

Państwowy Instytut Geologiczny Państwowy Instytut Badawczy państwowa służba geologiczna państwowa służba hydrogeologiczna

Ocena perspektywiczności geologicznej Polski pod względem możliwości odkrycia nowych złóż węglowodorów oraz przygotowanie materiałów na potrzeby postępowań prowadzonych w celu udzielenia koncesji węglowodorowych – etap IV.

UMOWA NFOŚiGW nr 307/2021/Wn-07/FG-sm-dn/D z dnia 21.04.2021 r. Zadanie 22.5004.2101.00.1

Pakiet danych geologicznych do postępowania przetargowego na poszukiwanie i rozpoznawanie złóż ropy naftowej i gazu ziemnego oraz wydobywanie ropy naftowej i gazu ziemnego ze złóż

> Obszar przetargowy Cybinka-Torzym

Opracował: Zespół pod kierunkiem mgr Krzysztofa WAŚKIEWICZA

NARODOWY FUNDUSZ OCHRONY ŚRODOWISKA i GOSPODARKI WODNEJ

Koordynator zadania: dr Krystian WÓJCIK

Skład zespołu

mgr Krzysztof WAŚKIEWICZ – kierownik zespołu

mgr Dariusz BRZEZIŃSKI

mgr Martyna CZAPIGO-CZAPLA

mgr inż. Joanna FABIAŃCZYK

mgr Marzena JARMUŁOWICZ-SIEKIERA

dr Marek JASIONOWSKI

mgr Anna KALINOWSKA

mgr inż. Dominika KAFARA

dr Hubert KIERSNOWSKI

mgr inż. Sylwia KIJEWSKA

mgr Przemysław KOWALSKI

dr Olimpia KOZŁOWSKA

dr Krzysztof LESZCZYŃSKI

mgr Marcin ŁOJEK

mgr Barbara PALACZ

dr Marta KUBERSKA

Prof. dr hab. Tadeusz PERYT

mgr Elżbieta PRZYTUŁA

dr inż. Olga ROSOWIECKA

mgr inż. Dominika SIERADZ

inż. Leszek SKOWROŃSKI

mgr Marcin TYMIŃSKI

mgr inż. Dorota WĘGLARZ

mgr inż. Michał WOROSZKIEWICZ

dr Krystian WÓJCIK

mgr Jarosław ZACHARSKI

Pakiet danych geologicznych dla obszaru przetargowego Cybinka-Torzym został przygotowany w ramach umowy z NFOŚiGW na realizację zadania pn. "Ocena perspektywiczności geologicznej Polski pod względem możliwości odkrycia nowych złóż węglowodorów oraz przygotowanie materiałów na potrzeby postępowań prowadzonych w celu udzielenia koncesji węglowodorowych – etap IV". Zgodnie z art. 49.f Ustawy z dnia 9 czerwca 2011 roku Prawo geologiczne i górnicze (Dz.U. 2011 Nr 163 poz. 981; t.j. Dz.U. z 2023 r. poz. 633) obszary przeznaczone do postępowania przetargowego ustala organ koncesyjny we współpracy z państwową służbą geologiczną. Obszar przetargowy Cybinka-Torzym został wskazany do przetargu przez Ministra Środowiska na podstawie "Ogłoszenia o granicach przestrzeni, dla których planowane jest wszczęcie postępowania przetargowego na koncesje na poszukiwanie i rozpoznawanie złóż węglowodorów oraz wydobywanie węglowodorów ze złóż w 2022 r. (6 runda przetargowa)" z dnia 30 czerwca 2021 r. (pismo znak: DGK-WW.740.1.2021.JS).

