969,0	2262,0	→formacja bałtycka
2262,0	3059,5	perm
2262,0	2305,0	→formacja rewalska
2305,0	2307,5	→sól kam. najmł. górna Na4a2
2307,5	2308,5	→anh. pegmatytowy górny A4a2
2308,5	2331,5	→sól kam. najmł. dolna Na4a1
2331,5	2332,0	\rightarrow anh. pegmatytowy dolny A4a1
2332,0	2339,5	\rightarrow <i>il solny czerwony dolny T4a</i>
2339,5	2416,0	→sól kamienna młodsza Na3
2416,0	2525,0	→anhydryt główny A3
2525,0	2551,5	→sól kamienna młodsza Na3
2551,5	2609,5	<i>→anhydryt główny A3</i>
2600 5	2616 5	\rightarrow dolomit płytowy Ca3
2009,5	2010,5	\rightarrow szary ił solny T3
2616,5	2619,0	→anhydryt kryjący A2r
2619,0	2667,0	→sól kamienna starsza Na2
2667,0	2675,0	\rightarrow anhydryt podstawowy A2
2675,0	2720,0	→dolomit główny Ca2

2720,0	2931,5	→anhydryt górny A1g
2931,5	2951,0	→sól kam. najstarsza górna Na1g
2951,0	2976,0	<i>→anhydryt środkowy A1s</i>
2976,0	2981,0	→sól kam. najstarsza dolna Na1d
2981,0	3051,0	\rightarrow anhydryt dolny A1d
3051,0	3055,0	→wapień cechsztyński Ca1
3055,0	3055,5	<i>→łupek miedzionośny T1</i>
3055,5	3059,5	→czerwony spągowiec górny
3059,5	3127,3	karbon

Wyniki badań skał:

W dokumentacji wynikowej otworu Wrzosowo 2 (Ryba i Szewc, 1976) znajdują się wyniki opracowań mikropaleontologicznych 17 prób okruchowych z interwału 50,0-500,0 m. Zamieszczono także opracowania petrograficzno-chemiczne 36 prób dolomitu głównego z interwału 2675,0-2720,0 m, opracowania petrograficzne 7 prób utworów podcechsztyńskich oraz orzeczenie dotyczące wieku skał z interwału 3059,5-3127,3 m. W dokumentacji wynikowej otworu zawarto również wyniki analiz fizczno-chemicznych 167 próbek z interwału 2676,05-3121,55 oraz 11 analiz gazu (Tab. 5.137-5.138). Dodatkowo laboratorium Geoservices wykonało 14 analiz utworów karbońskich oznaczając ich porowatości i przepuszczalności. Ponadto, w dokumentacjach Poprawy (2010) oraz Kiersnowskiego i Poprawy (2010) znajduja się wyniki badań materii organicznej skał karbonu, podsumowane w Tab. 5.139.

Wyniki geofizyki otworowej:

Dokumentacja wynikowa otworu Wrzosowo 2 (Ryba i Szewc, 1976) zawiera wyniki badań

geofizyki wiertniczej wykonanych w następującym zakresie (dla podkreślonych profilowań w CBDG znajdują się pliki LAS):

- \circ <u>seednica nominalna wiercenia (BS)</u>: 0-3125 m,
- mikroprofilowanie oporności sterowane (mPOst): 3040–3123 m,
- profilowanie akustyczne (PA): 1275–3123 m,
- profilowanie akustyczne czasu interwałowego (PAdt): 1269–2665 m,
- profilowanie naturalnego promieniowania gamma (PG): 13–3124 m,
- profilowanie krzywizny odwiertu (PK): 5–3125 m,
- profilowanie neutron-gamma (PNG): 15–3125 m,
- profilowania oporności standardowe (PO): 4–3123 m,
- profilowanie oporności EL03(PO): 4–3123 m,
- profilowanie oporności płuczki (POpl): 1324–2288 m,
- prof. oporności ster. odwrócone kosa (POst odwr. kosa): 2671–3092 m,
- profilowanie oporności sterowane (POst): 2263–3123 m,
- profilowanie potencjałów naturalnych (PS): 4–3123 m,

 ○ profilowanie średnicy otworu (PSr): 0–3125 m.

Objawy węglowodorów w trakcie wiercenia i próby złożowe: obserwacje obecności węglowodorów w płuczce oraz w rdzeniu oraz wyniki przeprowadzonyc prób złożowych zestawiono w Tab. 5.140–5.141.

Dokumentacje NAG PIG-PIB:

- Poprawa, P. 2010. Historia oraz geneza zdarzeń termicznych w basenie polskim i jego osadowym podłożu - ich znaczenie dla rekonstrukcji procesów generowania węglowodorów. Inw. 2935/2011, Arch. CAG PIG, Warszawa.
- Kiersnowski, H., Poprawa, P. 2010. Rozpoznanie basenów węglowodorowych Polski pod kątem możliwości występowania i zasobów oraz możliwości koncesjonowania poszukiwań niekonwencjonalnych złóż gazu ziemnego - etap I. Inw. 2439/2011, Arch. CAG PIG, Warszawa.
- Ryba, J., Szewc, A. 1976. Dokumentacja wynikowa otworu poszukiwawczego Wrzosowo 2. Inw. 122905, Arch. CAG PIG, Warszawa.

Głębokość [m]	Stratygrafia	Liczba pomiarów	Porowatość min-max (średnia)	Przepuszczalność min-max	Bituminy min-max (średnia)
			[%]	[mD]	[%]
2676,05–2715,25	dolomit główny	75	0,28–13,03 (3,51)	0,0–0,26 (44 próby nieprze- puszczalne)	0,011–0,058 (0,0264)
3043,05–3059,25	anhydryt dolny, wapień cechsztyński, czerwony spągowiec	19	0,36–6,94 (1,75)	0,0–0,56	_
3059,55–3121,55	karbon	73	0,49–15,41 (8,205)	0,0–10,50	0,002–0,036 (0,0151)

Tab. 5.137. Podsumowanie wyników badań fizyczno-chemicznych próbek skalnych w interwale 2676,0–3121,55 m w otworze Wrzosowo 2 na podstawie dokumentacji wynikowej (Ryba i Szewc, 1976).

Głebokość [m]	Stratygrafia	Metoda	Składniki	% obj
Giębokość [m]	Stratygrana	Metoua	CH	9 258
			C ₂ H ₄	1 411
			$\frac{C_2 \Pi_6}{C H}$	1,411
			$C_{3}\Pi_{8}$	1,240 álady
2686,8-2704,0		degazacja rdzenia	n C U	87.52
			Γ_{5}	0.461
			$C_7\Pi_{16}$	0,401
			<u>П</u> 2	0,104 (1
			powietrze	
				39,240
			C_2H_6	2,339
			C ₃ H ₈	0,536
2040.0.2004.0			1-C ₄ H ₁₀	slady
3040,0-3091,0		pr. rurowy złoża		0,046
			СО	0,189
			N_2	57,21
			He	0,374
			Ar	-
			CH_4	38,938
			C_2H_6	2,072
			C_3H_8	0,554
			i-C ₄ H ₁₀	ślady
3040,0-3091,0		pr. rurowy złoża	CO_2	0,075
			CO	0,197
			N_2	57,796
			He	0,368
			Ar	_
			CH_4	37,169
			C_2H_6	1,567
			C ₃ H ₈	0,557
			i-C ₄ H ₁₀	ślady
3040,0-3091,0		pr. rurowy złoża	CO ₂	1,115
, ,			CO	ślady
			N_2	60.406
			He	ślady
			Ar	0.186
			CH ₄	42.656
			C ₂ H ₆	1.656
			C ₂ H ₈	0.507
			i-C4H10	ślady
3044,2–3122,2		rury wydobywcze		0.237
			<u>Na</u>	54 718
			He	0.2
			Ar	0.035
			CH	47 329
			C ₂ H ₄	2,116
			C_2H_0	0 352
		gaz pobrany z przestrzeni pomię-		0,332
		dzy rurkami syfonowymi a rurami		élady
		6 5/8"	<u> </u>	<u>49 847</u>
			<u> </u>	0.278
			Δr	0,270
			СЦ	// 000
			<u>С.</u> Н.	-++,777
				0.522
		gaz pobrany z przestrzeni pomię-		0,333
		dzy rurkami syfonowymi a rurami	$\frac{CO_2}{CO}$	0,191
		6 5/8"		siady
			IN ₂	51,/35
			He	0,225
			Ar	brak

			CH_4	48,325
			C ₂ H ₆	1,798
			C ₃ H ₈	0,349
		gaz pobrany z przestrzeni pomię-	CO ₂	3,499
		dzy rurkami syfonowymi a rurami	CO	ślady
		6 5/8	N_2	0,213
			He	0,213
			Ar	0,036
			CH_4	43,705
			C_2H_6	1,972
		1	C ₃ H ₈	0,676
		gaz pobrany z przestrzeni pomię-	i-C ₄ H ₁₀	ślady
			CO_2	0,062
		0 5/8	N_2	53,347
		He	0,203	
			Ar	0,035
			CH_4	42,514
			C_2H_6	1,917
	gaz po dzy rur	gaz pobrany z przestrzeni pomię- dzy rurkami syfonowymi a rurami 6 5/8"	C_3H_8	0,567
			i-C ₄ H ₁₀	ślady
			CO_2	0,089
			N_2	54,701
			He	0,183
			Ar	0,029
			CH_4	42,796
			C_2H_6	2,063
			C ₃ H ₈	0,594
3044 2-3122 2		rury wydobywcze w czasie próbnej	i-C ₄ H ₁₀	0,146
5044,2-5122,2		eksploatacji	CO_2	0,146
			N_2	54,198
			He	0,172
			Ar	0,031

Tab. 5.138. Wyniki analiz gazu (w czystym gazie) w otworze Wrzosowo 2 według dokumentacji wynikowej (Ryba i Szewc, 1976).

Źródło	Głębokość [m]	llość pomiarów VRo/TOC	VRo	TOC min-max
		-	[%]	[% wag.]
Poprawa, 2010	3111,0–3116,1	0/3		0-0,07
Kiersnowski i Poprawa, 2010	3059,8–3121,2	1/6	1,28	0,1

Tab. 5.139. Podsumowanie wyników badań pirolitycznych przeprowadzonych w otworze Wrzosowo 2 w utworach karbonu (Kiersnowski i Poprawa, 2010; Poprawa, 2010).

Głębokość [m]	Stratygrafia	Objawy
2667 0 2675 0	anhydryt	zenech H S
2007,0-2073,0	podstawowy	Zapach 11 ₂ .5
2675,0-2720,0	dolomit główny	zapach H ₂ S i bituminów, punktowe wykropliny ropy
3051,0–3127,3	wapień cechsztyń-	
	ski, łupek	
	miedzionośny,	3,5–4,0% węglowodorów w profilowaniu ciągłym i obiegowym w płuczce
	czerwony	
	spągowiec, karbon	

Tab. 5.140. Objawy węglowodorów zaobserwowane w otworze Wrzosowo 2 według dokumentacji wynikowej (Ryba i Szewc, 1976).

Głębokość[m]	Stratygrafia	Metoda	Przypływ	Tempo przypłyu [Nm ³ /min]
2649,0–2728,5	sól starsza, anhy- dryt podstawowy, dolomit główny, anhydryt górny	pr. rurowy złoża	słaby przypływ wody złożowej bez śladów bituminów	0,677
3040,0–3091,0	spąg cechsztynu, czerwony spągo- wiec, karbon	pr. rurowy złoża	gaz	
3084,0-3122,2	karbon	pr. rurowy złoża	brak przypływu	b.d.
2998,57–3115,1	spąg cechsztynu, czerwony spągo- wiec, karbon	rurki syfonowe z pakerem eksploatacyjnym	gaz z płynem nadpake- rowym	1500

Tab. 5.141. Wyniki prób złożowych przeprowadzonych w otworze Wrzosowo 2 według dokumentacji wynikowej (Ryba i Szewc, 1976).

5.34. WRZOSOWO 3

Głębokość otworu: 3255,0 m **Rok zakończenia wiercenia:** 1979 **Rdzenie:** 2609,0–3242,5 m, 124 skrzynki, NAG PIG-PIB, Archiwum Rdzeni Wiertniczych w Chmielniku

Stratygrafia (CBDG, 2021):

Głębokość [m]		Stratuonofio
od	do	Stratygrana
0,0	40,0	kenozoik
40,0	173,0	jura środkowa
173,0	817,5	jura dolna
817,5	2239,5	trias
817,5	879,0	→warstwy wielichowskie
870.0	075.0	<i>→warstwy zbąszyńskie</i>
879,0	975,0	<i>→warstwy jarkowskie</i>
975,0	1233,0	\rightarrow kajper
1233,0	1361,5	<i>→wapień muszlowy</i>
1361,5	1522,0	→formacja barwicka
1522,0	1772,5	→formacja połczyńska
1772,5	1944,5	→formacja pomorska
1944,5	2239,5	→formacja bałtycka
2239,5	3101,0	perm
2239,5	2279,5	\rightarrow formacja rewalska
2279,5	2286,0	→sól kam. najmł. stropowa Na4b2
2286,0	2296,0	<i>→ił solny czerwony górny T4b</i>
2296,0	2312,5	→sól kam. najmł. górna Na4a2
2312,5	2314,0	→anh. pegmatytowy górny A4a2
2314,0	2390,0	→sól kam. najmł. dolna Na4a1
2390,0	2391,5	\rightarrow anh. pegmatytowy dolny A4a1
2391,5	2395,0	<i>→sól podścielająca Na4a0</i>
2395,0	2426,5	\rightarrow <i>il solny czerwony dolny T4a</i>
2426,5	2510,5	→sól kamienna młodsza Na3
2510,5	2610,5	<i>→anhydryt główny A3</i>
2610.5	2617.0	\rightarrow dolomit płytowy Ca3
2010,5	2017,0	\rightarrow szary ił solny T3
2617,0	2621,0	→anhydryt kryjący A2r
2621,0	2626,0	→sól kam. starsza kryjąca Na2r
2626,0	2633,0	→sól potasowa starsza K2

2633,0	2692,5	→sól kamienna starsza Na2
2692,5	2696,0	\rightarrow anhydryt podstawowy A2
2696,0	2739,0	→dolomit główny Ca2
2739,0	2914,0	<i>→anhydryt górny A1g</i>
2914,0	2980,0	→sól kamienna najstarsza Na1
2980,0	3068,5	\rightarrow anhydryt dolny A1d
3068,5	3072,4	→wapień cechsztyński Ca1
3072,4	3073,0	\rightarrow lupek miedzionośny T1
3073,0	3101,0	→czerwony spągowiec górny
3101,0	3255,0	karbon – westfal

Wyniki badań skał:

W dokumentacji wynikowej otworu Wrzosowo 3 (Ryba i Szewc, 1979) znajdują się wyniki opracowań mikropaleontologicznych 9 prób okruchowych z interwału 45,0– 292,0 m. Zamieszczono także analizy fizykochemiczne 93 próbek karbonu górnego z interwału 3107,45–3242,35 m (Tab. 5.142).

Wyniki geofizyki otworowej:

Dokumentacja wynikowa otworu Wrzosowo 3 (Ryba i Szewc, 1979) zawiera wyniki badań geofizyki wiertniczej wykonanych w następującym zakresie (dla podkreślonych profilowań w CBDG znajdują się pliki LAS):

- <u>średnica nominalna wiercenia (BS)</u>: 136–3255 m,
- mikroprofilowanie oporności sterowane (mPOst): 2237 m, 3255 m,
- mikroprofilowanie średnicy otworu (mPSr): 3030–3257 m,
- profilowanie akustyczne czasu interwałowego (PAdt): 2969–3255 m,
- profilowanie naturalnego promieniowania gamma (PG): 15–3255 m,

- profilowanie gazowe (PGaz): 2613–3035 m,
- profilowanie krzywizny odwiertu (PK): 125–3250 m,
- profilowanie neutron-gamma (PNG): 17–3255 m,
- profilowania oporności standardowe (PO): 135–3255 m,
- profilowanie oporności EL03 (PO): 130–3255 m,
- profilowanie oporności sterowane (POst): 2237–3255 m,
- profilowanie potencjałów naturalnych (PS): 135–3255 m,

- profilowanie średnicy otworu (PSr): 135–3255 m,
- profilowanie temperatury (PT): 3000–3258 m.

Objawy węglowodorów w trakcie wiercenia i próby złożowe: obserwacje obecności węglowodorów w płuczce oraz w rdzeniu oraz wyniki przeprowadzonyc prób złożowych zestawiono w Tab. 5.143–5.144.

Dokumentacje NAG PIG-PIB:

 Ryba, J., Szewc, A. 1979. Dokumentacja wynikowa otworu poszukiwawczego Wrzosowo 3. Inw. 125096, Arch. CAG PIG, Warszawa.

Głębokość [m]	Stratygrafia	Liczba pomiarów	Porowatość min-max (średnia)	Przepuszczalność min-max (średnia)	Bituminy min-max
			[%]	[mD]	[%]
3107,45–3242,35	karbon	93	0,19–1030 (4,79)	0,001–1,87 (0,126)	ślady–0,017

Tab. 5.142. Podsumowanie wyników badań fizyczno-chemicznych próbek skalnych w interwale 3107,45–3242,35 m w otworze Wrzosowo 3 na podstawie dokumentacji wynikowej (Ryba i Szewc, 1979).

Głębokość [m]	Stratygrafia	Objawy
66,0–67,0	jura środkowa	ucieczka 17 m ³ płuczki iłowej w czasie 20 min.
138,0	jura środkowa	ucieczka 18,4 m ³
2714,0-2734,0	dolomit główny	intensywny zapach H ₂ S

Tab. 5.143. Objawy węglowodorów zaobserwowane w otworze Wrzosowo 3 według dokumentacji wynikowej (Ryba i Szewc, 1979).

Głębokość[m]	Stratygrafia	Metoda	Przypływ	Tempo przypływu [Nm ³ /min]
3068,0-3139,0	spąg cechsztynu, czerwony spągo- wiec, kathon	pr. rurowy złoża	brak przypływu	
3005,0-3159,0		pr. rurowy złoża	brak przypływu	
3005,0–3203,0		pr. rurowy złoża	150 l płuczki spod pakera w czasie 501 min	
3017,0–3255,0	wice, Rubbin	pr. rurowy złoża	1100 l płuczki spod pake- ra w czaie 1743 min	

Tab. 5.144. Wyniki prób złożowych przeprowadzonych w otworze Wrzosowo 3 według dokumentacji wynikowej (Ryba i Szewc, 1979).

5.35. WRZOSOWO 8

Głębokość otworu: 3310,0 m Rok zakończenia wiercenia: 1977 Rdzenie: 2738,5–2339,5 m, 170 skrzynek, NAG PIG-PIB, Archiwum Rdzeni Wiertniczych w Chmielniku

Stratygrafia (CBDG, 2021):

Głębokość [m]		Stratuarafia	
od	do	Stratygrana	
0,0	52,0	kenozoik	
52,0	201,0	jura środkowa	
201,0	852,0	jura dolna	
852,0	2258,0	trias	
852,0	956,0	→warstwy wielichowskie	
956,0	1129,0	<i>→warstwy zbąszyńskie</i>	

		<i>→warstwy jarkowskie</i>
1129,0	1456,0	\rightarrow kajper
1456,0	1564,0	→wapień muszlowy
1564,0	1797,5	→formacja połczyńska
1797,5	1962,5	→formacja pomorska
1962,5	2258,0	→formacja bałtycka
2258,0	3077,5	perm
2258,0	2290,0	→formacja rewalska
2290,0	2291,0	→sól kam. najmł. stropowa Na4b2
2291,0	2300,5	→ił solny czerwony górny T4b
2300,5	2316,0	→sól kam. najmł. górna Na4a2
2316,0	2317,0	→anh. pegmatytowy górny A4a2
2317,0	2319,5	→sól kam. najmł. dolna Na4a1
2319,5	2350,5	\rightarrow anh. pegmatytowy dolny A4a1
2350,5	2357,5	\rightarrow <i>il solny czerwony dolny T4a</i>
2357,5	2508,0	→sól kamienna młodsza Na3
2508,0	2516,0	→anhydryt główny A3
2516.0	2541.0	\rightarrow dolomit płytowy Ca3
2510,0	2341,0	\rightarrow szary ił solny T3
2541,0	2556,0	→anhydryt kryjący A2r
2556,0	2573,5	→sól kam. starsza kryjąca Na2r
2573,5	2598,0	→sól potasowa starsza K2
2598,0	2729,0	→sól kamienna starsza Na2
2729,0	2735,0	\rightarrow anhydryt podstawowy A2
2735,0	2770,0	→dolomit główny Ca2
2770,0	2945,0	→anhydryt górny A1g
2945,0	2972,5	→sól kam. najstarsza górna Na1g
2972,5	2997,0	<i>→anhydryt środkowy A1s</i>
2997,0	3004,0	→sól kam. najstarsza dolna Na1d
3004,0	3070,0	\rightarrow anhydryt dolny A1d
3070,0	3074,3	→wapień cechsztyński Ca1
3074,3	3075,0	\rightarrow lupek miedzionośny T1
3075,0	3077,5	→czerwony spągowiec górny
3077,5	3310,0	karbon – westfal

Wyniki badań skał:

W dokumentacji wynikowej otworu Wrzosowo 8 (Ryba i Szewc, 1977c) znajdują się wyopracowań mikropaleontologicznych niki 21 prób okruchowych z interwału 184,0-438,0 m oraz orzeczenie petrograficzne dolomitu głównego i anhydrytu górnego na podstawie 44 płytek cienkich, a także orzeczenie paleontologiczne w sprawie wieku utworów z interwału 3077,5-3310,0 m i mikroskopowa charakterystyka utworów karbonu (9 płytek cienkich). Zamieszczono także opracowania fizykochemiczne (porowatości, przepuszczalności, zawartości siarki i bituminów wraz z rozdziałem grupowym wybranych próbek) 68 prób dolomitu głównego i anhydrytu górnego, 7 próbek wapienia cechsztyńskiego i łupka miedzionośnego, 5 próbek czerwonego spągowca i 78 próbek karbonu, a także wyniki 15 analiz gazu oraz 2 analiz wód złozowych (Tab. 5.145-5.147). Ponadto, w dokumentacjach Poprawy (2010) oraz Kiersnowskiego i Poprawy (2010) znajdują się wyniki badań materii organicznej skał karbonu, które zostały podsumowane w Tab. 5.148.

Wyniki geofizyki otworowej:

Dokumentacja wynikowa otworu Wrzosowo 8 (Ryba i Szewc, 1977c) zawiera wyniki badań geofizyki wiertniczej wykonanych w następującym zakresie (dla podkreślonych profilowań w CBDG znajdują się pliki LAS):

- <u>średnica nominalna wiercenia (BS)</u>: 84–3301 m,
- mikroprofilowanie oporności sterowane (mPOst): 2737–3300 m,
- mikroprofilowanie średnicy otworu (mPSr): 3124–3296 m,
- profilowanie akustyczne (PA): 2715–3300 m,
- profilowanie akustyczne czasu interwałowego (PAdt): 2722–3299 m,
- profilowanie naturalnego promieniowania gamma (PG): 15–3301 m,
- profilowanie gazowe (PGaz): 1484–3192 m,
- profilowanie krzywizny odwiertu (PK): 0–3300 m,
- <u>profilowanie neutron-gamma (PNG)</u>: 15–3301 m,
- profilowania oporności standardowe (PO): 90–3300 m,
- profilowanie oporności EL03 (PO): 89–3300 m,
- profilowanie oporności sterowane (POst): 1480–3300 m,
- profilowanie potencjałów naturalnych (PS): 90–2740 m,
- profilowanie średnicy otworu (PSr): 84–3301 m,
- profilowanie temperatury (PT): 2737–3300 m.

Objawy węglowodorów w trakcie wiercenia i próby złożowe: obserwacje obecności węglowodorów w płuczce oraz w rdzeniu oraz wyniki przeprowadzonyc prób złożowych zestawiono w Tab. 5.149–5.150.

Dokumentacje NAG PIG-PIB:

• Ryba, J., Szewc, A. 1977c. Dokumentacja wynikowa otworu rozpoznawczego Wrzosowo 8. Inw. 123574, Arch. CAG PIG, Warszawa.

Głębokość [m]	Stratygrafia	Liczba pomiarów	Porowatość min-max (średnia) [%]	Przepuszczalność min-max (średnia) [mD]	Bituminy min-max (średnia) [%]
2737,73–2771,05	dolomit główny, anhydryt górny	68	0,21–14,60 (5,93)	0,0–0,81	0,005–0,040 (0,019)
3072,05–3075,0	wapień cechsztyń- ski, łupek mie- dzionośny	7	0,98–1,98 (1,29)	0,0–0,15	_
3075,55–3077,55	czerwony spągowiec	5	1,05–2,04 (1,50)	0,0–0,56 (0,19)	-
3078,05-3239,15	karbon	78	0,84–17,29 (5,67)	0,0–0,68	ślady–0,030

Tab. 5.145. Podsumowanie wyników badań fizyczno-chemicznych próbek skalnych w interwale 2737,73–3239,15 m w otworze Wrzosowo 8 na podstawie dokumentacji wynikowej (Ryba i Szewc, 1977c).

Głębokość [m]	Stratygrafia	Metoda	Składniki	% obj.
			CH_4	1,796
	1. 1 1		C_2H_6	0,381
2722 8 2740 0	annydryt podsta-	de correcio adrenie	C_3H_8	0,358
2755,8-2740,0	wowy, dolomit	degazacja rdzenia	N_2	97,269
	giowity		H_2	0,15
			CO ₂	0,043
			CH_4	7,756
			C_2H_6	2,095
			C_3H_8	2,67
2740 0 2757 2	dolomit alávyny	dagazagia rdzania	$i-C_4H_{10}$	0,315
2740,0-2737,3	dolollin glowily	degazacja iuzenia	$n-C_4H_{10}$	0,561
			N_2	86,235
			H_2	0,13
			CO_2	0,208
			CH_4	7,667
			C_2H_6	1,421
			C_3H_8	1,314
2740,0–2757,0	dolomit główny	degazacja rdzenia	in-C ₄ H ₁₀	0,263
			N ₂	87,765
			H ₂	1,059
			CO ₂	0,511
			CH_4	11,717
			C_2H_6	1,721
			C_3H_8	3,028
2740 0 2757 3	dolomit alówny	dagazacia rdzania	i-C ₄ H ₁₀	0,342
2740,0-2757,5	dolollin glowily	degazacja ruzema	$n-C_4H_{10}$	0,479
			N_2	80,515
			H_2	0,654
			CO_2	0,544
			CH_4	18,656
			C_2H_6	3,281
			C_3H_8	2,044
2757,0-2770,0	dolomit główny	degazacja rdzenia	in-C ₄ H ₁₀	0,735
			N ₂	73,919
			H_2	0,276
			CO_2	1,089
			CH ₄	11,464
			C_2H_6	1,396
			C ₃ H ₈	1,102
2770,0-2788,0	anhydryt górny	degazacja rdzenia	i-C ₄ H ₁₀	0,094
			$n-C_4H_{10}$	0,385
			N_2	83,629
			H_2	0,61

			CO	0.519
				58 (20
				38,029
			C_2H_6	2,087
0700.0	1 1 . /	1.	C ₃ H ₈	0,147
2793,0	anhydryt gorny	pr. rurowy złoża	<u>N</u> 2	34,931
			H ₂	3,424
			He	0,545
			Ar	0,237
			CH_4	67,26
			C_2H_6	2,087
2793,0			C ₃ H ₈	0,245
	anhydryt górny	pr. rurowy złoża	N_2	27,742
			H_2	1,261
			He	0,378
			Ar	0,168
	1 1 . 1 1		CH_4	ślady
2055 0 2052 0	anhydryt dolny,		N_2	96,419
3055,0-3073,0	wapien	degazacja rdzenia	H ₂	0,904
	cechsztynski		CO ₂	2,677
	snag cechsztynu		CH ₄	ślady
3073,0-3089,0	czerwony snago-		N ₂	99.2
	wiec, karbon	degazacja rdzenia	H ₂	0.28
				0,20
	karbon	degazacja rdzenia		3 735
				0.024
2125 0 2121 2			$C_2\Pi_6$	0,024
5125,0-5151,5			<u>IN2</u>	93,063
				0,007
				0,509
		degazacja rdzenia	CH ₄	1,69
3131,3-3135,0	karbon		<u>N2</u>	95,72
, ,			<u>H₂</u>	0,09
				2,5
	karbon	degazacja rdzenia	CH ₄	0,633
3135.8-3153.0			N2	94,82
0100,0 0100,0			H ₂	0,197
			CO_2	4,35
			CH ₄	0,256
3153 5_3161 5	karbon	degazacia rdzenia	N2	99,084
5155,5-5101,5	Karbon	degazaeja ruzema	H ₂	0,187
			CO_2	0,473
			CH_4	37,609
3226,0	karbon	proby z obciąznika pobrane przy	CO_2	0,709
		wyciąganiu problika	N ₂	61,682
		/1 1 ' '1 1	CH ₄	46,587
3226,0	karbon	proby z obciąznika pobrane przy	CO ₂	1,023
		wyciąganiu probnika	N ₂	52,39
			$\tilde{CH_4}$	39,4248
			C ₂ H ₆	0,1641
			C ₃ H _e	0.0044
			in-C ₄ H ₁₀	ślady
3226,0	karbon	pr. rurowy złoża	N2	58,3943
			H ₂	0 7542
			Не	1 8107
			Δr	0.0475
			71	0,0475

Tab. 5.146. Wyniki analiz gazu (w czystym gazie) w otworze Wrzosowo 8 według dokumentacji wynikowej (Ryba i Szewc, 1977c).

Głebokość [m]	Stratygrafia	Metoda	Składniki	g/]
			Cl	192.2124
			Br	1,3984
2725,0–2793,0			HCO ₃ ⁻	2,4705
	/1 / 1		SO42-	2,5886
	sol starsza, anhy-		$\mathrm{NH_4^+}$	1,6625
	dryt podstawowy,	pr. rurowy złoża	Al/Fe ³⁺	0,335
	dolomit głowny,	1 0	Ca ²⁺	6,5154
	annydryt gorny		Mg^{2+}	15,9367
			Na/K ⁺	87,079
			pH	6,55
			mineralizacja	330,6
			Cl	155,4966
			Br⁻	0,5274
			HCO ₃ ⁻	0,1159
			SO_4^{2-}	0,7901
			$\mathrm{NH_4}^+$	0,0925
3180,0-3226,0	karbon	pr. rurowy złoża	Ca ²⁺	36,6492
			Mg ²⁺	3,1302
			Na/K ⁺	52,7327
			Al/Fe ³⁺	0,449
			pH	7,6
			mineralizacja	250,0

Tab. 5.147. Wyniki analiz wody i flitratu w otworze Wrzosowo 8 (Ryba i Szewc, 1977c).

	Ś () S1 min-ma		S3 min-max	Tmax min-max	HI min-max	Ilość po-	VRo	TOC min-max
Zrodło	Giędokość [m]	[mgHC/ gSkały]	[mgCO ₂ / gSkały]	[°C]	[mgHC/ gTOC]	VRo/TOC	[%]	[% wag.]
Poprawa, 2010	3079,9–3126,3	0,04–0,07	0,32–0,35	425–428	25,7–45,5	0/5		0,0–1,36
Kiersnowski i Poprawa, 2010	3073,5–3239,0					1/19	1,3	0,01– 0,02

Tab. 5.148. Podsumowanie wyników badań pirolitycznych przeprowadzonych w otworze Wrzosowo 8 w utworach karbonu (Kiersnowski i Poprawa, 2010; Poprawa, 2010).

Głębokość [m]	Stratygrafia	Objawy
90,0–97,0	jura środkowa	gwałtowana ucieczka płuczki wiertniczej
2729,0-2735,0	anh. podstawowy	zapach H ₂ S
2735,0-2770,0	dolomit główny	zapach H ₂ S, miejscami bituminów, luminescencja, wykropliny ropy
2850,0	anhydryt górny	wzrost zawartości węglowodorów w płuczce do 0,5% w prof. gazowym
3131,5	karbon	samowypływ płuczki 24 l/h
3175,0	karbon	wzrost zawartości węglowodorów w płuczce do 0,6% w prof. gazowym

Tab. 5.149. Objawy węglowodorów zaobserwowane w otworze Wrzosowo 8 według dokumentacji wynikowej (Ryba i Szewc, 1977c).

Głębokość[m]	Stratygrafia	Metoda	Przypływ	Tempo przypływu [Nm ³ /min]
2725,0–2793,0	sól starsza, anhy- dryt podstawowy, dolomit główny, anhydryt górny	pr. rurowy złoża	760 l wody złożowej zgazowanej gazem pal- nym i H ₂ S	0,159
3070,0–3107,0	spąg cechsztynu, czerwony spągo- wiec, karbon	pr. rurowy złoża	brak przypływu	
3138,0-3161,5	karbon	pr. rurowy złoża	brak przypływu	
3180,0–3226,0	karbon	pr. rurowy złoża	2000 l wody złożowej zgazowana gazem pal- nym	1,35

Tab. 5.150. Wyniki prób złożowych przeprowadzonych w otworze Wrzosowo 8 według dokumentacji wynikowej (Ryba i Szewc, 1977c).

5.36. WRZOSOWO 9

Głębokość otworu: 3198,0 m **Rok zakończenia wiercenia:** 1977 **Rdzenie:** 2738,4–3210,0 m, 104 skrzynki, NAG PIG-PIB, Archiwum Rdzeni Wiertniczych w Chmielniku

Stratygrafia (CBDG, 2021):

Głębokość [m]		Stratugrafia	
od	do	Stratygrana	
0,0	42,0	kenozoik	
42,0	257,5	jura środkowa	
257,5	811,0	jura dolna	
811,0	2271,0	trias	
811,0	880,0	→warstwy wielichowskie	
880,0	1005,0	→warstwy zbąszyńskie →warstwy jarkowskie	
1005,0	1266,0	\rightarrow kajper	
1266,0	1396,0	→wapień muszlowy	
1396,0	1552,0	→formacja barwicka	
1552,5	1807,0	→formacja połczyńska	
1807,0	1977,0	→formacja pomorska	
1977,0	2271,0	→formacja bałtycka	
2271,0	3084,5	perm	
2271,0	2304,0	→formacja rewalska	
2304,0	2309,5	→sól kam. najmł. stropowa Na4b2	
2309,5	2316,0	<i>→ił solny czerwony górny T4b</i>	
2316,0	2335,0	→sól kam. najmł. górna Na4a2	
2335,0	2336,0	→anh. pegmatytowy górny A4a2	
2336,0	2405,5	→sól kam. najmł. dolna Na4a1	
2405,5	2406,5	\rightarrow anh. pegmatytowy dolny A4a1	
2406,5	2433,0	\rightarrow <i>il solny czerwony dolny T4a</i>	
2433,0	2592,0	→sól kamienna młodsza Na3	
2592,0	2605,5	→anhydryt główny A3	
2605,5	2612,5	→dolomit płytowy Ca3 →szary ił solny T3	
2612,5	2615,5	<i>→anhydryt kryjący A2r</i>	
2615,5	2624,0	→sól kam. starsza kryjąca Na2r	
2624,0	2636,0	→sól potasowa starsza K2	
2636,0	2708,0	→sól kamienna starsza Na2 →sól potasowa starsza K2	
2708,0	2714,5	\rightarrow anhydryt podstawowy A2	
2714,5	2758,0	→dolomit główny Ca2	
2758,0	2917,5	→anhydryt górny Alg	
2917,5	2960,5	→sól kam. najstarsza górna Na1g	
2960,5	2987,5	\rightarrow anhydryt środkowy A1s	
2987,5	2992,5	→sól kam. najstarsza dolna Na1d	
2992,5	3055,0	\rightarrow anhydryt dolny A1d	
3055,0	3059,9	→wapień cechsztyński Ca1	
3059,0	3060,5	\rightarrow lupek miedzionośny Tl	
3060,5	3084,5	\rightarrow autun	
3084,5	3198,0	karbon – westfal	

Wyniki badań skał:

W dokumentacji wynikowej otworu Wrzosowo 9 (Ryba i Szewc, 1978b) znajdują się wyniki opracowań mikropaleontologicznych 15 prób okruchowych z interwału 42,0-152,0 m, opracowanie petrograficzne dolomitu głównego na podstawie18 płytek cienkich i 37 analiz chemicznych oraz charakterystyka geochemiczna i hydrochemiczna dolomitu głównego. Zamieszczono także wyniki analiz fizyczno-chemicznych (porowatości, przepuszczalności, zawartości siarki i bituminów z rozkładem grupowym wybranych próbek) 126 próbek, w tym 91 dolomitu głównego; 10 prób wapienia podstawowego; 1 próby łupka miedzionośnego; 2 prób czerwonego spagowca oraz 22 prób z karbonu, a także wyniki 11 analiz gazu i 2 analiz wód złozowych (Tab. 5.151-5.153). Dołączono także wyniki naliz porowatości i przepuszczalności 8 próbek piaskowców karbonu, wykonanych w laboratorium Geoservices.

Wyniki geofizyki otworowej:

Dokumentacja wynikowa otworu Wrzosowo 9 (Ryba i Szewc, 1978b) zawiera wyniki badań geofizyki wiertniczej wykonanych w następującym zakresie (dla wymienionych profilowań w CBDG brak plików LAS):

- mikroprofilowanie oporności sterowane (mPOst): 2714–2801 m,
- mikroprofilowanie średnicy otworu (mPSr): 2976–3076 m,
- profilowanie naturalnego promieniowania gamma (PG): 18–3198 m,
- o profilowanie gazowe (PGaz): 1570–3210 m,
- profilowanie krzywizny odwiertu (PK): 25–3175 m,
- profilowanie neutron-gamma (PNG): 18–3198 m,
- profilowania oporności standardowe (PO): 135–2801 m,
- profilowanie oporności sterowane (POst): 2285–2801 m,
- profilowanie potencjałów naturalnych (PS): 135–2311 m,
- profilowanie średnicy otworu (PSr): 135–3076 m,
- profilowanie temperatury (PT): 25–2638 m.

Objawy węglowodorów w trakcie wiercenia i próby złożowe: obserwacje obecności węglowodorów w rdzeniu oraz wyniki przeprowadzonyc prób złożowych zestawiono w Tab. 5.154–5.155.

Dokumentacje NAG PIG-PIB:

• Ryba, J., Szewc, A. 1978b. Dokumentacja wynikowa otworu rozpoznawczego Wrzosowo 9. Inw. 123973, Arch. CAG PIG, Warszawa.