Dane o budowie geologicznej i potencjale złożowym obszaru przetargowego Cybinka-Torzym obejmują informację geologiczną będącą własnością Skarbu Państwa, dostępną w zasobach Narodowego Archiwum Geologicznego PIG-PIB oraz w ogólnodostępnych publikacjach naukowych. Źródła zamieszczonych informacji są zawarte w końcowej części pakietu danych geologicznych. Dane źródłowe, dotyczące w szczególności sejsmiki 2D i 3D, a także wyniki badań przeprowadzonych w otworach wiertniczych, karotaże oraz wyniki innych analiz istotnych z punktu widzenia poszukiwań naftowych, wraz z ich wyceną, zostały zebrane i będą dostępne do wglądu w ramach "data roomu", zorganizowanego w Czytelni Narodowego Archiwum Geologicznego w Warszawie w trakcie trwania 6. rundy przetargowej.

Spis treści	
1. WSTEP	
Dominika Kafara, Olimpia Kozłowska, Barbara Palacz, Krzysztof Waśkiewicz, Krystian Wójcik	
1.1. INFORMACIE OGÓLNE O OBSZARZE PRZETARGOWYM	5
1.2. UWARUNKOWANIA ŚRODOWISKOWE	8
2. BUDOWA GEOLOGICZNA	12
Marzena Jarmułowicz-Siekiera, Marek Jasionowski, Hubert Kiersnowski, Marta Kuberska,	
Krzysztoj Leszczynski, Tadeusz Peryt, Elzbieta Przytuła, Krzysztoj Waskiewicz, Dorota Weglarz, Krystian Wójcik, Jarosław Zacharski	
Dorota rręgiarz, Krystian rrojetk, sarostaw Zaenarski	
2.1. OGÓLNY ZARYS BUDOWY GEOLOGICZNEJ	12
2.2. TEKTONIKA	16
2.3. STRATYGRAFIA	20
2.3.1. KARBON	20
2.3.2. PERM – CZERWONY SPĄGOWIEC	
2.3.3. PERM – CECHSZTYN	
2.3.4. TRIAS	43
2.3.5. JURA	44
2.3.6. KREDA	45
2.3.7. KENOZOIK	45
2.4. HYDROGEOLOGIA	47
3. SISIEMI NAFIOW I	
Hubert Kiershowski, Dominika Sieraaz, Krzyszłof waskiewicz, Sarosław Zacharski	
3.1. OGÓLNA CHARAKTERYSTYKA NAFTOWA OBSZARU PRZETARGOWEGO	
3.2. SKAŁY MACIERZYSTE	
3.3. SKAŁY ZBIORNIKOWE	60
3.4. SKAŁY USZCZELNIAJACE I NADKŁADU	
3.6. GENERACJA, MIGRACJA, AKUMULACJA I PUŁAPKI WĘGLOWODORÓW	63
· · · · · · · · · · · · · · · · · · ·	
4. CHARAKTERYSTYKA ZŁOŻ WĘGLOWODOROW	65
Dariusz Brzeziński, Martyna Czapigo-Czapla, Joanna Fabiańczyk, Anna Kalinowska,	
Przemysław Kowalski, Marcin Tyminski, Michał Woroszkiewicz	
4.1. ZŁOŻA WĘGLOWODORÓW W SASIEDZTWIE OBSZARU PRZETARGOWEGO	65
4.2. ZŁOŻE ROPY NAFTOWEJ KOSARZYN N	67
4.3. ZŁOŻE ROPY NAFTOWEJ RADOSZYN	72
4.4. ZŁOŻE ROPY NAFTOWEJ OŁOBOK	78
4.5. ZŁOŻE ROPY NAFTOWEJ GRYŻYNA	83
4.6. ZŁOŻE ROPY NAFTOWEJ RYBAKI	87
	00
5. OI WORY WIERINICZE	92
Marcin Lojek, Leszek Skowronski, Kryslian Wojcik	
5.1. INFORMACJE OGÓLNE	92
5.2. BYTOMIEC-1	94
5.3. CHLEBÓW 1	97
5.4. CYBINKA 1	99
5.5. CYBINKA 2	100
5.6. GRZMIĄCA 1	102