Stratygrafia	Liczba pomiarów	Porowatość min-max (średnia) [%]	Przepuszczalność pionwa min-max [mD]	Bituminy min-max (średnia) [%]
dolomit główny	91	0,07–9,92 (3,82)	0,0–1,30	0,008–0,074 0,022)
wapień cechsztyński	10	0,07–0,79 (0,25)	0,0–0,23	0,003–0,010 (0,007)
łupek miedzionośny	1	1,04	0,0	0,005
autun	2	1,54–3,13	0,22	0,007–0,009
karbon	22	2,11–8,78 (5,39)	0,45–12,51	ślady–0,006
piaskowce karbonu*	8	1,81–7,52 (3,65)	0,0–0,73	

Tab. 5.151. Podsumowanie wyników badań fizyczno-chemicznych próbek skalnych w otworze Wrzosowo 9 na podstawie dokumentacji wynikowej (Ryba i Szewc, 1978b). Ze względu na znaczne rozbieżności miary geofizycznej i wiertniczej i brak ich korelacji względem odcinków rdzeniowanych, w powyższej tabeli nie podano interwałów głębokości. *–lab. Geoservices

Głębokość [m]	Stratygrafia	Metoda	Składniki	% obj.
			CH_4	6,2036
			C_2H_6	1,009
			C_3H_8	0,6203
			in-C ₄ H ₁₀	0,0744+0,1489
2738,4–2757,1 ^{MD}	dolomit główny	degazacja rdzenia	$C_{5}H_{12}$	0,0404+0,0265
			N ₂	91,7814
			H ₂	0,0955
			He	_
			CO_2	-
			CH_4	24,1052
2757,1–2774,5 ^{MD}			C_2H_6	6,163
			C_3H_8	1,938
	dolomit główny	degazacja rdzenia	in-C ₄ H ₁₀	1,5916+2,6603
			C ₅ H ₁₂	0,3706+0,2628
			N_2	59,5827
			H ₂	0,322
			He	ślady
			CO_2	_
			CH_4	19,3415
			C_2H_6	0,0489
			C_3H_8	0,0018
			i-C ₄ H ₁₀	0,0016
	spag aacheztumu		$n-C_4H_{10}$	0,0006
3054,0–3087,5 ^{GD}	spąg cechsztyliu,	pr. rurowy złoża	CO_2	-
	aatan, karoon		СО	ślady
			N_2	78,877
			He	1,2543
			Ar	0,0521
			O ₂	0,4222
~	snag cechsztynu		CH_4	21,9068
3054,0–3087,5 ^{GD}	spąg cechsztynu, autun, karbon	pr. rurowy złoża	C_2H_6	0,0388
			C_3H_8	0,0025

GRYFICE

			i-C ₄ H ₁₀	0,0025
			n-C ₄ H ₁₀	0,0003
			CO ₂	_
			СО	brak
			N_2	76,374
			He	1,1907
			Ar	0,0476
			02	0,4366
	1		CH ₄	14,0241
3054,0–3087,5 ^{GD}	spąg cechsztynu,	pr. rurowy złoża	N ₂	79,1537
	autun, Karbon		O ₂	6,8222
			CH ₄	13,9312
			C ₂ H ₆	0,0187
			C ₃ H ₈	0,0007
	1		CO ₂	_
3054,0–3087,5 ^{GD}	spąg cechsztynu,	pr. rurowy złoża	<u>N</u> 2	84.3648
, ,	autun, karbon	1 2	CO	brak
			H ₂	0.3278
			He	1.3026
			Ar	0.0641
			CH4	6.7502
	spąg autunu, karbon	pr. rurowy złoża	C ₂ H ₆	0.0126
			C ₂ H ₈	0.0009
			<u> </u>	_
3084 0-3108 5 ^{GD}			No.	91 6278
5001,0 5100,5				brak
			H	0.5185
			He	1 0027
			Ar	0.0873
			CH	5 9866
			C ₂ H ₄	0.0117
			C_2H_6	0,0007
				0,0007
3084 0-3108 5 ^{GD}	spąg autunu,	pr. rurowy złoża	N	02.08/13
5004,0-5100,5	karbon	p1. 1010wy 2102a		92,0045
			н	0.7532
				1,0682
			Δr	0.0952
			CH	21 1906
3084 0-3108 5 ^{GD}	spąg autunu,	nr rijrowy złoża	N.	77 3763
5004,0-5100,5	karbon	p1. 1010wy 2102a		1 4331
			CH.	21 7838
3084 0-3108 5 ^{GD}	spąg autunu,	pr rurowy złoża	N ₂	75 4881
5001,0 5100,5	karbon	P1. 1010 Wy 21020		2,728
	+			8 231
			C _c H _c	0.383
			C ₂ H ₆	0.4746
3205,5-3210,0 ^{MD}	karbon	degazacja rdzenia	N ₂	90,5592
			H-	0 3522
				0,3322

Tab. 5.152. Wyniki analiz gazu (w czystym gazie) w otworze Wrzosowo 9 według dokumentacji wynikowej (Ryba i Szewc, 1978b); ^{GD} – głębokość według miary geofizycznej, ^{MD} – głębokość według miary wiertniczej.

GRYFICE

Głebokość [m]	Stratygrafia	Metoda	Składniki	g/l
		pr. rurowy złoża	Cl	154,5988
			Br	1,4252
			HCO ₃ ⁻	0,1706
			SO4 ²⁻	0,4156
	ana a a a hartumu		NH_4^+	0,03
3054,0–3087,5 ^{GD}	autun, karbon		Ca ²⁺	52,5266
			Mg ²⁺	0,8818
			Na/K ⁺	38,6132
			Al/Fe ³⁺	0,2755
			pH	6,3
			mineralizacja	256,2
			Cl	158,4245
			Br	1,1455
			HCO ₃ -	0,0915
			SO_4^{2-}	0,4238
	spag auturu		$\mathrm{NH_4}^+$	0,0363
3084,0–3108,5 ^{GD}	spąg autunu, karbon	pr. rurowy złoża	Ca ²⁺	47,0332
	karbon		Mg ²⁺	1,42
			Na/K ⁺	46,4778
			Al/Fe ³⁺	0,1035
			рН	6,0
			mineralizacia	261.15

Tab. 5.153. Wyniki analiz wody i flitratu w otworze Wrzosowo 9 według dokumentacji wynikowej (Ryba i Szewc, 1978b). ^{GD} – głębokość według miary geofizycznej.

Głębokość [m]	Stratygrafia	Objawy
75,0-80,0	bajos dolny	ucieczka płuczki wiertniczej ok 3m ³ w czasie 10 min.
2738,4–2758,0	dolomit główny	zapach H ₂ S, miejscami bituminów, punktowe wykropliny ropy, mlecznobiała i żółta luminescencja w promieniach lampy Wooda

Tab. 5.154. Objawy węglowodorów zaobserwowane w otworze Wrzosowo 9 według dokumentacji wynikowej (Ryba i Szewc, 1978b).

Głębokość[m]	Stratygrafia	Metoda	Przypływ	Tempo przypływu [Nm ³ /min]
2712,0–2766,0	anh. podstawowy, dolomit główny, anhydryt górny	pr. rurowy złoża	brak przypływu	
3054,0–3087,5	spąg cechsztynu, autun, karbon	pr. rurowy złoża	silnie zgazowana woda złożowa	1,075
3084,0–3108,5	spąg autunu, karbon	pr. rurowy złoża	zgazowana woda złożowa	0,72

Tab. 5.155. Wyniki prób złożowych przeprowadzonych w otworze Wrzosowo 9 według dokumentacji wynikowej (Ryba i Szewc, 1978b).

OTWÓR WIERTNICZY: WRZOSOWO 1 WELL: WRZOSOWO 1

MIEJSCOWOŚĆ: WRZOSOWO LOCATION: WRZOSOWO GMINA: KAMIEŃ POMORSKI COMMUNE: KAMIEN POMORSKI

WOJEWÓDZTWO: ZACHODNIOPOMO VOIVODESHIP: ZACHODNIOPOMORSKII WYSOKOŚĆ: 9.64 m n.p.m. ELEVATION: 9.64 m a.s.l. PRZYPŁYWY I OBJAWY I IOBJAWY INFLOW POZIOMY POZIOMY TESTS LITHOLOGIA LITHOLOGIA LITHOLOGIA LITHOLOGY UZYŚK RDZENIA CORE GAIN NEUTRON-GAMMA GŁĘBOKOŚĆ [n DEPTH [m] 2000 3000 [C/MIN] 100 -200 300 400 500 600 700 800 900 1000 1100 1200 1300 1328 1333 1400-1490 1497 1500 1600 1700 1800 .9<mark>1862</mark> 1900 2000-2100 2200 2300 2400 2500 AN IN 2600-N.W.W. 2700 2725 z<mark>e</mark>HS 2800-2900-3000 3060 T 3064 3100-4.7310 3.5313 3.314 3.315 3.73179 3.73179 3.215 3142 3141 3200 319 3.5 32 1.63238 1.6 3238 2 32 odcinek opróbowany tested interval Z zapach bituminów bitumen smell HS zapach siarko wycieki ropy oil leaks luminescencja pod I. Wooda luminescence under Wood's lamp ślady ropy oil shows margle

Fig. 5.2. A. Profil otworu Laska 2 na podstawie dokumentacji wynikowej (Wójcik, 1980). B. Profil otworu Wrzosowo 1 na podstawie dokumentacji wynikowej (Ryba i Stefańska, 1976).

248

6. SEJSMIKA

Obszar przetargowy "Gryfice" jest rozpoznany gesta siecia danych sejsmicznych 2D, a także zdjęciami 3D (Fig. 6.1-6.2). Badania sejsmiczne na tym terenie wykonywano już od poczatku lat 60-tych ubiegłego wieku. Możliwości techniczne pierwszych wykonywanych pomiarów sprawiają, że obecnie nie sa one wykorzystywane do analizy budowy geologicznej i mają wartość historyczną. Większość cyfrowych danych sejsmicznych 2D została pomierzona w latach 70-tych i na początku lat 80-tych ubiegłego wieku (Tab. 6.1). Nowsze pomiary zrealizowano dopiero w okolicy Gryfic w latach 1996-1997, ale w granice obszaru przetargowego sięgają tylko kilkukilometrowe końce profili zlokalizowane w jego wschodniej części (Fig. 6.1-6.2). W obrębie obszaru znalazło się również 5 profili wykonanych na przełomie 1999 i 2000 roku (z których 2 lokalizacje pokrywaja się), a także fragmenty profili wykonanych W 2006 roku, zlokalizowanych głównie południowo-zachodniej części obszaru W (Tab. 6.1; Fig. 6.1-6.2).

Obszar "Gryfic" jest również rozpoznany zdjęciami 3D (Tab. 6.2; Fig. 6.1-6.2). Dwa z nich - Moracz 3D i Jarkowo 3D - zostały wykonane w 2014 i 2018 roku, ale pokrywają obszar jedynie niewielkimi fragmentami. Co więcej, dane sejsmiczne są objęte aktualnie zakazem udostępniania i wglądu, jako, że informacja pochodzi z bieżacego dokumentowania przebiegu robót geologicznych na koncesjach "Kamień Pomorski" nr 1/2000/Ł, "Świdwin-Białogard" nr 18/95/Ł i "Trzebiatów" nr 60/2009/Ł (PGNiG S.A.). Znaczna część obszaru przetargowego "Gryfice" około 200 km² – jest rozpoznana zdjęciem Świerzno 3D, wykonanym w 1997 roku dla PGNiG S.A.

Badania sejsmiczne wykonane na obszarze przetargowym "Gryfice" umożliwiły identyfikację licznych struktur perspektywicznych w horyzontach sejsmicznych P1 (spąg czerwonego spągowca), Z1' (spąg cechsztynu) i Z2 (strop anhydrytu podstawowego):

<u>S</u> 4	Horyzo		
Struktury	nt sejsmiczny		
Struktura Rybokart	Z2, Z1'		
Struktura Rybokart N	Z2		
Struktura Gryfic	Z2, Z1'		
Podniesienie Smolęcina W	Z2		
Struktura Smolęcina	Z2, Z1'		
Podniesienie Wyszobora	Z2		
Struktura Pruszcza	Z1'		
Podniesienie Modlimowa	Z1'		
Podniesienie Wrzosowa	Z2		
Podniesienie Strzeżewa	Z2		
Podniesienie Świńca	Z2		
Podniesienie Świńca E	Z2		
Podniesienie Świńca S	Z2		
Podniesienie Świerzna	Z2		
Podniesienie Świerzna S	Z2		
Podniesienie Świerzna N	Z2		
Podniesienie Brojcy S			
Struktura Brojcy	Z2, Z1', P1		
Podniesienie Strzeżewa	Z2, Z1'		
Podniesienie Wrzosowa	Z2		
Podniesienie Łukęcina	Z2, Z1'		
Struktura Benic	Z2		
Podniesienie Gostynia	Z1'		
Struktura Świerzna	Z1'		

Informacje źródłowe niniejszego rozdziału – dane sejsmiczne będące własnością Skarbu Państwa, które są niezbędne dla prawidłowej analizy perspektywiczności naftowej obszaru "Gryfice", zostały zebrane i wycenione w osobnym miejscu – "Projekcie cyfrowych danych geologicznych". Jest on dostępny do wglądu w ramach "DATA ROOMu" w Czytelni NAG w trakcie trwania piątej rundy przetargów na koncesje węglowodorowe w Polsce.

Nazwa	Rok wykonania	Temat	Koncesje (dla badań wykonanych po	Właściciel	Długość [km]
T0010574	1074		2001 r.)	Skarb Danstwa	22.2
T0010374	1974			Skarb Państwa	7 19
T0020574	1974	-		Skarb Państwa	19 31
T0040574	1974	-		Skarb Państwa	19,51
T0050574	1974	-		Skarb Państwa	25.56
T0060574	1974			Skarb Państwa	8.42
T0090574	1974	-		Skarb Państwa	14.8
T0100574	1974	-		Skarb Państwa	6.21
T0120574	1974	-		Skarb Państwa	8.18
T0130574	1974	-		Skarb Państwa	19.09
T0140574	1974			Skarb Państwa	17.9
T0150574	1974			Skarb Państwa	11,36
T0170574	1974			Skarb Państwa	2,34
T0180574	1974			Skarb Państwa	15,15
T0200574	1974			Skarb Państwa	10,08
T0210574	1974			Skarb Państwa	21,73
T0280574	1974			Skarb Państwa	7,67
T0290574	1974			Skarb Państwa	13,92
T0300574	1974			Skarb Państwa	5,8
T0430574	1974	Świnoujście –		Skarb Państwa	18,72
T0480574	1974	Kamień Pomorski –		Skarb Państwa	6,12
T0510574	1974	Gryfice		Skarb Państwa	19,97
T0520574	1974			Skarb Państwa	16,13
T0070575	1975			Skarb Państwa	5,37
T0080575	1975			Skarb Państwa	7,33
T0100575	1975			Skarb Państwa	17,21
T0110575	1975			Skarb Państwa	7,84
T0180575	1975			Skarb Państwa	13,48
T0190575	1975			Skarb Państwa	4,93
T0200575	1975			Skarb Państwa	12,1
T0220575	1975			Skarb Państwa	15,19
T0270575	1975			Skarb Państwa	9,86
T0280575	1975			Skarb Państwa	2,05
T0320575	1975			Skarb Państwa	11,78
T0340575	1975			Skarb Państwa	10,66
T0360575	1975			Skarb Państwa	4,79
T0420575	1975			Skarb Państwa	2,87
T0450575	1975			Skarb Państwa	4,54
T0510575	1975			Skarb Państwa	5
T0530575	1975			Skarb Państwa	18,82
T0680575	1975			Skarb Państwa	2,77
T0030576	1976	4		Skarb Państwa	15,08
T0180576	1976			Skarb Państwa	5,22
T0230576	1976	Gorzysław – Petrykozy		Skarb Państwa	21,52
T0300576	1976			Skarb Państwa	5,38
TA030576	1976			Skarb Państwa	8,69
T0280576	1976	Wysoka Kamieńska		Skarb Państwa	3,12
T0010279	1979			Skarb Państwa	2,75
T0020279	1979			Skarb Państwa	5,4
T0030279	1979			Skarb Państwa	7,69
10050279	1979			Skarb Państwa	13,37
T0710579	1979	Wysoka Kamieńska –		Skarb Państwa	18,48
10720579	1979	Białogard		Skarb Państwa	24,35
10730579	1979			Skarb Państwa	23,07
10/50579	1979	4		Skarb Panstwa	19,79
10/60579	1979	4		Skarb Państwa	23,43
TA/50579	1979			Skarb Panstwa	3,27

T0060280	1980
T0270280	1980
T0740580	1980
T0860580	1980
T0870580	1980
T0900580	1980
T0910580	1980
T0710580	1980
T0970580	1980
10980380	1980
TA280280	1980
TA740580	1980
TA900580	1980
T0020581	1981
T0270281	1981
T0290281	1981
T0300281	1981
T0640581	1981
T0780581	1981
T0790581	1981
T0790501 T0880581	1081
T0800581	1981
T0020581	1981
10920581	1981
10930281	1981
T0930581	1981
T0940281	1981
T0950281	1981
TA010581	1981
TA120281	1981
TA500281	1981
TA510281	1981
TA780581	1981
TA700581	1081
TA/90381	1981
10040582	1982
100/0582	1982
T0080582	1982
T0090582	1982
T0100582	1982
T0110582	1982
T0120582	1982
T0150582	1982
T0170582	1982
T0470282	1982
T0470202	1082
T0700592	1902
10/00582	1982
10//0582	1982
T0810582	1982
T0940582	1982
T0950582	1982
T0960582	1982
T0030583	1983
T0060583	1983
T0130583	1983
T01/0583	1983
T0140303	1903
T0100502	1703
10190583	1983
10200583	1983
T0210583	1983
TA080583	1983
TA220583	1983

T0020796

1996

Skarb Państwa	3,22
Skarb Państwa	7,57
Skarb Państwa	17.5
Skarb Państwa	3.96
Skarb Daństwa	16.0
Skalt Fallstwa	10,9
Skarb Panstwa	2,12
Skarb Państwa	20,92
Skarb Państwa	14,76
Skarb Państwa	11,83
Skarb Państwa	8,64
Skarb Państwa	3,54
Skarb Państwa	13.66
Skarb Państwa	20.12
Skarb Państwa	2 75
Skarb Państwa	2,75
Skalt Fallstwa	2,44
Skarb Panstwa	6,09
Skarb Państwa	13,53
 Skarb Państwa	7,06
Skarb Państwa	4,98
Skarb Państwa	16,85
Skarb Państwa	16,25
Skarb Państwa	26.87
Skarb Państwa	3.67
 Skarh Państwa	25.08
Skarb Państwa	10.32
Skarb Daństwa	10,52
Skarb Palistwa	4,05
Skarb Panstwa	16,/1
Skarb Państwa	2,76
Skarb Państwa	2,42
Skarb Państwa	4,18
Skarb Państwa	13,96
Skarb Państwa	10,04
Skarb Państwa	16,16
Skarb Państwa	10.17
Skarb Państwa	3.62
Skarb Państwa	5.2
Skarb Państwa	13.47
Skarb Lanstwa Skarb Daństwa	5 99
Skalt Fallstwa	3,00
Skaro Panstwa	9,0/
Skarb Panstwa	0,82
Skarb Państwa	12,53
 Skarb Państwa	9,01
Skarb Państwa	12,95
 Skarb Państwa	9,88
Skarb Państwa	23,81
Skarb Państwa	9,84
Skarb Państwa	18,18
Skarb Państwa	19.14
Skarb Państwa	14.89
 Skarh Państwa	2 81
Skarb Państwa	16.32
Skarb Daństwa	672
Skaro Panstwa	0,75
Skarb Panstwa	6,27
Skarb Państwa	5,57
 Skarb Państwa	11,27
 Skarb Państwa	8,64
Skarb Państwa	14,83
Skarb Państwa	16,41
Skarb Państwa	7,07
PGNiG S.A.	5,33
	1

Jarkowo – Piaski

T0050796	1996			PGNiG S.A.	2,66
T2020496	1996	1 [PGNiG S.A.	5,48
T0150797	1997	1		PGNiG S.A.	2,64
T2010599	1999			PGNiG S.A.	11,04
TA010599	1999	Kamiań Romarski Grufiaa		PGNiG S.A.	11,04
T0010500	2000	Trzebiatów		PGNiG S.A.	12,15
T0040500	2000	- Hzeblatow		PGNiG S.A.	26,01
T0050500	2000			PGNiG S.A.	11,61
T0270402	2002	Piaski – Resko	Gryfice 12/99/p, Łobez 21/2000/p	Skarb Państwa	7,65
T0013106	2006			Skarb Państwa	17,48
T0023106	2006			Skarb Państwa	14,03
T0033106	2006			Skarb Państwa	10,36
T0043106	2006		Gryfice	Skarb Państwa	7,78
T0053106	2006		12/99/p,	Skarb Państwa	6,71
T0063106	2006	Rybokarty – Komorowo	Kamień Pomorski	Skarb Państwa	2,48
T0073106	2006		01/2000/p,	Skarb Państwa	10,97
T0083106	2006		Nowogard	Skarb Państwa	2,75
T0113106	2006		20/2000/p	Skarb Państwa	3,14
T0123106	2006			Skarb Państwa	3,25
T0133106	2006			Skarb Państwa	3,01
T0143106	2006			Skarb Państwa	2,9
				SUMA	
				Skarb Państwa:	1399,7
				Inwestor:	87,96

Tab. 6.1. Lista linii sejsmicznych 2D zlokalizowanych na obszarze przetargowym "Gryfice" (lista zawiera linie sejsmiczne dłuższe niż 2 km).