5.7. GRZMIĄCA 2	103
5.8. GRZMIĄCA 3	105
5.9. GRZMIĄCA 5	107
5.10. GRZMIĄCA 7	108
5.11. KŁOPOT 1	109
5.12. KOSARZYN-8	111
5.13. KOSOBUDZ 1	112
5.14. KOZICZYN-1	114
5.15. MIŁÓW 1	118
5.16. RADOMICKO 1	121
5.17. RĄPICE 1A	123
5.18. RYBAKI 5	124
5.19. RYBAKI 14	125
5.20. SOSNA-1	127
5.21. ŚWIEBODZIN-1	129
5.22. ŚWIEBODZIN 2	130
5.23. ŚWIEBODZIN 3	131
6. SEJSMIKA	135
Sylwia Kijewska	
7. BADANIA GRAWIMETRYCZNE. MAGNETYCZNE I MAGNETOTELLURYCZNE	143
Olga Rosowiecka	
7.1. BADANIA GRAWIMETRYCZNE	143
7.2. BADANIA MAGNETYCZNE	146
7.3. BADANIA MAGNETOTELLURYCZNE	150
8. PODSUMOWANIE	152
9. MATERIAŁY ŹRÓDŁOWE	154

1. WSTĘP 1.1. INFORMACJE OGÓLNE O OBSZARZE PRZETARGOWYM

Obszar przetargowy Cybinka-Torzym ma powierzchnię 668,50 km² i obejmuje fragmenty bloków koncesyjnych na poszukiwanie i rozpoznawanie złóż węglowodorów oznaczonych numerami 222 i 223 (Fig. 1.1). Koordynaty geograficzne punktów załamania granic obszaru przetargowego są zdefiniowane w Tab. 1.1, a położenie tych punktów ilustruje Fig. 1.2.

Nie wardte	Współrzędne PL-92		
Nr punktu	Х	Y	
1	492887.97	260981.45	
2	492844.21	261045.53	
3	487287.05	260776.88	
4	489935.10	244937.94	
5	484261.45	246929.48	
6	481351.42	231859.04	
7	477639.79	215436.67	
8	475861.85	213502.89	
9	475467.68	212006.81	
10	475232.69	209573.34	
11	475217.79	209419.08	
między punktami 11 i 12 po granicy państwa			
12	495843.73	206676.28	

Tab. 1.1. Współrzędne punktów załamania granic obszaru przetargowego Cybinka – Torzym.

Do 2016 roku obszar przetargowy był objęty koncesjami Cybinka nr 6/2008/p oraz Torzym nr 8/2008/p, których operatorem był Aurelian Oil & Gas Poland Sp. z o.o., a później San Leon Energy Plc. Obecnie obszar Cybinka-Torzym sąsiaduje od wschodu z koncesją Świebodzin-Wolsztyn nr 24/95/Ł, której operatorem jest ORLEN S.A. (Fig. 1.1–1.2). Obszar przetargowy Cybinka-Torzym jest dedykowany poszukiwaniom konwencjonalnych złóż węglowodorów w utworach permu/cechsztynu – dolomitu głównego.

[→]Fig. 1.1. Położenie obszaru przetargowego Cybinka-Torzym na mapie koncesji na poszukiwanie, rozpoznawanie oraz wydobywanie węglowodorów oraz podziemne bezzbiornikowe magazynowanie substancji i podziemne składowanie odpadów wg stanu na 30.06.2023 r.

CYBINKA-TORZYM

Fig. 1.2. Punkty załamania granic oraz pozycja obszaru przetargowego Cybinka-Torzym względem sąsiednich koncesji geologicznych i obszarów przetargowych.