Nazwa	Rok wyk.	Temat	Koncesje (dla badań wykonanych po 2001 r.)	Właściciel	Powie- rzchnia [km ²]
Świerzno 3D	1997	Świerzno		PGNiG S.A.	200,11
Moracz 3D	2014	Moracz	Kamień Pomorski 1/2000/Ł	Skarb Państwa	22,63
Jarkowo 3D	2018	Jarkowo	Trzebiatów 60/2009/Ł, Bardy 15/2008/Ł, Świdwin-Białogard 18/95/Ł	Skarb Państwa	90,38
				SUMA	
				Skarb Państwa:	113,01
				Inwestor:	200,11

Tab. 6.2. Sejsmika 3D na obszarze przetargowym "Gryfice".

Fig. 6.1. Badania sejsmiczne wykonane na przetargowym "Gryfice" i w jego sąsiedztwie wraz z lokalizacją głębokich otworów wiertniczych i złóż węglowodorów.

Fig. 6.2. Badania sejsmiczne wykonane na przetargowym "Gryfice" (przycięte do granicy obszaru) wraz z lokalizacją głębokich otworów wiertniczych i złóż węglowodorów.

7. BADANIA GRAWIMETRYCZNE, MAGNETYCZNE I MAGNETOTELLURYCZNE 7.1. BADANIA GRAWIMETRYCZNE

Badania grawimetryczne w rejonie obszaru przetargowego "Gryfice" rozpoczęto w latach 50-tych XX w. Wykonano wówczas zdjęcie o charakterze regionalnym (Reczek, 1957), a także interpretację zdjęcia w rejonie Świdwin – Trzebiatów (Fajklewicz, 1960), która to interpretacja objęła zasięgiem wschodnią połowę analizowanego obszaru. Wkrótce potem opracowane zostały pierwsze mapy w skali 1 : 200 000 (Kaczkowska i Bronowska, 1969).

Obszar przetargowy "Gryfice" został pokryty grawimetrycznym zdjęciem o charakterze półszczegółowym w ramach tematu "Antyklinorium Pomorskie" (Wasiak i in., 1973; Fig. 7.1), o średnim zagęszczeniu 1,9 pkt/km². Od południa opisywany obszar to sąsiaduje ze "Synklinorium zdjęciem szczecińskie" (Bochnia i Duda, 1963). Zachodnia część Fig. 7.1 jest pokryta dwoma zdjęciami wykonanymi na Zalewie Szczecińskim. Pierwsze z nich (Kruk, 1975) zostało wykonane grawimetrem Sharpe ze średnim zageszczeniem 7 pkt/km², a drugie (Lisowski i Łyszkowska, 1983), zostało wykonane grawimetrem dennym GAK, w równomiernej siatce 1x1 km. Północno-wschodnia część obszaru przetargowego "Gryfice" jest pokryta szczegółowym zdjęciem "Kamień Pomorski" (Duda i Kruk, 1973), które zostało wykonane grawimetrem Sharpe, z zagęszczeniem 16 pkt/km². Współrzędne punktów pomiarowych zostały wyznaczone w układzie Borowa Góra, a wartości anomalii Bouguera obliczone w systemie poczdamskim z przyśpieszeniem normalnym według wzoru Helmerta z 1901 r.

Stworzenie komputerowego banku danych grawimetrycznych umożliwiło opracowanie i opublikowanie "Atlasu grawimetrycznego Polski" (Królikowski i Petecki, 1995), w którym anomalie grawimetryczne zostały obliczone w międzynarodowym systemie grawimetrycznym IGSN 71 (International Gravity Standardization Net, 1971), z uwzględnieniem formuły Moritza na pole normalne dla elipsoidy odniesienia GRS 80 (Geodetic Reference System, 1980). Atlas zawiera mapy anomalii grawimetrycznych o charakterze przeglądowym w skalach 1 : 500 000 i 1 : 750 000. Tak opracowane dane pomiarowe zdjęcia poszczegółowego są dostępne w CBDG (2021) w postaci cyfrowego banku danych. Współrzędne stacji (punktów) zostały przeliczone na układ 1992 przez Instytut Geodezji i Kartografii (Kryński, 2007). Należy jednak pamiętać, że tak przeliczone lokalizacje charakteryzują się błędem przekraczającym w niektórych przypadkach 100 m. Problem ten zostanie wyeliminowany w ciągu najbliższych lat, ponieważ, w 2021 r, jest planowane rozpoczęcie I etapu projektu na zlecenie Ministerstwa Klimatu i Środowiska, a finansowanego przez NFOŚiGW, którego celem jest m.in. korekta błędów lokalizacji stanowisk grawimetrycznych, błędów wyrównania osnowy grawimetrycznej, wykonanie nowej redukcji danych z uwzględnieniem współcześnie obowiązujących systemów odniesienia. W efekcie (który ma zostać osiągnięty przez zespół PIG-PIB w połowie 2024 r.), danym grawimetrycznym, m.in. pokrywajacym obszar przetargowy "Gryfice", zostaną przypisane poprawne lokalizacje określone w państwowym układzie współrzędnych geodezyjnych PUWG 1992.

Wyżej opisane problemy z układem Borowa Góra nie dotyczą zdjęcia szczegółowego Kamień Pomorski (Duda i Kruk, 1973), ani dwóch najnowszych zdjęć, które w niewielkim stopniu wchodza swoimi zasiegami na obszar przetargowy "Gryfice. W 2000 r. zrealizowano zdjęcie Trzebiatów - Dobrzyca -Koszalin (Ostrowska i Pisuła, 2000) o średnim zagęszczeniu punktów pomiarowych 5 pkt/km², o dokładności 0,025 mGal. Zdjęcie to pozwoliło na rozpoznanie anomalii związanych ze zmiennością budowy utworów przypowierzchniowych oraz ich bezpośredniego podłoża jak i z budową strukturalną, a także tektoniką permo-mezozoiku i paleozoiku podpermskiego. W 2002 r. zostało wykonane profilowe zdjęcie Piaski – Resko (Ostrowski, 2002). Celem zdjęcia było odwzorowanie budowy geologicznej, elementów strukturalnych i tektonicznych utworów permo-mezozoicznych i stropowej partii podłoża permu (karbon, dewon).

Dokumentacje z obu wymienionych powyżej, najnowszych zdjęć, w wersji przekazanej do NAG, nie zawierają danych pomiarowych w wersji cyfrowej – stąd na Fig. 7.1 przedstawiono jedynie zasięgi dokumentacji. Dane zdjęcia Trzebiatów – Dobrzyń – Koszalin (Ostrowska i Pisuła, 2000) są jedynym zbiorem spośród wymienionych w rozdziale nie należącym do Skarbu Państwa.

Opisany w tym rozdziale materiał pomiarowy stał się podstawą do wielu opracowań, interpretujących obraz grawitacyjny obszaru obecnego zainteresowania (Chowańska-Otyś i Dąbrowski, 1977; Gaczyński i in., 1986; Grobelny i Królikowski, 1988; Kozera i Wronicz, 1976; Królikowski i Petecki, 2002; Królikowski i in., 1985, 1986; Narkiewicz i Petecki, 2017; Wronicz, 1988a i b;).

Mapa anomalii grawimetrycznych w redukcji Bouguera została przedstawiona na Fig. 7.2. Według podziału na regiony grawimetryczne, zaproponowanego przez Królikowskiego i Peteckiego (1995), obszar przetargowy "Gryfice" znajduje się na północnym krańcu Wyżu Pomorskiego - dodatniej anomalii, która w rejonie omawianego obszaru rozdziela się na dwa człony ujemna anomalia niecki trzebiatowskiej (na północny wchód od obszaru "Gryfice"). Dominujący udział w tworzeniu dodatniej anomalii zdaje się mieć podłoże podpermskie (Grobelny i Królikowski, 1988). Potwierdza to korelacja z mapą geologicznostrukturalną podłoża permu (Lech, 2001), z której wynika, że dodatnia anomalia grawimetryczna występuje ponad wychodnią dewonu na powierzchni podpermskiej.

Pasmowa lokalna anomalia, ujawniająca się na mapie anomalii Bouguera jako ugięcie izolinii w pasie od otworów Gostyń IG-1 i IG-2 do grupy otworów Benice, jest związana z obecnością rowu synsedymentacyjnego (Dadlez i in., 1998), który może mieć głębsze założenie – podpermskie (porównaj: Lech, 2001).

Dokumentacje grawimetryczne

 Bochnia, N., Duda, W. 1963. Sprawozdanie z półszczegółowych pomiarów grawimetrycznych w synklinorium szczecińskim, 1962 r. Inw. 966, Kat. 3319/52, Arch. CAG PIG, Warszawa.

- Duda, W., Kruk, B. 1973. Dokumentacja szczegółowych badań grawimetrycznych na lądzie i wodach płytkich. Temat: Kamień Pomorski, 1973 r. Inw. 1788, Kat. 3219/51, Arch. CAG PIG, Warszawa.
- Fajklewicz, Z. 1960. Interpretacja zdjęcia grawimetrycznego Świdwin – Trzebiatów, 1960. Kat. 32/190, Arch. CAG PIG, Warszawa.
- Gaczyński, E., Petecki, Z., Zientara, P., Wybraniec, S. 1986. Analiza obszarów badań geofizycznych na podstawie map gradientu pionowego pola grawitacyjnego. Badania geofizyczne na obszarze ujemnych anomalii grawimetrycznych w północno-zachodniej Polsce, 1986. Inw. 34526, Kat. 32/205, Arch. CAG PIG, Warszawa.
- Kaczkowska, Z., Bronowska, E. 1969. Zestawienie, analiza i interpretacja mapy grawimetrycznej 1:200 000 oraz historia badań i charakterystyka grawimetryczna antyklinorium i synklinorium pomorskiego, 1969. Inw. 42438, Kat. 32/144, Arch. CAG PIG, Warszawa.
- Kozera, A., Wronicz, S. 1976. Kompleksowa interpretacja materiałów sejsmicznych i grawimetrycznych dla wybranych obszarów Niecki Szczecińskiej pod kątem rozwoju utworów solnych. Inw. 44854, Kat. ON/501, Arch. CAG PIG, Warszawa.
- Królikowski, C., zespół 1985. Zastosowanie metody odejmowania efektów grawitacyjnych do wyznaczania anomalii od podłoża podpermskiego północno-zachodniej Polski, etap I – Model strukturalnogęstościowy. Inw. 33910, Arch. CAG PIG, Warszawa.
- Królikowski, C., zespół 1986. Zastosowanie metody odejmowania efektów grawitacyjnych do wyznaczania anomalii od podłoża podpermskiego północno-zachodniej Polski, etap II /ostatni/ - Opracowanie mapy anomalii od podłoża permu, 1986. Inw. 35725, Kat. 32/203, Arch. CAG PIG, Warszawa.
- Kruk, B. 1975. Dokumentacja szczegółowych badań grawimetrycznych na lądzie i wodach płytkich. Temat: Zalew Szczeciński, 1974 r. Inw. 1851, Kat. 3318/42, Arch. CAG PIG, Warszawa.

- Lisowski, K., Łyszkowska, J. 1983. Dokumentacja badań grawimetrycznych; temat: Zalew Szczeciński, 1982 r. Inw. 2185, Kat. 3319/212, Arch. CAG PIG, Warszawa.
- Ostrowska, K., Pisuła, M. 2000. Sprawozdanie z realizacji zdjęcia grawimetrycznego temat: Trzebiatów – Dobrzyca – Koszalin, 1998-1999. Inw. 4509/2013, Kat. G-619 PBG, Arch. CAG PIG, Warszawa.
- Ostrowski, C. 2002. Dokumentacja szczegółowych badań grawimetrycznych wzdłuż profili sejsmicznych w rejonie Piaski – Resko, 2002. Inw. 4511/2013, Kat. G-625 PBG, Arch. CAG PIG, Warszawa.
- Reczek, J. 1957. Sprawozdanie: Regionalne badania grawimetryczne na obszarze Niecki Szczecińskiej i Wału Kujawsko-Pomorskiego, 1956. Inw. 40834, Kat. 42/109, Arch. CAG PIG, Warszawa.
- Wasiak, I., Zdziarska, B., Duda, W. 1973. Dokumentacja półszczegółowych badań grawimetrycznych. Temat: Antyklinorium

Pomorskie. Inw. 1761, Kat. 32/158, Arch. CAG PIG, Warszawa.

- Wronicz, S. 1988a. Paleogeodynamika, warunki występowania złóż i prognozy surowcowe strukturalnego kompleksu permsko - mezozoicznego. Zadanie: Mapa grawimetryczno - sejsmicznych elementów strukturalnych kompleksu cechsztyńsko mezozoicznego na obszarze Wału Pomorsko - Kujawskiego i obszarów przyległych Etap II - arkusze: Kołobrzeg i Świdwin. Kat. 3321/181, Arch. CAG PIG, Warszawa.
- Wronicz, S. 1988b. Paleogeodynamika, warunki występowania złóż i prognozy surowcowe strukturalnego kompleksu permsko - mezozoicznego. Zadanie: Mapa grawimetryczno - sejsmicznych elementów strukturalnych kompleksu cechsztyńsko mezozoicznego na obszarze wału pomorsko - kujawskiego i obszarów przyległych, etap III - arkusze: Dziwnów i Szczecin. Inw. 5293/2010, Arch. CAG PIG, Warszawa.

Fig. 7.1. Lokalizacja stanowisk grawimetrycznych z pomiarów półszczegółowych i szczegółowych (profile grawimetryczne) na obszarze przetargowym "Gryfice" (na podstawie danych CBDG, 2021).

Fig. 7.2. Mapa anomalii grawimetrycznych w redukcji Bouguera w rejonie obszaru przetargowego "Gryfice" (Królikowski i Petecki, 1995).

7.2. BADANIA MAGNETYCZNE

Obszar przetargowy "Gryfice" jest pokryty rozproszonym zdjęciem magnetycznym o charakterze półszczegółowym, wykonanym w latach 90-tych XX w. (Cieśla i Wybraniec, 1995, włączone do: Kosobudzka i Paprocki, 1997. Fig. 7.3). Zdjęcie to zostało wykonane ze średnim zagęszczeniem 2 pkt/km². Obecność zelektryfikowanej linii kolejowej Kamień Pomorski - Wysoka Kamieńska (zachodnia część obszaru przetargowego "Gryfice") spowodowała konieczność zastosowania tzw. różnicowej metody pomiarów (Kosobudzka, 1998), co przejawia się charakterystycznym, pasmowym układem punktów pomiarowych. Od północnego wschodu obszar przetargowy sąsiaduje z wcześniejszym zdjęciem, o podobnym zagęszczeniu a obejmującym swoim zasięgiem Polskę zachodnią, centralną i południowo-wschodnią (Kosobudzka, 1988).

Nawodne zdjęcia magnetyczne T, obejmujące obszar południowego Bałtyku, były realizowane przez kilka firm, ale największe pod względem powierzchni obszaru i ilości wykonanych pomiarów magnetyczne zdjęcie morskie wykonane zostało w latach 1976–1982 przez Ogólnozwiązkowy Instytut Naukowo-Badawczy Morski Geologii i Geofizyki WNIMORGEO (ZSRR) na zlecenie ówczesnego międzynarodowego konsorcjum PE-TRO-BALTIC w Gdańsku. Wyniki w/w badań zostały w latach 1993–1994 ujednolicone i opracowane w postaci komputerowego zbioru danych przez PBG (Kosobudzka i Paprocki, 1994).

Mapa anomalii magnetycznych ΔT została przedstawiona na Fig. 7.4. Według podziału zaproponowanego przez Peteckiego i Rosowiecką (2017), obszar przetargowy "Gryfice"

znajduje się w obrębie domeny zachodniego Pomorza (*WPd – Western Pomerania domain*). Obszar ten charakteryzuje się niskoamplitudowymi anomaliami o rozciągłości NW-SE. Analiza spektralna wykazała, że strop podłoża czynnego magnetycznie znajduje się w tym rejonie na głębokości około 18,5 km (Petecki, 2001).

Dokumentacje magnetyczne

- Cieśla, E., Wybraniec, S. 1995. Sprawozdanie techniczne z półszczegółowych badań magnetycznych T w rejonie NW Polski wykonanych w ramach projektu badawczego "Zastosowanie nowych metod interpretacji pól potencjalnych do rozpoznania budowy Polski północnozachodniej". Inw. 2137/95, Arch. CAG PIG, Warszawa.
- Kosobudzka, I. 1988. Dokumentacja częściowa półszczegółowych badań magnetycznych temat: Polska zachodnia, centralna i południowo-wschodnia, 1988 r. w rejonie "Kołobrzegu Ustki". Inw. 1257/91, Arch. CAG PIG, Warszawa.
- Kosobudzka, I., Paprocki, A. 1994. Sprawozdanie z prac tematu: Mapa magnetyczna Bałtyku Południowego w skali 1 : 200 000 wraz z komputerowym bankiem danych, anomalie modułu T całkowitego natężenia ziemskiego pola magnetycznego Ziemi. Inw. 820/95, Arch. CAG PIG, Warszawa.
- Kosobudzka, I., Paprocki, A. 1997. Wykonanie półszczegółowych badań magnetycznych T w Polsce zachodniej, centralnej i południowo-wschodniej w latach 1995-1997. Inw. 812/98, 338/98, Arch. CAG PIG, Warszawa.

Fig. 7.3. Lokalizacja stanowisk pomiarowych modułu całkowitego wektora pola geomagnetycznego T na obszarze przetargowym "Gryfice" (na podstawie danych CBDG, 2021).

Fig. 7.4. Mapa anomalii modułu całkowitego pola geomagnetycznego T w rejonie obszaru przetargowego "Gryfice" (Petecki i Rosowiecka, 2017).

7.3. BADANIA MAGNETOTELLURYCZNE

W latach 2007–2008 wykonano pierwszy etap realizacji projektu prac magnetotellurycznych w rejonie segmentu pomorskiego bruzdy śródpolskiej (Stefaniuk i in., 2008). Etap ten obejmował wykonanie pomiarów na dwóch profilach BMT-5 (300km i D-PL (230 km). Drugi z profili, przecina obszar przetargowy "Gryfice" (Fig. 7.5). Pomiary wykonano w wersji pojedynczych sondowań odległych od siebie o około 4,5 km. Ogólnym celem badań było rozpoznanie wgłębnej struktury strefy pomorskiego segmentu bruzdy śródpolskiej i obszarów sąsiednich, w szczególności określenie charakteru kontaktu kratonu wschodnioeuropejskiego i struktur północnoeuropejskiej platformy paleozoicznej. W wyniku inwersji 2D otrzymano przekrój geoelektryczny w którym widoczne są wszystkie główne struktury geologiczne występujące wzdłuż profilu (Fig. 7.6). Wyniki te były podstawą interpretacji budowy geologicznej. Rozkład oporności do głębokości 5 km potwierdza budowe geologiczna, rozpoznana za pomocą wierceń i sejsmiki refleksyjnej, w szczególności najmłodszej cechsztyńskomezozoicznej pokrywy osadowej oraz ważniejszych elementów strukturalnych zbudowanych ze skał młodszego paleozoiku, tj. czerwonego spągowca, karbonu oraz dewonu (Stefaniuk i in., 2008).

Dokumentacje magnetotelluryczne

- Jóźwiak, W. 2007. Sondowania magnetowariacyjne na profilu Rugia – Bornholm. Arch. IGF PAN.
- Stefaniuk, M., Wojdyła, M., Petecki, Z., Pokorski, J., 2008. Dokumentacja badań geofizycznych. Temat: Budowa geologiczna pokrywy osadowej i podłoża krystalicznego segmentu pomorskiego bruzdy śródpolskiej na podstawie kompleksowych badań geofizycznych (profilowań magnetotellurycznych) Etap I: 2007 – 2008. Inw. 1277/2009, 3090/2014, 4547/2015, 4548/ 2015, Arch. CAG PIG, Warszawa.

Fig. 7.5. Lokalizacja sondowań magnetotellurycznych na obszarze przetargowym "Gryfice" (na podstawie danych CBDG, 2021).

Fig. 7.6. Geologiczna interpretacja przekroju DP-L do głębokości 10 km (Stefaniuk i in., 2008). Różowy poligon oznacza fragment profilu przechodzący przez obszar przetargowy "Gryfice". K_2 – kreda górna, T-J – trias i jura, PZ – Me – cechsztyńsko-mezozoiczna pokrywa platformowa wraz z kenozoikiem, D-C-Pcs – pokrywa platformowa paleozoiku górnego (dewon, karbon, czerwony spągowiec), S/Cm – kaledonidy (sfałdowany niższy paleozoik allochtoniczny), Pt – paleoproterozoik (podłoże krystaliczne). Lokalizację przekroju można znaleźć na Fig. 7.5.

8. PODSUMOWANIE

Perspektywy naftowe poszczególnych horyzontów stratygraficznych oraz związane z nimi koncepcje poszukiwawcze na obszarze przetargowym "Gryfice" zostały opisane w rozdziale 2. Ich podstawą są dane dotyczące systemów naftowych, złóż węglowodorów zlokalizowanych na obszarze przetargowym i w jego okolicy, otworów wiertniczych, sejsmiki i grawimetrii, magnetyki i magnetotelluryki (rozdziały 3–7). Poniżej zestawiono najważniejsze informacje o obszarze przetargowym "Gryfice" w formie karty informacyjnej, a także zaproponowano minimalny program fazy poszukiwawczorozpoznawczej przyszłej koncesji, której zakres umożliwi odkrycie złoża.

	Nazwa obszaru:	"GRYFICE"
Dane ogólne	Lokalizacja:	Na lądzie
		Arkusze mapy topograficznej w skali 1 : 50 000: Międzywodzie 75, Dziwnów
		(Pobierowo) 76, Wolin 114, Kamień Pomorski 115, Gryfice 116, Brojce 117
		Fragmenty bloków koncesyjnych nr: 62, 82 i 83
		Położenie administracyjne: województwo zachodniopomorskie, powiat kamieński,
		gminy: Świerzno (18,72%), Wolin (5,12%), Kamień Pomorski (26,39%), Dziwnów
		(3,11%), Golczewo (3,09%); powiat gryficki, gminy: Płoty (4,78%), Karnice (5,60%),
		Rewal (1,67%), Brojce (6,60%), Trzebiatów (0,75%), Gryfice (24,17%)
	Тур:	poszukiwanie i rozpoznawanie złóż węglowodorów
		oraz wydobywanie węglowodorów ze złóż
	Czas obowiązywania:	koncesja na 30 lat w tym:
		faza poszukiwawczo-rozpoznawcza (5 lat),
		faza wydobywcza – po uzyskaniu decyzji inwestycyjnej
	Udziały	zwycięzca przetargu 100%
Powierzchnia [km ²]		747,96
	Dodzoj zlożo	konwencjonalne złoża gazu ziemnego i ropy naftowej
Kouzaj zioza		niekonwencjonalne złoża gazu ziemnego (tight gas)
Piętra strukturalne		kenozoiczne
		laramijskie
		waryscyjskie
	kaledońskie	
	Systemy naftowe	I. karbońsko-dolnopermski system naftowy
		II. cechsztyński system naftowy dolomitu głównego (dodatkowy cel poszukiwawczy)
	Skały zbiornikowe	I. piaskowce fluwialne górnego karbonu (arenity i waki kwarcowe, najczęściej
		drobno- i średnioziarniste) oraz piaskowce fluwialne górnego czerwonego spągowca
		(arenity, sporadycznie waki kwarcowe, sublityczne i lityczne)
		II. dolomity, dolomity częściowo skalcytyzowane i wapienie reprezentowane przez
		greinstony i pakstony w dolomicie głównym
	Skały macierzyste	I. iłowce i mułowce turneju i wizenu, podrzędnie iłowce
		i mułowce westfalu i stefanu
		II. madstony, greinstony, bandstony dolomitu głównego
	Skały uszczelniające	I. od stropu sukcesja skał wulkanicznych dolnego czerwonego spągowca
S		i/lub ewaporaty cyklotemu PZ1
~		II. od spągu utwory ewaporatowe cyklotemu PZ1,
		od stropu utwory ewaporatowe cyklotemu PZ2
		I. mieszane, strukturalno-litologiczno-tektoniczne,
Typ pułapki	Typ pułapki	pułapki niekonwencjonalne typu ciągłego (<i>tight</i>)
		II. strukturalne, strukturalno-tektoniczne, facjalne
	a rozpoznane w pobliżu	Rekowo (NR 4847), Wrzosowo (GZ 4732), Dargosław (GZ 20146),
Złoża		Gorzysław N (GZ 4687), Gorzysław S (GZ 4688), Kamień Pomorski (NR 4802),
		Trzebusz (GZ 4686), Wysoka Kamieńska (NR 4804)

Karta informacyjna obszaru przetargowego "Gryfice"

GRYFICE

	1974-1975 Świnoujście – Kamień Pomorski – Gryfice 2D, 41 profili (Skarb Państwa)
	1976 Gorzysław – Petrykozy 2D, 5 profili (Skarb Państwa)
	1976 Wysoka Kamieńska 2D, 1 profil (Skarb Państwa)
	1979-1983 Wysoka Kamieńska – Białogard 2D, 69 profili (Skarb Państwa)
Zrealizowane zdiecia	1996-1997 Jarkowo – Piaski 2D, 4 profile (PGNiG S.A.)
sejsmiczne, temat	1999-2000 Kamień Pomorski – Gryfice – Trzebiatów 2D, 5 profili (PGNiG S.A.)
(właściciel)	2002 Piaski – Resko 2D, 1 profil (Skarb Państwa)
x y	2006 Rybokarty – Komorowo 2D, 12 profili (Skarb Państwa)
	1997 Świerzno 3D (PGNiG S.A.)
	2014 Moracz 3D (Skarb Państwa)
	2018 Jarkowo 3D (Skarb Państwa)
	Benice 1 (3247,0 m), Benice 2 (2916,0 m), Benice 3 (2842,0 m), Benice 4K (2732,5 m),
	Brojce IG-1 (4252,0 m), Chomino 1 (2750,0 m), Dobropole 1 (2883,0 m),
	Dusin 1 (2662,5 m), Gostyń 2 (3447,0 m), Gryfice 1 (3367,0 m), Gryfice 2 (3415,0 m),
	Gryfice 3 (3190,0 m), Jarszewo 1 (2998,7 m), Kaleń 1 (3232,0 m),
04	Kamień Pomorski 13 (2672,0 m), Kamień Pomorski 3 (2405,0 m),
Otwory reperowe	Kamień Pomorski 7 (3410,0 m), Laska 2 (3583,0 m), Rekowo 1 (2667,0 m),
(giędokosc)	Rekowo 2 (3141,5 m), Rekowo 3 (2697,0 m), Rekowo 4 (2736,0 m), Rekowo 6 (2746,0
	m), Skarchowo 1 (2667,0 m), Strzeżewo 1 (4521,0 m), Świerzno 1 (3103,0 m),
	Świerzno 2 (2772,2 m), Świerzno 4 (3238,5 m), Świerzno 5 (2883,6 m),
	Świerzno 9 (2774,7 m), Wrzosowo 1 (3305,0 m), Wrzosowo 2 (3127,3 m),
	Wrzosowo 3 (3255,0 m), Wrzosowo 8 (3310,0 m), Wrzosowo 9 (3198,0 m)

Proponowany minimalny program prac fazy poszukiwawczo-rozpoznawczej

- interpretacja i analiza archiwalnych danych geologicznych
 - reprocessing profili sejsmicznych 2D (60 km) lub

wykonanie badań sejsmicznych 2D (50 km PW) albo 3D (25 km²)

 wykonanie jednego odwiertu wiertniczego sięgającego utworów karbonu o maksymalnej głębokości 5000 m TVD wraz z obligatoryjnym rdzeniowaniem interwałów perspektywicznych

9. MATERIAŁY ŹRÓDŁOWE

- Antonowicz, L., Iwanowska, E., Jamrozik, J., Nowicka, A. 1993. Pochylone bloki/półrowy podłoża permu na obszarze antyklinorium i synklinorium pomorskiego – implikacje dla poszukiwań naftowych. *Przegląd Geologiczny*, 41, 71–74.
- Antonowicz, L., Iwanowska, E., Rendak, A. 1994. Tensional tectonics in the Pomeranian section of the T-T Zone and the implictions for hydrocarbon exploration. *Geological Quarterly*, **38**, 289–306.
- Bajewski, Ł., Wilk, A., Urbaniec, A., Bartoń, R. 2019. Poprawa obrazowania struktur podcechsztyńskich na podstawowe reprocessingu sejsmiki 2D w rejonie Pomorza Zachodniego. *Nafta-Gaz*, 4, 195– 204
- Bajewski, Ł., Wilk, A., Urbaniec, A., Bartoń, R. 2020. Reinterpretacja tektoniki w obszarze Pomorza Zachodniego w oparciu o nową wersję profilu sejsmicznego 2D po reprocessingu. *Nafta-Gaz*, **6**, 363–376.
- **Binder, I. 1994.** Dokumentacja geologiczna w kat. B złoża ropy naftowej Rekowo. Inw. 710/95, Arch. CAG PIG, Warszawa.
- **Binder, I., Jasiecka, B. 1974**. Dokumentacja wynikowa otworu badawczego Jarszewo 1. Inw. 119558, Arch. CAG PIG, Warszawa.
- **Binder, I., Sieradzka, B. 1975.** Dokumentacja wynikowa otworu Gryfice 3. Inw. 121158, Arch. CAG PIG, Warszawa.
- **Binder, I., Sikorski, B. 1975.** Dokumentacja geologiczna złoża gazu ziemnego Wrzosowo w rejonie Kamienia Pomorskiego. Inw. 11409 CUG, Arch. CAG PIG, Warszawa.
- **Binder, I., Szewc, A. 1979.** Dokumentacja wynikowa otworu Gryfice 1. Inw. 125095, Arch. CAG PIG, Warszawa.
- **Binder, I., Lech, I., Sikorski, B. 1976.** Dokumentacja złoża gazu ziemnego Gorzysław w rejonie Trzebiatowa. Inw. 11780a CUG, Arch. CAG PIG, Warszawa.
- Binder, I., Lech, I., Sikorski, B. 1978. Dokumentacja geologiczna złoża gazu ziemnego Gorzysław-Trzebusz. Dodatek nr 1. Inw. 11780b CUG, Arch. CAG PIG, Warszawa.

- **Binder, I., Lech, I., Sikorski, B. 1980.** Dokumentacja geologiczna złóż gazu ziemnego Gorzysław-Trzebusz. Dodatek nr 2. Inw. 11780c CUG, Arch. CAG PIG, Warszawa.
- Bobek, K., Konieczyńska, M., Jarosiński, M. 2021. Tectonics of the Wysoka Kamieńska Graben (NW Poland) and implications for fault sealing potential. *Geological Quarterly*, (w recenzji).
- Bochnia, N., Duda, W. 1963. Sprawozdanie z półszczegółowych pomiarów grawimetrycznych w synklinorium szczecińskim, 1962 r. Inw. 966, Kat. 3319/52, CAG PIG, Warszawa.
- Botor, D., Papiernik, B., Maćkowski, T., Reicher, B., Kosakowski, P., Machowski, G., Górecki, W. 2013. Gas generation in Carboniferous source rocks of the Variscan foreland basin: implications for a charge history of Rotliegend deposits with natural gases. *Annales Societatis Geologorum Poloniae*, 83, 353–383.
- Brochwicz-Lewiński, W. 1987. Jura górna. [W:] Raczyńska, 1987 [red.], Budowa Geologiczna Wału pomorskiego i jego podłoża. Prace Państwowego Instytutu Geologicznego, 119, 123–130.
- Brzeżański, A. 1986a. Opracowanie pomiarów średnich prędkości w odwiercie Benice 4K. B38 VS, Arch. CAG PIG, Warszawa.
- Brzeżański, A. 1986b. Opracowanie pomiarów średnich prędkości w odwiercie Brojce IG-1. B215 VS, Arch. CAG PIG, Warszawa.
- **Bukowicki, J. 1974.** Sprawozdanie z pomiarów średnich prędkości i pionowe profilowanie sejsmiczne w odwiercie Kamień Pomorski 3. K19 VS, Arch. CAG PIG, Warszawa.
- Buniak, A., Solarska, A. 2004. Występowanie złóż węglowodorów a wykształcenie litologiczno-facjalne utworów górnego czerwonego spągowca na obszarze Pomorza Zachodniego (na przykładzie złóż Ciechnowo i Sławoborze). [W:] Konferencja naukowo-techniczna: Basen Permski Niżu Polskiego – Czerwony Spągowiec. Budowa i potencjał zasobowy, Piła,

23.04.2004: 113-118.

- Buniak, A., Mikołajewski, Z., Wagner, R. 2013a. Mapa paleogeograficzna wapienia cechsztyńskiego (Ca1), 1 : 500 000. PGNiG, Departament Poszukiwania Złóż, Ośrodek Północ w Pile; Państwowy Instytut Geologiczny – Państwowy Instytut Badawczy, Warszawa.
- Buniak, A., Kwolek, K., Nowicka, A., Dyjaczyński, K., Papiernik, B., Peryt, T., Protas, A., Wagner, R. 2013b. Mapa perspektyw poszukiwawczych w utworach dolomitu głównego. PGNiG, Oddział w Zielonej Górze; Państwowy Instytut Geologiczny – Państwowy Instytut Badawczy, Warszawa.
- Burchat, B. 1973. Dokumentacja pomiarów średnich prędkości, odwiert: Świerzno 1. Ś24 VS, Arch. CAG PIG, Warszawa.
- **CBDG**, **2021**. Centralna Baza Danych Geologicznych. http://geoportal.pgi.gov.pl
- Chowańska-Otyś, D., Dąbrowski, A. 1977. Wgłębna budowa geologiczna podłoża południowego Bałtyku w świetle zdjęcia grawimetrycznego z lat 1970-1972. *Kwartalnik Geologiczny*, **21**, 335–344.
- Chruścińska, J., Platek, K. 2016. Dokumentacja prac geologicznych niekończących się udokumentowaniem zasobów złoża kopaliny wykonanych na obszarze koncesji na poszukiwanie i rozpoznawanie złóż ropy naftowej i gazu ziemnego w rejonie Kaleń nr 28/2008/p. Inw. 3326/2018, Arch. CAG PIG, Warszawa.
- Cieśla, E., Wybraniec, S. 1995. Sprawozdanie techniczne z półszczegółowych badań magnetycznych T w rejonie NW Polski wykonanych w ramach projektu badawczego "Zastosowanie nowych metod interpretacji pól potencjalnych do rozpoznania budowy Polski północnozachodniej". Inw. 2137/95, CAG PIG, Warszawa.
- Czajka, D. 2019. Dokumentacja geologiczno-inwestycyjna w kat. C złoża gazu ziemnego Trzebusz. Inw. 9379/2020, Arch. CAG PIG, Warszawa.
- Czapowski, G. 1983. Zagadnienia sedymentacji soli kamiennej cyklotemu PZ1 we wschodnim skłonie wyniesienia Łeby. *Przegląd Geologiczny*, **31**, 278–284.
- Czapowski, G., Tomassi-Morawiec, H.

1985. Sedymentacja i geochemia najstarszej soli kamiennej w rejonie Zatoki Puckiej. *Przegląd Geologiczny*, **33**, 663–670.

- Czapowski, G., Gąsiewicz, A., Peryt, T.M. 1991. The commencement of the PZ3 deposition in the Puck Bay region, northern Poland. Zentralblatt für Geologie und Paläontologie, Teil I, H.4, 873–882.
- Dadlez, R. 1978. Podpermskie kompleksy skalne w strefie Koszalin–Chojnice. *Kwartalnik Geologiczny*, 22, 269–301.
- Dadlez, R. 1980. Tektonika wału pomorskiego. *Kwartalnik Geologiczny*, 24, 741– 767.
- Dadlez, R. 1990. Tektonika Południowego Bałtyku. *Geological Quarterly*, 34, 1–20.
- Dadlez, R. 2001. Przekroje geologiczne przez bruzdę śródpolską. Państwowy Instytut Geologiczny, Warszawa.
- Dadlez, R., Narkiewicz, M., Stephenson, R. A., Visser, M. T. M., Van Wess, J.-D. 1995. Tectonic evolution of the Mid-Polish Trough: modelling implications and significance for central European geology. *Tectonophysics*, 252, 179–195.
- Dadlez, R., Iwanow, A., Leszczyński, K., Marek, S. 1998. Mapa tektoniczna kompleksu cechsztyńsko-mezozoicznego. Atlas paleogeograficzny epikontynentalnego permu i mezozoiku w Polce. Państwowy Instytut Geologiczny, Warszawa.
- Dadlez, R., Marek, S., Pokorski, J. 2000. Mapa geologiczna Polski bez utworów kenozoiku, 1 : 1 000 000. Państwowy Instytut Geologiczny, Warszawa.
- Darłak, B., Kowalska-Włodarczyk, M., Kobyłecka, A., Leśniak, G., Such, P. 1998. Przegląd wyników badań właściwości zbiornikowych i filtracyjnych wybranych skał zbiornikowych z basenów młodopaleozoicznych Niżu Polskiego. [W:] Narkiewicz, 1998 [red.], Analiza basenów sedymentacyjnych. Prace Państwowego Instytutu Geologicznego, 165, 147–153.
- Deczkowski, Z. 1997. Trias górny. Noryk i retyk. Formalne i nieformalne jednostki litostratygraficzne [W:] Marek i Pajchlowa, 1997 [red.], Epikontynentalne perm i mezozoik w Polsce. *Prace Państwowego Instytutu Geologicznego*, **153**, 184–186.

- **Dembicki, H. 2017.** Practical Petroleum Geochemistry for Exploration and Production. 1st Edition, Elsevier.
- Dickinson, W.R. 1970. Interpreting detrital modes of graywacke and arkose. *Journal of Sedimentary Petrology*, 40, 695– 707.
- Dobracka, E. 2013. Objaśnienia do szczegółowej mapy geologicznej Polski, 1 : 50 000. Arkusz Gryfice (116). Państwowy Instytut Geologiczny – Państwowy Instytut Badawczy, Warszawa.
- Dobracka, E., Dobracki, R., Matkowska, Z. 1977. Objaśnienia do szczegółowej mapy geologicznej Polski, 1 : 50 000. Arkusz Dziwnów (76) i (115). Instytut Geologiczny, Warszawa.
- **Dobracki, R. 2016.** Objaśnienia do szczegółowej mapy geologicznej Polski, 1 : 50 000. Arkusz Brojce (111). Państwowy Instytut Geologiczny – Państwowy Instytut Badawczy, Warszawa.
- Duda, W., Kruk, B. 1973. Dokumentacja szczegółowych badań grawimetrycznych na lądzie i wodach płytkich. Temat: Kamień Pomorski, 1973 r. Inw. 1788, Kat. 3219/51, CAG PIG, Warszawa.
- Dybova–Jachowicz, S., Pokorski, J. 1984. Stratygrafia karbonu i dolnego permu

w otworze wiertniczym Strzeewo 1. *Geological Quarterly*, **28**, 589–616.