1.2. UWARUNKOWANIA ŚRODOWISKOWE

KARTA UWARUNKOWAŃ ŚRODOWISKOWYCH				
DLA OBSZARU PRZETARGOWEGO				
		CYBINKA-TORZYM	T	
1.	LOKALIZACJA OBSZARU PRZETARGOWEGO NA MAPIE	nazwa i numer arkusza mapy w skali 1 : 50 000	Rybocice (Brieskow Cybinka 499, Torzyn Rąpice (Eisenhu Wężyska 535, Kros Czerwif	7-Finkenheerd) 498, n 500, Ołobok 501, uttenstadt) 534, no Odrzańskie 536, ńsk 537
		województwo	հեր	skie
		nowiet	krośni	oński
		gmina i % powierzchni zajmowanej w granicach obszaru przetargowego	Gubin (0,32%), Bytnica (19,30%), Maszewo (22,09%), Krosno Odrzańskie (0,23%)	
2	POŁOŻENIE	powiat	słubicki	
2.	ADMINISTRACYJNE	gmina	Cybinka (31,52%)	
		powiat	sulęciński	
		gmina	Torzym (8 45%)	
		nowiet	świakadziśali	
				$\frac{1}{1}$
		gmina	Skąpe $(1,05\%)$, Lagow $(9,75\%)$,	
			Swiebodzin (3,66%	o), Lubrza (2,85%)
		makroregion	Pradolina Warciańsko-Odrzańska (315.	
	REGIONALIZACJA FIZYCZNO-	mezoregion	Dolina Srodkowe	ej Odry (315.61)
3.	GEOGRAFICZNA (WG KONDRACKIEGO, 2013	makroregion	Pojezierze Lubuskie (Brandenbursko- Lubuskie) (315.4)	
	ORAZ SOLONA i in., 2018)	mezoregion	Pojezierze Łagowski	e (315.42), Równina
		mezoregion	Torzymska	a (315.43)
			492887.97	260981.45
			492844.21	261045.53
	WSPÓŁRZĘDNE PUNKTÓW WYZNACZAJĄCYCH GRANICE OBSZARU PRZETARGOWEGO	układ PL-1992 [X; Y]	487287.05	260776.88
			489935.10	244937.94
			484261.45	246929.48
			481351.42	231859.04
4.			477639.79	215436.67
			475861.85	213502.89
			475467.68	212006.81
			475232.69	209573.34
			475217.79	209419.08
			między punktami 11 i	12 po granicy państwa
			495843.73	206676.28
5	POWIERZCHNIA OBSZARU	[km ²]	668	50
5.	PRZETARGOWEGO	[KIII]	000	,50
			poszukiwanie i roz	zpoznawanie złóż
6.	CEL KONCESJI		węglowodorów oraz wydobywanie węglowodorów ze złóż	
7.	WIEK FORMACJI ZŁOŻOWEJ		perm/cechsztyn –	dolomit główny
	PRZYRODNICZE OBSZARY			
	PRAWNIE CHRONIONE:			
	parki narodowe		ni	e
8.	rezerwaty	[tak/ nie] jeśli "tak" to: nazwa obsza- ru oraz % powierzchni zajmowanej w granicach obszaru przetargowego	Jezioro Ratno (<1 Kosobudki (<1%)	%), Mechowisko), Młodno (<1%)
	parki krajobrazowe		Gryżyński Park Krajo z otuliną (1,18%) Krajobrazow	brazowy (<1%) wraz , Krzesiński Park wy (4,01%)
	obszary chronionego krajobrazu		OChK Puszcza nad OChK Rynna Paklicy OChK Słubicka Do	Pliszką (26,56%), 7 i Ołoboku (6,36%), olina Odry (6,68%)
	Natura 2000 – SOO		PLH080005 Torfown PLH080011 Dolina PLH080028 Krośni	isko Młodno (<1%), a Pliszki (<6,87%), eńska Dolina Odry