- **Dyjaczyński, K., Peryt, T.M. 2014.** Controls on basal Zechstein (Wuchiapingian) evaporite deposits in SW Poland. *Geological Quarterly*, **58**, 485–502.
- Fajklewicz, Z. 1960. Interpretacja zdjęcia grawimetrycznego Świdwin Trzebiatów, 1960. Kat. 32/190, CAG PIG, Warszawa.
- Frankiewicz, A., Wiśniowski, Z. 2000. Objaśnienia do Mapy hydrogeologicznej Polski w skali 1 : 50000, arkusz Kamień Pomorski (0115). Państwowy Instytut Geologiczny, Warszawa.
- Fuliński, M. 1982. Dokumentacja pomiarów gęstości objętościowej i porowatości otwartej skał, rok 1981. Inw. 45709, ObO/1823, Arch. CAG PIG, Warszawa.
- Fuszara, P. 2009. Model pojęciowy dla JCWPd nr 6. Państwowy Instytut Geologiczny, Warszawa.

- Gaczyński, E., Petecki, Z., Zientara, P., Wybraniec, S. 1986. Analiza obszarów badań geofizycznych na podstawie map gradientu pionowego pola grawitacyjnego. Badania geofizyczne na obszarze ujemnych anomalii grawimetrycznych w północno-zachodniej Polsce, 1986. Inw. 34526, Kat. 32/205, CAG PIG, Warszawa.
- Gajewska, I. 1997a. Trias środkowy(wapień muszlowy-kajper dolny). Formalne i nieformalne jednostki litostratygraficzne. [W:] Marek i Pajchlowa, 1997 [red.], Epikontynentalne perm i mezozoik w Polsce. *Prace Państwowego Instytutu Geologicznego*, 153, 133–136.
- Gajewska, I. 1997b. Trias górny. Kajper. Formalne i nieformalne jednostki litostratygraficzne. [W:] Marek i Pajchlowa, 1997 [red.], Epikontynentalne perm i mezozoik w Polsce. *Prace Państwowego Instytutu Geologicznego*, 153, 164 – 166.
- Gamrot, J. 2019. Dokumentacja geologiczno-inwestycyjna złoża gazu ziemnego Dargosław. Inw. 1245/2021, Arch. CAG PIG, Warszawa.
- Gąsiewicz, A., Wichrowska, M. 1996. Sedymentacja i diageneza dolomitu głównego w zachodniej części platformy pomorskiej. Inw. 499/97, Arch. CAG PIG, Warszawa.
- Gąsiewicz, A., Wichrowska, M., Darłak, B. 1998. Sedymentacja i diageneza a właściwości zbiornikowe utworów dolomitu głównego (Ca2) w polskim basenie cechsztyńskim. [W:] Narkiewicz, 1998 [red.], Analiza basenów sedymentacyjnych. Prace Państwowego Instytutu Geologicznego, 165, 195–206.
- Górecka, T., Czerski, K., Gołąb, K., Moskwa, J., Parka, Z., Ślusarczyk, S. 1980.
 Wyniki badań palinologicznych utworów permu i jego podłoża z obszaru monokliny przedsudeckiej. Centralne Archiwum Geologiczne Państwowego Instytutu Geologicznego, Warszawa.
- Grobelny, A., Królikowski, C. 1988. Anomalie grawimetryczne wywołane utworami podpermskimi w północnozachodniej Polsce. *Kwartalnik Geologiczny*, **32**, 611–634.
- Grotek, I., Klimuszko, E. 1995. Komputeryzacja i podsumowanie wyników badań

geochemicznych, substancji organicznej, bituminów i węglowodorów na Niżu Polskim. Inw. 1497/96, Arch. CAG PIG, Warszawa.

- Grotek, I., Matyja, H., Skompski, S. 1998. Dojrzałość termiczna materii organicznej w osadach karbonu obszaru radomsko-lubelskiego i pomorskiego. [W:] Narkiewicz, 1998 [red.], Analiza basenów sedymentacyjnych. Prace Państwowego Instytutu Geologicznego, 165, 245–254.
- Hannes, A., Sikorski, B. 1973. Dokumentacja geologiczna złoża ropy naftowej Kamień Pomorski. Dodatek nr 1. Inw. 10535a CUG, Arch. CAG PIG, Warszawa..
- Hoffmann, N., Pokorski, J., Lindert, W., Bachmann, H. 1997. Rotliegend stratigraphy, paleogeography and facies in eastern part o the central European Basin. Proc. XIII Int. Congr. on Carboniferous – Permian, Kraków. Prace Państwowego Instytutu Geologicznego, 157, 75–86.
- Houseknecht, D.W. 1987. Assessing the relative importance of compaction processes and cementation reduction of porosity in sandstones. *American Association of Petroleum Geologists Bulletin*, **71**, 633–642.
- Hunt, J. M. 1996. Petroleum Geochemistry and Geology. 2nd Edition, W. H. Freeman, New York.
- Jackowicz, E. 1997. Skały wulkaniczne. [W:] Marek i Pajchlowa, 1997 [red.], Epikontynentalny perm i mezozoik w Polsce. *Prace Państwowego Instytutu Geologicznego*, 153, 42–45.
- Jarmułowicz-Szulc, K. 2009. Analiza inkluzji fluidalnych w wypełnieniach przestrzeni porowej skał czerwonego spągowca w wybranych rejonach Niżu Polskiego. *Przegląd Geologiczny*, **57**, 343–349.
- Jaskowiak-Schoeneichowa, M., Pożaryski, W. 1979. Kreda górna polskiej części Bałtyku. *Kwartalnik Geologiczny*, 23, 421– 427.
- Jóźwiak, W. 2007. Sondowania magnetowariacyjne na profilu Rugia – Bornholm. Arch. IGF PAN.
- Juroszek, C., Kłapciński, J., Sachanbiński, M. 1981. Petrografia, geochemia i występowanie skał wulkanicznych w wybranych otworach wiertniczych północnej

części monokliny przedsudeckiej, synklinorium szczecińskiego i zachodniej części antyklinorium pomorskiego, woj. lubuskie, wielkopolskie, zachodniopomorskie. Inw. 5389/2009, Arch. CAG PIG, Warszawa.

- Kaczkowska, Z., Bronowska, E. 1969. Zestawienie, analiza i interpretacja mapy grawimetrycznej 1:200 000 oraz historia badań i charakterystyka grawimetryczna antyklinorium i synklinorium pomorskiego, 1969. Inw. 42438, Kat. 32/144, CAG PIG, Warszawa.
- Karnkowski, P. 1993. Złoża gazu ziemnego i ropy naftowej w Polsce. Tom I. Niż Polski. Wydawnictwa Towarzystwa Geosynoptyków "Geos". Kraków.
- Karnkowski, P.H. 1994. Rotliegend lithostratigraphy in the central part of the Polish Permian Basin. *Geological Quarterly*, **38**, 27–42.
- Karnkowski, P.H., Matyasik, I. 2016. Krytyczne element systemów naftowych w basenach sedymentacyjnych Polski. *Przegląd Geologiczny*, **64**, 639–649.
- Karwowski, L., Kłapciński, J. 1975. Fauna z osadów cechsztyńskich z wybranych otworów wiertniczych w zachodniej i północnej Polsce. Inw. 5266/2009, Arch. CAG PIG, Warszawa.
- Kiersnowski, H. 1997. Depositional development of the Polish Upper Rotliegend Basin and evolution of its sediment source areas. *Geological Quarterly*, **41**, 433–456.
- Kiersnowski, H. 1998. Architektura depozycyjna basenu czerwonego spągowca w Polsce. *Prace Państwowego Instytutu Geologicznego*, 165, 113–128.
- Kiersnowski, H., Buniak, A. 2006. Evolution of the Rotliegend Basin of northwestern Poland. *Geological Quarterly*, **50**, 119–138.
- Kiersnowski, H., Poprawa, P. 2010. Rozpoznanie basenów węglowodorowych Polski pod kątem możliwości występowania i zasobów oraz możliwości koncesjonowania poszukiwań niekonwencjonalnych złóż gazu ziemnego - etap I. Inw. 2439/2011, Arch. CAG PIG, Warszawa.
- Kiersnowski, H. Waśkiewicz, K., Buniak, A. 2020. Mapa litofacji stropu osadów czerwonego spągowca górnego. Pań-

stwowy Instytut Geologiczny – Państwowy Instytut Badawczy, Warszawa.

- Klecan, A. 1974. Sprawozdanie z pomiarów średnich prędkości w odwiercie Jarszewo 1. J50 VS, Arch. CAG PIG, Warszawa.
- Klecan, A. 1975a. Sprawozdanie z pomiarów średnich prędkości w otworze Rekowo-2. CAG PIG, Warszawa.
- Klecan, A. 1975b. Dokumentacja pomiarów średnich prędkości, odwiert: Świerzno 4. Ś25 VS, Arch. CAG PIG, Warszawa,
- Klecan, A. 1975c. Sprawozdanie z pomiarów średnich prędkości w otworze Wrzosowo 1. W130 VS, Arch. CAG PIG, Warszawa
- Klecan, A. 1977. Opracowanie pomiarów średnich prędkości, odwiert Dusin 1. Inw. 123559, Arch. CAG PIG, Warszawa.
- Klecan, A. 1978a. Sprawozdanie z pomiarów średnich prędkości w odwiercie Kamień Pomorski 7. K20 VS, Arch. CAG PIG, Warszawa.
- Klecan, A. 1978b. Sprawozdanie z pomiarów średnich prędkości w odwiercie Strzeżewo 1. S127 VS, Arch. CAG PIG, Warszawa.
- Klecan, A. 1986. Opracowanie pomiarów średnich prędkości w odwiercie reinterpretacja z uwzględnieniem krzywizny otworu Benice-4K. B39 VS, Arch. CAG PIG, Warszawa.
- Klecan, A. 1987. Dokumentacja pomiarów średnich prędkości, odwiert: Dobropole 1. D57 VS, Arch. CAG PIG, Warszawa.
- Klapciński, J. 1991. Zechstein anhydrites in western Poland. *Zentralblatt für Geologie und Paläontologie*, Teil I, H.4, 1171– 1188.
- Kłapciński, J., Juroszek, C., Sachanbiński, M. 1983. Petrografia, geochemia i występowanie skał wulkanicznych w wybranych otworach wiertniczych antyklinorium pomorskiego. Inw. 5699/2009, Arch. CAG PIG, Warszawa.
- Kombrink, H., Besly, B.M., Collinson, J.D., den Hartog Jager, D.G., Drozdzewski, G., Dusar, M., Hoth, P., Pagnier, H.J.M., Stemmerik, L., Waksmundzka, M.I., Wrede, V. 2010. Carboniferous. [W:] Doornenbal i Stevenson, 2010

[red.], Petroleum Geological Atlas of the Southern Permian Basin Area. European Association of Geoscientists & Engineers Publications by (Houten): 81–99.

- **Kondracki, J. 2013.** Geografia regionalna Polski, Wydawnictwa Naukowe PWN, Warszawa.
- Kosakowski, P., Burzewski, W., Kotarba, M. 2003. Potencjał naftowy utworów dolomitu głównego w strefie Kamienia Pomorskiego. Część 2 – Analiza ropotwórczości. *Przegląd Geologiczny*, 51, 663– 672.
- Kosakowski, P., Kotarba, M., Pokorski, J., Wróbel, M. 2006. Hydrocarbon Potential of the Carboniferous Strata on the Kołobrzeg and Gryfice Blocks (Northwestern Poland). EAGE 68th Conference & Exhibition – Vienna, Austria.
- Kosakowski, P., Kotarba, M., Wróbel, M. 2009. Zechstein Petroleum System in the Western Pomerania, NW Poland. 71st EAGE Conference and Exhibition – Amsterdam, The Netherlands.
- Kosobudzka, I. 1988. Dokumentacja częściowa półszczegółowych badań magnetycznych temat: Polska zachodnia, centralna i południowo-wschodnia, 1988 r. w rejonie "Kołobrzegu – Ustki". Inw. 1257/91, Arch. CAG PIG, Warszawa.
- Kosobudzka, I., Paprocki, A. 1994. Sprawozdanie z prac tematu: Mapa magnetyczna Bałtyku Południowego w skali 1 : 200 000 wraz z komputerowym bankiem danych, anomalie modułu T całkowitego natężenia ziemskiego pola magnetycznego Ziemi. Inw. 820/95, CAG PIG, Warszawa.
- Kosobudzka, I., Paprocki, A. 1997. Wykonanie półszczegółowych badań magnetycznych T w Polsce zachodniej, centralnej i południowo-wschodniej w latach 1995-1997. Inw. 812/98, 338/98, Arch. CAG PIG, Warszawa.
- Kotański, Z. (red.), 1997. Atlas Geologiczny Polski: mapy geologiczne ścięcia poziomego, 1 : 750 000. Państwowy Instytut Geologiczny, Warszawa.
- Kotarba, M., Wagner, R. 2007. Generation potential of the Zechstein Main Dolomite (Ca2) carbonates in the Gorzów Wielkopolski–Międzychód–Lubiatów area:

geological and geochemical approach to microbial-algal source rock. *Przegląd Geologiczny*, **55**, 1025–1036.

- Kotarba, M., Więcław, D., Kowalski, A. 1998. Geneza gazu ziemnego i ropy naftowej z wybranych obszarów basenu dewońskiego i cechsztyńskiego Niżu Polskiego w świetle badań geochemicznych. [W:] Narkiewicz, 1998 [red.], Analiza basenów sedymentacyjnych. Prace Państwowego Instytutu Geologicznego, 165, 261–272.
- Kotarba, M., Grelowski, C., Kosakowski, P., Więcław, D, Kowalski, A., Sikorski, B. 1999. Potencjał węglowodorowy skał macierzystych i geneza gazu ziemnego akumulowanego w utworach czerwonego spągowca i karbonu w północnej części Pomorza Zachodniego. *Przegląd Geologiczny*, 47, 480
- Kotarba, M., Kosakowski, P., Więcław, D., Kowalski, A. 2003. Potencjał naftowy utworów dolomitu głównego w strefie Kamienia Pomorskiego. Część 1 – Macierzystość. *Przegląd Geologiczny*, 51, 7.
- Kotarba, M., Kosakowski, P., Więcław, D., Grelowski, C., Kowalski, A., Lech, S., Merta, H. 2004. Potencjał węglowodorowy karbońskich skał macierzystych w utworach karbonu w przybałtyckiej części segmentu pomorskiego bruzdy śródpolskiej. *Przegląd Geologiczny*, 52, 1156– 1165.
- Kotarba, M., Pokorski, J., Grelowski, C., Kosakowski, P. 2005. Geneza gazu ziemnego w utworach karbonu i czerwonego spągowca w nadbałtyckiej części Pomorza Zachodniego. *Przegląd Geologiczny*, **52**, 425–433.
- Kozera, A., Wronicz, S. 1976. Kompleksowa interpretacja materiałów sejsmicznych i grawimetrycznych dla wybranych obszarów Niecki Szczecińskiej pod kątem rozwoju utworów solnych. Inw. 44854, Kat. ON/501, CAG PIG, Warszawa.
- Kozłowska, A. 1997. Opracowanie petrologiczne osadów karbonu górnego. [W:] Żelichowski i Miłaczewski, 1997 [red.], Ocena perspektyw poszukiwawczych złóż ropy naftowej i gazu ziemnego w basenach sedymentacyjnych młodszego paleozoiku na obszarze zachodniej części polskiego

sektora Bałtyku – Blok H, K, L. Inw. 89119, Arch. CAG PIG, Warszawa.

- Kozłowska, A. 2004. The influence of diagenesis on the porosity of the Upper Carboniferous sandstones of Pomerania area (NW Poland). Abstracts. *SEPM-CES Meeting SEDIMENT*, Aachen: 83.
- Kozłowska, A. 2005. Wpływ kompakcji i cementacji na porowatość piaskowców karbonu górnego w strefie Kołobrzeg-Międzyzdroje. *Przegląd Geologiczny*, **53**, 259.
- Kozłowska, A. 2006a. Charakterystyka petrograficzna piaskowców karbonu górnego. [W:] Kuberska, 2006 [red.], Rola diagenezy w tworzeniu właściwości zbiornikowych piaskowców górnego karbonu i dolnego permu z nadbałtyckiej części Pomorza Zachodniego. Arch. MNiSW, Warszawa.
- Kozłowska, A. 2006b. Wykształcenie facjalne osadów karbonu górnego. [W:] Kuberska, 2006 [red.], Ewolucja przestrzeni porowej w piaskowcach górnego karbonu i dolnego permu Pomorza Zachodniego. Inw. 934792, Arch. CAG PIG, Warszawa.
- Kozłowska, A. 2008. Diageneza a rozwój przestrzeni porowej w piaskowcach pensylwanu Pomorza Zachodniego. *Biuletyn Państwowego Instytutu Geologicznego*, 430, 1–28.
- Kozłowski, A. 2007. Diageneza a porowatość piaskowców karbonu górnego Pomorza Zachodniego. *Przegląd Geologiczny*, 55, 292–293.
- Królikowski, C., Petecki, Z. 1995. Atlas grawimetryczny Polski. Państwowy Instytut Geologiczny, Warszawa.
- Królikowski, C., Petecki, Z. 2002. Lithospheric structure across the Trans-European Suture Zone in NW Poland based on gravity data interpretation. *Geological Quarterly*, **46**, 235–245.
- Królikowski, C., zespół. 1985. Zastosowanie metody odejmowania efektów grawitacyjnych do wyznaczania anomalii od podłoża podpermskiego północnozachodniej Polski, etap I – Model strukturalno-gęstościowy. Inw. 33910, Arch. CAG PIG, Warszawa.
- Królikowski, C., zespół. 1986. Zastosowanie metody odejmowania efektów gra-

witacyjnych do wyznaczania anomalii od podłoża podpermskiego północnozachodniej Polski, etap II /ostatni/ - Opracowanie mapy anomalii od podłoża permu, 1986. Inw. 35725, Kat. 32/203, Arch. CAG PIG, Warszawa.

- Kruk, B. 1975. Dokumentacja szczegółowych badań grawimetrycznych na lądzie i wodach płytkich. Temat: Zalew Szczeciński, 1974 r. Inw. 1851, Kat. 3318/42, CAG PIG, Warszawa.
- Kryński, J. 2007. Precyzyjne modelowanie quasigeoidy na obszarze Polski – wyniki i ocena dokładności. *Seria Monograficzna IGiK*, **13**, Warszawa.
- Krzywiec, P., Peryt, T.M., Kiersnowski, H., Pomianowski, P., Czapowski, G., Kwolek, K. 2017. Permo-Triassic Evaporites of the Polish Basin and Their Bearing on the Tectonic Evolution and Hydrocarbon System, an Overview. [W:] Soto i in., 2017 [red.], Permo-Triassic Salt Provinces of Europe, North Africa and the Atlantic Margins. Tectonics and Hydrocarbon Potential, Chapter 11, 234–258.
- Kuberska, M. 2008. Piaskowce z pogranicza pensylwanu i permu dolnego na Pomorzu Zachodnim: diageneza i jej rola w tworzeniu właściwości zbiornikowych. Biuletyn Państwowego Instytutu Geologicznego, 430, 29–42.
- Kuberka, M, Maliszewska, A. 2007. Diageneza a porowatość piaskowców dolnego permu Pomorza Zachodniego. *Przegląd Geologiczny*, **55**, 296.
- Kuberska, M., Kozłowska A., Maliszewska A., Buniak A. 2007. Ewolucja przestrzeni porowej w piaskowcach górnego karbonu i dolnego permu Pomorza Zachodniego. *Przegląd Geologiczny*, **55**, 853–860.
- Kuberska, M., Maliszewska, A., Grotek, I. 2008. Diageneza a rozwój przestrzeni porowej w piaskowcach górnego czerwonego spągowca Pomorza Zachodniego. Biuletyn Państwowego Instytutu Geologicznego, 430, 43–64.
- **Kudrewicz, R. 2008**. Mapy strukturalne powierzchni podcechsztyńskiej i podperm-skiej,

1 : 500 000. [W:] Wagner i in., 2008 [red.], Zasoby prognostyczne, nieodkryty potencjał gazu ziemnego w utworach czerwonego spągowca i wapienia cechsztyńskiego w Polsce – badania geologiczne. Inw. 2293/2009, Arch. CAG PIG, Warszawa.