KARTA UWARUNKOWAŃ ŚRODOWISKOWYCH DLA OBSZARU PRZETARGOWEGO			
CYBINKA-TORZYM			
			(3,72%), PLH080034 Bytnica (<1%), PLH080035 Dębowe Aleje w Gryżynie i Zawiszach (<1%), PLH080037 Lasy Dobrosułowskie (16,74%), PLH080042 Stara Dąbrowa w Korytach (<1%), PLH080048 Bory Chrobotkowe koło Bytomca (<1%), PLH080056 Diabelski Staw koło Radomicka (<1%), PLH080067 Rynna Gryżyny (<1%)
	Natura 2000 – OSO		PLB080004 Dolina Środkowej Odry (10,04%)
	zespoły przyrodniczo- -krajobrazowe		nie
	użytki ekologiczne		26
	pomniki przyrody	[tak (ilość)/ nie]	35 (w tym 809 obiektów)
	stanowiska dokumentacyjne		nie
9.	GLEBY CHRONIONE	[tak/ nie]	tak
10.	KOMPLEKSY LEŚNE	[tak/ nie]	tak
11.	LASY OCHRONNE	[tak (powierzchnia,% po- wierzchni zajmowanej w granicach obszaru przetar- gowego)/ nie]	119,55 km ² (17,88%)
		[tak (ilość)/ nie]	
	OBIEKTY DZIEDZICTWA KULTUROWEGO	grodzisko	2
12.		osada	9
		cmentarzysko	6
		inne	nie
13.	GŁÓWNE ZBIORNIKI WÓD PODZIEMNYCH	tak (numer, nazwa i wiek zbiornika)/ nie]	tak (144 Dolina Kopalna Wielkopolska, Q; 148 Sandr rzeki Pliszka, Q)
14.	STREFY OCHRONNE UJĘĆ WODY	[tak/ nie]	nie
15.	STREFY OCHRONY UZDROWISKOWEJ	[tak/ nie]	nie
16.	TERENY ZAGROZONE PODTOPIENIAMI	[tak/ nie]	tak
17.	UDOKUMENTOWANE ZŁOŻA KOPALIN	[tak (rodzaj kopaliny)/ nie]	tak (węgle brunatne, ropy naftowe, kredy, torfy, kruszywa naturalne)
18.	OBSZARY PROGNOSTYCZNE I PERSPEKTYWICZNE WYSTĘPOWANIA KOPALIN (z wyłączeniem węglowodorów)	[tak (rodzaj kopaliny)/ nie]	tak (sole kamienne, sole potasowe, torfy, piaski i żwiry, piaski)
19.	SIECI PRZESYŁOWE GAZU	[tak/ nie]	tak
20.	PODZIEMNE MAGAZYNY GAZU	[tak/ nie]	nie
21.	DATA WYPEŁNIENIA KARTY	15.11.2021 г.	
22.	ZESTAWIENIE I OPRACOWANIE DANYCH	Barbara Palacz, Dominika Kafara	

Tab. 1.3. Karta uwarunkowań środowiskowych obszaru przetargowego Cybinka-Torzym.

Mapa środowiskowa obszaru Cybinka-Torzym

darki Wodne

Ministerstwo Klimatu i Środowiska

Environmental Map of the Cybinka-Torzym area

14°45'

woj, LUBUSKIE
powiat slubicki
1 - gm. Slubice
2 - gm. Cybinka
powiat sujeciński
3 - gm. Torzym
powiat krośnieński
4 - gm. Maszewo
5 - gm. Gubin
6 - gm. Bytnica
7 - gm. Krosno Odrzańskie
8 - gm. Dąbie
powiat świebodziński
9 - gm. Łagów
10 - gm. Lubrza
11 - gm. Świebodzin
12 - gm. Skąpe
powiat świeonogórski
13 - gm. Czerwieńsk
14 - gm. Sulechów

1000 m 0 1 2 3 4 5 6 7 8 9 km

Zestawienie danych oraz redakcja komputerowa mapy: Barbara Palacz

15°30'

Weryfikacja: Olimpia Kozłowska

Objaśnienia do mapy środowiskowej obszaru CYBINKA - TORZYM

(opracowano na podstawie bazy MGśP z zasobów PIG-PIB*)

(based on MGsP database*)