- Lech, S. 2001. Mapa geologicznostrukturalna podłoża permu Pomorza, 1:500 000. Arch. PGNiG, Piła.
- Lech, I., Sikorska-Piekut, W. 1987. Dokumentacja wynikowa otworu Benice 4K. Inw. 129796, Arch. CAG PIG, Warszawa.
- Lipiec, M. 1997. Wizeńska platforma węglanowa na Pomorzu Zachodnim. *Posiedzenia Naukowe Państwowego Instytutu Geologicznego*, 53, 31–32.
- Lipiec, M. 1998. Ocena perspektyw występowania złóż węglowodorów w utworach basenu karbońskiego na obszarze lubelskim i pomorskim. *Prace Państwowego Instytutu Geologicznego*, 165, 289–292.
- Lipiec, M. 1999. Systemy depozycyjne i diageneza utworów węglanowych dinantu na Pomorzu Zachodnim. Praca doktorska. Inw. 1340/2001, Arch. CAG PIG, Warszawa.
- Lipiec, M., Matyja, H. 1998. Architektura depozycyjna basenu dolnokarbońskiego na obszarze Pomorza. *Prace Państwowego Instytutu Geologicznego*, 165, 101–112.
- Lipiec, M., Połońska, M., Such, P. 1998. Wpływ diagenezy na właściwości zbiornikowe utworów karbonu pomorskiego. *Prace Państwowego Instytutu Geologicznego*, 165, 155–166.
- Lisowski, K., Łyszkowska, J. 1983. Dokumentacja badań grawimetrycznych; temat: Zalew Szczeciński, 1982 r. Inw. 2185, Kat. 3319/212, CAG PIG, Warszawa.
- Lucia, F.J. 1995. Rock-fabric/ petrophysical classification of carbonate pore space for reservoir characterization. *American Association of Petroleum Geologists, Bulletin,* **79**, 1275–1300.
- Łobza, A., Zamojski, J. 1971. Projekt badań geologicznych na antyklinorium pomorskim otwór badawczy Gryfice 1. Inw. 9534a, Arch. CAG PIG, Warszawa.
- Łoszewska, Z. 1983. Budowa geologiczna dewońsko-karbońskiego kompleksu strukturalnego obszaru platformowego Polski. Opracowanie petrograficzne utworów karbonu dolnego w otworze Czaplinek IG-1. Inw. 31667, Arch. CAG PIG, Warszawa.

- Maliszewska, A. 1997. Jura dolna. Litostratygrafia i litofacje. Charakterystyka petrograficzna. [W:] Marek i Pajchlowa, 1997 [red.], Epikontynentalny perm i mezozoik w Polsce. *Prace Instytutu Geologicznego*, 153, 206–208.
- Maliszewska, A., Kuberska, M. 1996. Cementation of the Rotliegend sandstones, their porosity and permeability. The 2nd Conf. on the Geochemical and Petrophysical Investigation. In Oil And Gas Exploration: 167–178. Janowice.
- Maliszewska, A., Kuberska, M. 2008. Spoiwa skał górnego czerwonego spągowca w zachodniej części Niżu Polskiego w ujęciu kartograficznym. *Biuletyn Państwowego Instytutu Geologicznego*, **429**, 79–90.
- Maliszewska, A., Kuberska, M. 2009. O badaniach izotopowych diagenetycznego illitu z piaskowców czerwonego spągowca Wielkopolski i Pomorza Zachodniego. *Przegląd Geologiczny*, **57**, 322–327.
- Maliszewska, A., Kuberska, M., Such, P., Leśniak, G. 1998. Ewolucja przestrzeni porowej utworów czerwonego spągowca. *Prace Państwowego Instytutu Geologicznego*, 165, 177–194.
- Maliszewska, A., Kiersnowski, H., Jackowicz, E. 2003. Wulkanoklastyczne osady czerwonego spągowca dolnego na obszarze wielkopolski. *Prace Państwowego Instytutu Geologicznego*, 179, 1–59.

Maliszewska, A., Kozłowska, A., Kuberska, M., Połońska, M., Grotek, I. 2004a. Cementy w piaskowcach karbonu i czerwonego spągowca. (Wykształcenie litofacjalne osadów karbonu górnego). [W:] Charakterystyka wypełnień mineralnych szczelin i przestrzeni porowych na podstawie kompleksowych badań petrologicznych. Inw. 891445, Arch. CAG PIG, Warszawa.

Maliszewska, A., Kozłowska, A., Kuberska, M., Grotek, I. 2004b. Petrologia kompleksów osadowych górnego karbonu i dolnego permu w aspekcie poszukiwań złóż węglowodorów ze strefy Kołobrzeg – Międzyzdroje. (Litofacje osadów karbonu górnego). [W:] Rozwój kompleksów osadowych w zachodniej i centralnej Polsce –

pochodzenie i przemiany postdepozycyjne. Inw. 912477, Arch. CAG PIG, Warszawa.

- Maliszewska, A., Jackowicz, E., Kuberska, M., Kiersnowski, H. 2016. Skały permu dolnego (czerwonego spągowca) zachodniej Polski – monografia petrograficzna. Prace Państwowego Instytutu Geologicznego – Państwowego Instytutu Badawczego, 204.
- Matkowska, B. 1992. Mapa zasolenia wód podziemnych wyspy Wolin i Uznam. Państwowy Instytut Geologiczny, Warszawa.
- Matyasik, I. 1998. Charakterystyka geochemiczna skał macierzystych karbonu w wybranych profilach wiertniczych obszaru radomsko-lubelskiego i pomorskiego. [W:] Narkiewicz, 1998 [red.], Analiza basenów sedymentacyjnych. *Prace Państwowego Instytutu Geologicznego*, 165, 215–225.
- Matyja, H. 1993. Upper Devonian of Western Pomerania. *Acta Geologica Polonica*, 43, 27–94.
- Matyja, H. 2006. Stratygrafia i rozwój facjalny osadów dewonu i karbonu w basenie pomorskim i w zachodniej części basenu bałtyckiego a paleogeografia północnej części TESZ w późnym paleozoiku. Prace Państwowego Instytutu Geologicznego, 186, 79–122.
- Matyja H. 2008. Pomeranian basin (NW Poland) and its sedimentary evolution during Mississippian times. [W:] Aretz i in., 2008 [red.], Carboniferous platforms and basins. *Geological Journal*, **43**, 123–150.
- Matyja, H. 2009. Depositional history of the Devonian succession in the Pomeranian Basin, NW Poland. *Geological Quarterly*, 53, 63–92.
- Matyja, H., Turnau, E., Żbikowska, B. 2000. Lower Carboniferous (Missisippian) stratigraphy of northwestern Poland: conodont, miospore and ostracod zones compared. *Annales Societatis Geologorum Poloniae*, **70**, 193–217.
- Mazur, S., Scheck-Wenderoth, M., Krzywiec, P. 2005. Different modes of the Late Cretaceous–Early Tertiary inversion in the North German and Polish basins. International *Journal of Earth Sciences*, 94, 782–798.

- Merta, H. 1985. Ocena utworów dolomitu głównego w obszarze Pomorza Zachodniego na podstawie wyników analiz geochemicznych skał. Inw. 5107/2009, Arch. CAG PIG, Warszawa.
- MIDAS, 2021. System Gospodarki i Ochrony Bogactw Mineralnych Polski. http://geoportal.pgi.gov.pl/portal/page/port al/midas
- Mikołajewski, Z., Słowakiewicz, M. 2008. Mikrofacje i diageneza utworów dolomitu głównego (Ca2) w rejonie bariery Międzychodu (Półwysep Grotowa, Polska Zachodnia). Biuletyn Państwowego Instytutu Geologicznego, 429, 91–97.
- Mikołajewski, Z., Czechowski, F., Grelowski, C. 2012. Charakterystyka geologiczno-litofacjalno-geochemiczna złóż ropy naftowej w rejonie platformy węglanowej Kamienia Pomorskiego. *Prace Naukowe Instytutu Nafty i Gazu*, 182, 387–397.
- Mularczyk, A. 1996. Dokumentacja geologiczna w kat. B złoża ropy naftowej Rekowo. Dodatek nr 1. Inw. 331/97, Arch. CAG PIG, Warszawa.
- Mularczyk, A., Pyzik, M. 1981. Dokumentacja geologiczna złoża ropy naftowej Kamień Pomorski. Dodatek nr 2. Inw. 10535b CUG, Arch. CAG PIG, Warszawa.
- Narkiewicz, M. 1996. Analiza basenów sedymentacyjnych Niżu Polskiego. Inw. 3586/96, Arch. CAG PIG, Warszawa.
- Narkiewicz, M., Petecki, Z. 2017. Basement structure of the paleozoic platform in Poland. *Geological Quarterly*, 61, 502–520.
- Nawrocki, J. 1995. Skala magnetostratygraficzna dla utworów czerwonego spągowca, cechsztynu i pstrego piaskowca z obszaru Polski. *Przegląd Geologiczny*, 43, 1027–1029.
- Nawrocki, J., Becker, A. (red.), 2017. Atlas Geologiczny Polski. Państwowy Instytut Geologiczny – Państwowy Instytut Badawczy, Warszawa.
- Nawrocki, J., Grabowski, J. 1988. Analiza litofacjalnych i paleogeograficznych podstaw poszukiwań nagromadzeń węglowodorów w utworach permu. Wyniki badań paleomagnetycznych utworów permu i najniższego triasu z otworów wiertniczych Brojce IG-1, Mszczonów IG-1 i Piła

IG-1. Inw. 308/92, Arch. CAG PIG, Warszawa.

- Nowak, E. 1982. Opracowanie pomiarów średnich prędkości w odwiercie Gostyń 2. G79 VS, Arch. CAG PIG, Warszawa.
- Nowak, E., Klecan, A. 1973. Sprawozdanie z pomiarów średnich prędkości w otworze Benice 1. B36 VS, Arch. CAG PIG, Warszawa.
- Nowak, E., Walasek, B. 1985. Opracowanie pomiarów średnich prędkości w odwiercie Benice 3. 1979. B37 VS, Arch. CAG PIG, Warszawa.
- Nowak, J. 2004. Dokumentacja geologiczna złoża ropy naftowej Wysoka Kamieńska. Dodatek nr 2 w kat. A. Inw. 1969/2004, Arch. CAG PIG, Warszawa.
- Nowak, J. 2008. Dokumentacja geologiczna złoża ropy naftowej Kamień Pomorski w kat. B. Dodatek nr 3. Inw. 557/2009, Arch. CAG PIG, Warszawa.
- Nowicka, A. 2000. Dokumentacja wynikowa otworu poszukiwawczego Kaleń 1. Inw. 134704, Arch. CAG PIG, Warszawa.
- Nussbeutel, D., Czaja, E. 2000. Opracowanie pomiarów średnich prędkości i pionowego profilowania sejsmicznego w odwiercie Kaleń 1. K2 VS, Arch. CAG PIG, Warszawa.
- Oficjalska, H., Krawczyńska, B. 2000. Objaśnienia do Mapy hydrogeologicznej Polski w skali 1 : 50000, arkusz Dziwnów (0076). Państwowy Instytut Geologiczny, Warszawa.
- Ostrowska, K., Pisuła, M. 2000. Sprawozdanie z realizacji zdjęcia grawimetrycznego temat: Trzebiatów – Dobrzyca – Koszalin, 1998-1999. Inw. 4509/2013, Kat. G-619 PBG, CAG PIG, Warszawa.
- Ostrowski, C. 2002. Dokumentacja szczegółowych badań grawimetrycznych wzdłuż profili sejsmicznych w rejonie Piaski – Resko, 2002. Inw. 4511/2013, Kat. G-625 PBG, CAG PIG, Warszawa.
- Oszczepalski, S., Rydzewski, A. 1987. Paleogeography and sedimentary model of the Kuperschiefer in Poland. *Lecture Notes in Earth Sciences*, 10, 189–205.
- Oświęcimska, A., Sikorski, B. 1972. Dokumentacja geologiczna złoża ropy nafto-

wej Kamień Pomorski. Inw. 9777 CUG, Arch. CAG PIG, Warszawa.

- Paczyński, B. (red.). 1995. Atlas hydrogeologiczny Polski, 1 : 500000, cz. II. Wydawnictwa PAE S.A., Warszawa.
- Paczyński, B., Sadurski, A. (red.). 2007. Hydrogeologia regionalna Polski, tom I – wody słodkie. Państwowy Instytut Geologiczny, Warszawa.
- **Pawłowski, A. 2005.** Dokumentacja geologiczna w kat. B złoża ropy naftowej Rekowo. Dodatek nr 2. Inw. 569/2007, Arch. CAG PIG, Warszawa.
- Peryt, T.M. 1984. Sedymentacja i wczesna diageneza utworów wapienia cechsztyńskiego w Polsce zachodniej. *Prace Państwowego Instytutu Geologicznego*, 109, 1–80.
- Peryt, T.M. 1986. Chronostratigraphical and lithostratigraphical correlations of the Zechstein Limestone of Central Europe. [W:] Harwood i Smith, 1986 [red.], The English Zechstein and related topics. *Geological Society Special Publications*, 22, 201–207
- Peryt, T.M. 1990. Cechsztyński anhydryt górny (A1g) na obszarze polskiej części syneklizy perybałtyckiej. *Biuletyn Państwowego Instytutu Geologicznego*, **364**, 5–29.
- Peryt, T.M., Piątkowski, T.S. 1976. Osady caliche w wapieniu cechsztyńskim zachodniej części syneklizy perybałtyckiej. *Kwartalnik Geologiczne*, **20**, 525–538.
- Peryt, T.M., Piątkowski, T.S. 1977. Algal vadose pisoliths in the Zechstein Limestone (Upper Permian) of Poland. *Sedimentary Geology*, **19**, 275–286.
- Peryt, T.M., Piątkowski, T., Wagner, R. 1978. Mapa paleogeograficzna wapienia cechsztyńskiego (Ca1) 1 : 100 000. [W:] Depowski, 1978 [red.], Atlas litofacjalnopaleogeograficzny permu obszar platformowych Polski. Instytut Geologiczny, Warszawa.
- Peryt, T.M., Antonowicz, L., Gąsiewicz, A., Roman, S. 1989. O fazach sedymentacji dolomitu głównego w Polsce północnozachodniej. *Przegląd Geologiczny*, 37, 187–192.
- Petecki, Z. 2001. Magnetic evidence for deeply curried crystalline basement south-

east of the Teisseyre-Tornquist line in the NW Poland. *Acta Geophysica Polonica*, **49**, 509–515.

- Petecki, Z., Rosowiecka, O. 2017. A new magnetic anomaly map of Poland and its contribution to the recognition of crystalline basement rocks. *Geological Quarterly*, **61**, 934–945.
- Pettijohn, F.J., Potter, P.E., Siever, R. 1972. Sand and sandstone. New York, Springer Verlag.
- Piątkowski, T. 1986. Petrografia poziomów węglanowych w otworze Brojce IG-1. [W:] Żelichowski, 1986 [red.], Dokumentacja wynika otworu badawczego Brojce IG-1. Inw. 129772, Arch. CAG PIG, Warszawa.
- Pieńkowski, G. 1997. Sedymentologia i stratygrafia sekwencji na podstawie wybranych profilów. [W:] Marek i Pajchlowa, 1997 [red.], Epikontynentalny perm i mezozoik w Polsce. *Prace Instytutu Geologicznego*, 153, 217–236.
- Pletsch, T., Appelt, J., Botor, D., Clayton, C.J., Duin, E.J.T., Faber, E., Górecki, W., Kombrink, H., Kosakowski, P., Kuper G., Kus, J., Lutz, R., Mathiesen, A., Ostertag, C., Papiernik, B., Van B,Ergen, F. 2010. Petroleum generation and migration. [W:] Doornenbal i Stevenson, 2010 [red.], Petroleum Geological Atlas of the Southern Permian, Basin Area. 225–253. EAGE Publications b. v., Houten.
- **Poborski, J. 1960.** Cechsztyńskie zagłębie solne Europy Środkowej na ziemiach Polski. *Prace Instytutu Geologicznego*, **30**, 355–366.
- Podhalańska, T., Maksmundzka, M.I., Becker, A., Roszkowska-Remin, J., Dyrka, I., Feldman-Olszewska, A., Głuszyński, A., Grotek, I., Janas, M., Karcz, P., Nowak, G., Pacześna, J., Roman, M., Sikorska-Jaworowska, M., Kuberska, M., Kozłowska, A., Sobień, K. 2016. Strefy perspektywiczne występowania niekonwencjonalnych złóż węglowodorów w kambryjskich, ordowickich, sylurskich i karbońskich kompleksach skalnych Polski – integracja wyników badań. Przegląd Geologiczny, 64, 1008–1021.

- **Pokorski, J. 1981.** Propozycja formalnego podziału litostratygraficznego czerwonego spągowca na Niżu Polskim. *Kwartalnik Geologiczny*, **25**, 41–58.
- **Pokorski, J. 1987.** Czerwony spągowiec. [W:] Raczyński, 1987 [Red.], Budowa geologiczna wału pomorskiego i jego podłoża. *Prace Instytutu Geologicznego*, **119**, 51–64.
- **Pokorski, J. 1988.** Rotliegendes lithostratigraphy in north-western Poland. *Bulletin* of the Polish Academy of Sciences, **36**, 99– 108.
- **Pokorski, J. 1997.** Perm dolny (czerwony spągowiec). Litostratygrafia i litofacje. Formalne i nieformalne jednostki litostratygraficzne. [W:] Marek i Pajchlowa, 1997 [red.], Epikontynentalny perm i mezozoik w Polsce. *Prace Instytutu Geologicznego*, **153**, 35–38.
- Połońska, A. 1991. Ekspertyza petrograficzna utworów karbonu z wiercenia Piaski PIG-2. [W:] Miłaczewski, 1991 [red.], Dokumentacja wynikowa otworu badawczego Piaski PIG-2. Inw. 132858, Arch. CAG PIG, Warszawa.
- **Poprawa, P. 2010.** Historia oraz geneza zdarzeń termicznych w basenie polskim i jego osadowym podłożu - ich znaczenie dla rekonstrukcji procesów generowania węglowodorów. Inw. 2935/2011, Arch. CAG PIG, Warszawa.
- Protas, A. 1981. Zróżnicowanie facjalne dolomitu głównego (Ca2) w Synklinorium Szczecińskim i Antyklinorium Pomorskim. Prace Geologiczno-Mineralogiczne Uniwersytetu Wrocławskiego, 8.
- Pyzik, M., Mularczyk, A. 1981. Dokumentacja geologiczna złoża ropy naftowej "Kamień Pomorski" Dodatek nr 2. Inw. 45619, 3319/211, Arch. CAG PIG, Warszawa.
- Reczek, J. 1957. Sprawozdanie: Regionalne badania grawimetryczne na obszarze Niecki Szczecińskiej i Wału Kujawsko-Pomorskiego, 1956. Inw. 40834, Kat. 42/109, CAG PIG, Warszawa.
- Rosowiecka, O. 2011. Opracowanie modelu rozkładu gęstości głównych jednostek geologicznych kraju. Inw. 3603/2014, Arch. CAG PIG, Warszawa.

- Rusek, M., Buniak, A., Solarska, A., Kowalczak, M., Gaupp, R. 2005. Piaskowce czerwonego spągowca i ich diageneza na obszarze Wału Pomorskiego (złoże Ciechnowo). *Przegląd Geologiczny*, **53**, 340–341.
- **Ryba, J., Jasiecka, B. 1974a.** Dokumentacja wynikowa otworu Gryfice 2. Inw. 119589, Arch. CAG PIG, Warszawa.
- **Ryba, J., Jasiecka, B. 1974b.** Dokumentacja wynikowa otworu poszukiwawczego Kamień Pomorski 13. Inw. 119469, Arch. CAG PIG, Warszawa.
- **Ryba, J., Knitter, K. 1974.** Dokumentacja wynikowa otworu rozpoznawczego Świerzno 4. Inw. 121159, Arch. CAG PIG, Warszawa.
- **Ryba, J., Sikorski, B. 1980.** Dokumentacja geologiczna złoża ropy naftowej Wysoka Kamieńska. Inw. 13095 CUG, Arch. CAG PIG, Warszawa.
- Ryba, J., Stefańska, J. 1976. Dokumentacja wynikowa otworu badawczego Wrzosowo 1. Inw. 122097, Arch. CAG PIG, Warszawa
- **Ryba, J., Szewc, A. 1974.** Dokumentacja wynikowa otworu poszukiwawczego Kamień Pomorski 3. Inw. 118973, Arch. CAG PIG, Warszawa.
- **Ryba, J., Szewc, A. 1976.** Dokumentacja wynikowa otworu poszukiwawczego Wrzosowo 2. Inw. 122905, Arch. CAG PIG, Warszawa.
- **Ryba, J., Szewc, A. 1977a.** Dokumentacja wynikowa otworu poszukiwawczego Dusin 1. D83 VS, Arch. CAG PIG, Warszawa.
- **Ryba, J., Szewc, A. 1977b.** Dokumentacja wynikowa otworu poszukiwawczego Skarchowo 1. Inw. 123097, Arch. CAG-PIG, Warszawa.
- **Ryba, J., Szewc, A. 1977c.** Dokumentacja wynikowa otworu rozpoznawczego Wrzosowo 8. Inw. 123574, Arch. CAG PIG, Warszawa.
- **Ryba, J., Szewc, A. 1978a.** Dokumentacja wynikowa otworu poszukiwawczego Strzeżewo 1. Inw. 124334, Arch. CAG PIG, Warszawa.
- **Ryba, J., Szewc, A. 1978b.** Dokumentacja wynikowa otworu rozpoznawczego Wrzo-

sowo 9. Inw. 123973, Arch. CAG PIG, Warszawa.

- **Ryba, J., Szewc, A. 1979.** Dokumentacja wynikowa otworu poszukiwawczego Wrzosowo 3. Inw. 125096, Arch. CAG PIG, Warszawa.
- **Ryba, J., Szewc, A. 1980.** Dokumentacja wynikowa otworu Benice-3. Inw. 125368, Arch. CAG PIG, Warszawa.
- **Ryba, J., Szpurgis, Z. 1978.** Dokumentacja wynikowa otworu poszukiwawczego Kamień Pomorski 7. Inw. 124475, Arch. CAG PIG, Warszawa.
- **Ryka, W. 1968**. Wtórne ryolity nadbałtyckiej części Pomorza Zachodniego. *Kwartalnik Geologiczny*, **12**, 843–854.
- **Ryka, W. 1978.** Permskie skały wylewne z nadbałtyckiej części Pomorza Zachodniego. *Kwartalnik Geologiczny*, **22**, 753– 771.
- **Rzepkowska, Z. 1988.** Dodatek nr 2 do dokumentacji wynikowej otworu badawczego Brojce IG-1. Inw. 4273/2016, Arch. CAG PIG, Warszawa.
- Semyrka, R. 1985. Uwarunkowania roponośności dolomitu głównego na obszarze Pomorza Zachodniego. *Prace Geologiczne PAN*, 129, 5–113.
- Sikorska-Piekut, W., Chruścińska, J. 2014. Dokumentacja geologiczna likwidacji odwiertu poszukiwawczego Chomino 1. Inw. 3287/2015, Arch. CAG PIG, Warszawa.
- Słowakiewicz, M., Gąsiewicz, A. 2013. Palaeoclimatic imprint, distribution and genesis of Zechstein Main Dolomite (Upper Permian) petroleum source rocks in Poland: Sedimentological and geochemical rationales. [W:] Gąsiewicz i Słowakiewicz, 2013 [red.], Palaeozoic Climatic Cycles: Their Evolutionary and Sedimentological Impact. *Geological Society of London*, *Special Publications*, **376**, 523–538.
- Słowakiewicz, M., Mikołajewski, Z. 2009. Sequence Stratigraphy of the Upper Prmian Zechstein Main Dolomite carbonates in Western Poland: a new approach. *Journal of Petroleum Geology*, 32, 215–234.
- Słowakiewicz, M., Poprawa, P. 2010. Integracja mikrotermometrii inkluzji fluidalnych I modelowań historii termicz-

nej/pogrążania w badaniach pochodzenia węglowodorów i ich nagromadzeń w skałach dolomitu głównego (Ca2) północnozachodniej Polski (otwór wiertniczy Benice 3). *Biuletyn Państwowego Insytutu Geologicznego*, **439**, 187–194.

- Słowakiewicz, M., Mikołajewski, Z., Sikorska, M. 2008. Mikrofacje i diageneza barierowych utworów dolomitu głównego (Ca2) na obszarze Pomorza Zachodniego. Biuletyn Państwowego Instytutu Geologicznego, 429, 187–194.
- Słowakiewicz, M., Mikołajewski, Z., Sikorska, M., Poprawa, P. 2010. Origin of diagenetic fluids in Zechstein Main Dolomite reservoir rocks, West Pomerania, Poland. Zeitschrift der Deutschen Gesellschaft für Geowissenschaften, 161, 25–38.
- Słowakiewicz, M., Tucker, M.E., Hindenberg, K., Mawson, M., Idiz, E.F., Pancost, R.D. 2016. Nearshore euxinia in the photic zone of an ancient sea: Part II – The bigger picture and implications of understanding ocean anoxia. *Palaeogeography, Palaeoclimatology, Palaeoecology*, 461, 432–448.
- Soboń-Podgórska, J. 1982. Stratygrafia otwornicowa w wierceniu Czaplinek IG-1. Niepublikowana ekspertyza. Dokumentacja wynikowa otworu Czaplinek IG-1. Inw. 127552, Arch. CAG PIG, Warszawa.
- Solon, J., Borzyszkowski, J., Bidłasik, M., Richling, A., Badora, K., Balon, J., Brzezińska-Wójcik, T., Chabudziński, Ł., Dobrowolski, R., Grzegorczyk, I., Jodłowski, M., Kistowski, M., Kot, R., Krąż, P., Lechnio, J., Macias, A., Majchrowska, A., Malinowska, E., Migoń, P., Myga-Piątek, U., Nita, J., Papińska, E., Rodzik, J., Strzyż, M., Terpiłowski, S., Ziaja, W. 2018. Physico-geographical mesoregions of Poland - verification and adjustment of boundaries on the basis of contemporary spatial data. *Geographia Polonica*, 91.
- Stefaniuk, M., Wojdyła, M., Petecki, Z., Pokorski, J. 2008. Dokumentacja badań geofizycznych. Temat: Budowa geologiczna pokrywy osadowej i podłoża krystalicznego segmentu pomorskiego bruzdy śródpolskiej na podstawie kompleksowych badań geofizycznych (profilowań magneto-

tellurycznych) Etap I: 2007 – 2008. Inw. 1277/2009; 3090/2014; 4547/2015; 4548/2015, CAG PIG, Warszawa.

- Szyperko-Teller, A. 1979. Trias dolny w północno-wschodniej w Polsce. *Prace Instytutu Geologicznego*, 91.
- Szyperko-Teller, A. 1980. Litostratygrafia pstrego piaskowca w Polsce i projekt jej usystematyzowania. *Kwartalnik Geologiczny*, 24, 275–297.
- Szyperko-Teller, A. 1982. Litostratygrafia pstrego piaskowca na Pomorzu Zachodnim. *Kwartalnik Geologiczny*, 26, 341–368.
- Tokarski, A. 1958. Poszukiwawcze zadania wiercenia Mogilno 1. *Nafta*, 14, 4–12.
- Turnau, E., Trzepierczyńska, A., Protas, A. 2005. Palynostratigraphy of the Missisippian Łobżonka Formation of Western Poland (NW Poland). *Geological Quarterly*, **49**, 93–98.
- Wagner, R. 1987. Cechsztyn. [W:] Raczyński, 1987 [red.], Budowa geologiczna wału pomorskiego i jego podłoża. *Prace Instytutu Geologicznego*, **119**, 64–81.
- Wagner, R. 1988. Ewolucja basenu cechsztyńskiego w Polsce. *Kwartalnik Geologiczny*, 32, 33 51.
- Wagner, R. 1990. Cechsztyn w zachodniej części polskiego akwenu Bałtyku. *Geological Quarterly*, 34, 93–112.
- Wagner, R. 1994. Stratygrafia osadów i rozwój basenu cechsztyńskiego na Niżu Polskim. *Prace Państwowego Instytutu Geologicznego*, 146, 1–71.
- Wagner, R. 1998. Mapy paleogeograficzne cechsztynu. [W:] Dadlez i in., 1998 [red.], Atlas paleogeograficzny epikontynentalnego permu i mezozoiku w Polsce, 1 : 2 500 000. Inw. 3417/98, 4610/2015, Arch. CAG PIG, Warszawa.
- Wagner, R. 2012. Mapa paleogeograficzna dolomitu głównego (Ca2) w Polsce. Państwowy Instytut Geologiczny – Państwowy Instytut Badawczy, Warszawa.
- Wagner, R., Peryt, T.M. 1997. Possibility of sequence stratigraphic subdivision of the Zechstein in the Polish Basin. *Geological Quarterly*, **41**, 457–474.
- Wagner, R., Peryt, T.M. 1998. O możliwości podziału cechsztynu na sekwencje

stratygraficzne w basenie Polskim. *Prace Państwowego Instytutu Geologicznego*, **165**, 129–146.

- Wagner, R., Piątkowski, T.S., Peryt, T.M. 1978. Polski basen cechsztyński. *Przegląd Geologiczny*, 12, 673–686.
- Wagner, R., Buniak, A., Dadlez, R., Grotek, I., Kiersnowski, H., Kuberska, M., Kudrewicz, R., Lis, P., Maliszewska, A., Mikołajewski, Z., Papiernik, B., Pokorski, J., Poprawa, P., Skrowoński, L., Słowakiewicz, M., Szewczyk, J., Wolnowski, T. 2008. Zasoby prognostyczne, nieodkryty potencjał gazu ziemnego w utworach czerwonego spągowca i wapienia cechsztyńskiego w Polsce - badania geologiczne. Inw. 2293/2009, Arch. CAG PIG, Warszawa.
- Waksmundzka, M.I. 1997a. Karbon górny – profil litologiczny. [W:] Żelichowski i Miłaczewski, 1997 [red.], Ocena perspektyw poszukiwawczych złóż ropy naftowej i gazu ziemnego w basenach sedymentacyjnych młodszego paleozoiku na obszarze zachodniej części polskiego sektora Bałtyku – Blok H, K, L. Inw. 89119, Arch. CAG PIG, Warszawa.
- Waksmundzka, M.I. 1997b. Karbon górny – analiza zmian facjalnych. [W:] Żelichowski i Miłaczewski, 1997 [red.], Ocena perspektyw poszukiwawczych złóż ropy naftowej i gazu ziemnego w basenach sedymentacyjnych młodszego paleozoiku na obszarze zachodniej części polskiego sektora Bałtyku – Blok H, K, L. Inw. 89119, Arch. CAG PIG, Warszawa.
- Waksmundzka M.I., Buła Z. 2017. Mapa geologiczna Polski bez utworów kenozoiku, mezozoiku i permu 1:2 500 000. [W:] Nawrocki i Becker, 2017 [red.], Atlas geologiczny Polski. Państwowy Instytut Geologiczny–Państwowy Instytut Badawczy, Warszawa: 28.
- Waksmundzka, M.I., Żelichowski, A.M. 1997a. Górny karbon – zarys litostratygrafii. [W:] Żelichowski i Miłaczewski, 1997 [red.], Ocena perspektyw poszukiwawczych złóż ropy naftowej i gazu ziemnego w basenach sedymentacyjnych młodszego paleozoiku na obszarze zachodniej części polskiego sektora Bałtyku – Blok H, K, L. Inw. 89119, Arch. CAG PIG, Warszawa.

- Waksmundzka, M.I., Żelichowski, A.M. 1997b. Górny karbon – podstawy biostratygrafii. [W:] Żelichowski i Miłaczewski, 1997 [red.], Ocena perspektyw poszukiwawczych złóż ropy naftowej i gazu ziemnego w basenach sedymentacyjnych młodszego paleozoiku na obszarze zachodniej części polskiego sektora Bałtyku – Blok H, K, L. Inw. 89119, Arch. CAG PIG, Warszawa.
- Walasek, B. 1979. Sprawozdanie z pomiarów średnich prędkości w odwiercie Gryfice 1. G142 VS, Arch. CAG PIG, Warszawa.
- Walasek, B. 1981. Opracowanie pomiarów średnich prędkości w odwiercie Laska 2. L7 VS, Arch. CAG PIG, Warszawa.
- Wasiak, I., Zdziarska, B., Duda, W. 1973. Dokumentacja półszczegółowych badań grawimetrycznych. Temat: Antyklinorium Pomorskie. Inw. 1761, Kat. 32/158, CAG PIG, Warszawa.
- Woźnicka, M. (red.). 2020. Rocznik hydrogeologiczny PSH (rok hydrologiczny 2019), Państwowy Instytut Geologiczny – Państwowy Instytut Badawczy, Warszawa.
- Wójcik, Z. 1976. Dokumentacja wynikowa otworu rozpoznawczego Rekowo 6. Inw. 122664, Arch. CAG PIG, Warszawa.
- Wójcik, Z. 1980. Dokumentacja wynikowa otworu Laska 2. Inw. 126414, Arch. CAG PIG, Warszawa.
- Wójcik, Z., Burbulis, H. 1973. Dokumentacja wynikowa otworu Benice 1. Inw. 118360, Arch. CAG PIG, Warszawa.
- Wójcik, Z., Knitter, K. 1975a. Dokumentacja wynikowa otworu Benice 2. Inw. 120905, Arch. CAG PIG, Warszawa.
- Wójcik, Z., Knitter, K. 1975b. Dokumentacja wynikowa otworu badawczego Rekowo 1. Inw. 121160, Arch. CAG PIG, Warszawa.
- Wójcik, Z., Knitter, K. 1975c. Dokumentacja wynikowa otworu rozpoznawczego Rekowo 2. Inw. 121785, Arch. CAG PIG, Warszawa.
- Wójcik, Z., Knitter, K. 1975d. Dokumentacja wynikowa otworu rozpoznawczego Rekowo 4. Inw. 121786, Arch. CAG PIG, Warszawa.

- Wójcik, Z., Knitter, K. 1975e. Dokumentacja wynikowa otworu badawczego Świerzno 5. Inw. 121163, Arch. CAG PIG, Warszawa.
- Wójcik, Z., Knitter, K. 1976. Dokumentacja wynikowa otworu poszukiwawczego Świerzno 9. Inw. 122096, Arch. CAG PIG, Warszawa.
- Wójcik, Z., Sabura, M. 1982. Opracowanie pomiarów średnich prędkości w odwiercie Gostyń 2. Inw. 128219, Arch. CAG PIG, Warszawa.
- Wójcik, Z., Sabura, M. 1983. Dokumentacja wynikowa otworu Gostyń 2. Inw. 128219, Arch. CAG PIG, Warszawa.
- Wójcik, Z., Stefańska, K. 1976a. Dokumentacja wynikowa otworu rozpoznawczego Rekowo 3. Inw. 122329, Arch. CAG PIG, Warszawa.
- Wójcik, Z., Stefańska, J. 1976b. Dokumentacja wynikowa otworu badawczego Świerzno 2. Inw. 122328, Arch. CAG PIG, Warszawa.
- Wójcik, Z., Sielmużycka, A., Szewc, A. 1973. Dokumentacja wynikowa otworu badawczego Świerzno 1. Inw. 117479, Arch. CAG PIG, Warszawa.
- Wronicz, S. 1988a. Paleogeodynamika, warunki występowania złóż i prognozy surowcowe strukturalnego kompleksu permsko - mezozoicznego. Zadanie: Mapa grawimetryczno - sejsmicznych elementów strukturalnych kompleksu cechsztyńsko mezozoicznego na obszarze Wału Pomorsko - Kujawskiego i obszarów przyległych Etap II - arkusze: Kołobrzeg i Świdwin. Kat. 3321/181, Arch. CAG PIG, Warszawa.
- Wronicz, S. 1988b. Paleogeodynamika, warunki występowania złóż i prognozy surowcowe strukturalnego kompleksu permsko - mezozoicznego. Zadanie: Mapa grawimetryczno - sejsmicznych elementów strukturalnych kompleksu cechsztyńsko mezozoicznego na obszarze wału pomorsko - kujawskiego i obszarów przyległych, etap III - arkusze: Dziwnów i Szczecin. Inw. 5293/2010, Arch. CAG PIG, Warszawa.
- Zasławski, S., Sabura, M. 1987. Dokumentacja wynikowa odwiertu poszuki-

wawczego Dobropole 1. Inw. 130677, Arch. CAG PIG, Warszawa.

- Zoła, K. 1996. Dokumentacja geologiczna złoża ropy naftowej Wysoka Kamieńska. Dodatek nr 1. Inw. 739/97, Arch. CAG PIG, Warszawa.
- Zwingmann, H., Clauer, N., Gaupp, R. 1998. Timing of fluid in a sandstone reservoir of the north German Rotliegend (Permian) by K-Ar dating of related hydrothermal illite. [W:] Parnell, 1988 [red.], Dating and duration of fluid flow and fluid rock interaction. *Geological Society Special Publications*, 144, 91–106.
- Zych, I. 2005. Paleogeografia utworów poziomu dolomitu głównego polskiego basenu cechsztyńskiego w aspekcie poszukiwań węglowodorów. *Technika Poszukiwań Geologicznych*, 44, 35–43.
- Żelaźniewicz, A., Aleksandrowski, P., Buła, Z., Karnkowski, P.H., Konon, A., Ślączka, A., Żaba, J., Żytko, K. 2011. Regionalizacja tektoniczna Polski. Komitet Nauk Geologicznych PAN, Wrocław.
- Żelichowski, A. (red.). 1986. Dokumentacja wynikowa otworu badawczego Brojce IG-1. Inw. 129772, Arch. CAG PIG, Warszawa.
- Żelichowski, A. 1983. The Carboniferous in Western Pomerania. *Przegląd Geolo-*

giczny, **31**, 356–364.

- Żelichowski, A. 1987. Karbon. [W:] Raczyński, 1987 [red.], Budowa geologiczna wału pomorskiego i jego podłoża. *Prace Instytutu Geologicznego*, **119**, 26–51.
- Żelichowski, A. 1995. Litostratigraphy and sedimentologic-paleogeographic development in Western Pomerania. [W:] Zdanowski i Żakowa [red.], The Carboniferous system in Poland. Prace Państwowego Instytutu Geologicznego, 148, 97– 100.
- Żelichowski, A., Łoszewska, Z., Woszczyńska, S. 1986. Karbon. [W:] Szyperko-Teller, 1986 [red.], Ustronie IG-1. Profile Glębokich Otworów Wiertniczych, 62, 38– 43.
- Żelichowski, A.M. 1987. Karbon. [W:] Raczyński, 1987 [Red.], Budowa geologiczna wału pomorskiego i jego podłoża. *Prace Instytutu Geologicznego*, 119, 26– 51.
- Żurawek, E., Muszyński, M., Głowacki, E., Roman, S., Rydzewska, K. 1990. Korelacja i charakterystyka petrograficznozbiornikowa piaskowców śródsaksońskich na obszarze wału pomorskiego. Inw. 5108/2009, Arch. CAG PIG, Warszawa.