ZŁOŻA KOP ORAZ PERS MINERAL DEPOSIT	ALIN PEKTYWY I PROGNOZY ICH WYSTĘPOWANIA ND PERSPECTIVE AREA'S, PROGNOSTIC AREA'S FOR DOCUMENTING DEPOSITS	OCHRONA I DZIEDZIC PROTECTION OF I	PRZYRODY, KRAJOBRAZU TWA KULTUROWEGO vature, landscape and cultural heritage
	kreda jeziorna i gytia lacustrine chalk and gyttja		grunty ome (klasy I-IVa użytków rolnych) arable land (class I-IVa)
	piaski i żwiry sands and gravels		łąki na glebach pochodzenia organicznego meadows on organic soils
	piaski sands		lasy forests
	torfy peat		lasy ochronne protected forests
	granica złoża deposit boundary		zieleń urządzona urban greenery
	granica obszaru prognostycznego prognostic area boundary	· · · ·	granice terenów zarządzanych przez Dyrekcję Generalną Lasów Państwowych boundary of areas managed by General Directorate of the State Forests
	granica obszaru perspektywicznego perspective area boundary	·	granica parku krajobrazowego; nazwa parku boundary of landscape park; park name
•	złoże o powierzchni < 5 ha deposit with area < 5 ha	·Δ···Δ···Δ···Δ·	granica strefy ochronnej (otuliny) parku krajobrazowego boundary of buffer zone of landscape park; park name
p/Q	obszar prognostyczny o powierzchni ≤ 5 ha (p - rodzaj kopaliny, Q - wiek kopaliny) prognostica area with area ≤ 5 ha (p - type of mineral, Q - age of exploited rocks)	 .	granica obszaru chronionego krajobrazu; nazwa obszaru boundary of protected landscape area; area name
7078	identyfikator z bazy MIDAS złoża małokonfliktowego ID from the MIDAS database of the small environmental conflict	w	granica rezerwatu przyrody (T - torfowiskowy, W - wodny) boundary of natural reserve (T - peat, W - water)
173	identyfikator z bazy MIDAS złoża konfliktowego ID from the MIDAS database of the environmental conflict	00000	aleja drzew pomnikowych avenue of monumental trees
478	identyfikator z bazy Midas oraz nazwa złoża bardzo konfliktowego ID from the MIDAS database of the big environmental conflict		Obszary Europejskiej Sieci Ekologicznej Natura 2000; kod obszaru Natura 2000 ecological network; area code
GÓRNICTW	O I PRZETWÓRSTWO KOPALIN	▲ ⁿ	pomnik przyrody żywej (n - liczba obiektów) animate nature monument (n - number of objects)
MINING AND MINER	AL PROCESSING		użytek ekologiczny
	boundary of the mining area	۵'n	użytek ekologiczny o powierzchni ≤ 5 ha (n - liczba obiektów)
	granica terenu gómiczego boundary of the mining terrain	*	ecological use with area < 5 ha (n - number od objects) stanowisko archeologiczne
0	obszar i teren gómiczy złoża o powierzchni ≤ 5 ha	*	archeological site
●p	area and terrain of the deposit with area < 5 ha punkt niekoncesjonowanej eksploatacji kopaliny (p - rodzaj kopaliny)	INFORMAC ADDITIONAL INFO	JE DODATKOWE
·	point or uniteensed exploitation of a mineral (type or mineral)		granica państwa country boundary
Symbol kopaliny: Mineral symbol:	Symbol jednostki stratygraficznej: Symbol of the stratigraphic unit:		granica powiatu county boundary
Wb - węgiel brunat lignite	ny Q - czwartorzęd Quaternary		granica gminy, miasta
G - gaz ziemny natural gas	Ng - neoogen Neogene	CYBINKA	siedziba urzędu gminy, miasta
R - ropa naftowa crude oil	P - perm Permian	STRUGA	miejscowość letniskowa
Na - sole kamienne rock salt		UNICOA	summer resort sieć gazociagów przesyłowych
K-Mg - sole potaso potassium-ma	wo-magezowe Ignesium sait	*****	natural gas pipeline network
kj - kreda jeziofňa i lacustrine chalk a t torfu	gyua nd gyttja	*****	high-voltage power network
peat peat			granica obszaru przetargowego boundary of tender area
sands and grave	S		

p - piaski sands

WODY POWIERZCHNIOWE I PODZIEMNE

SURFACE AND UND	ERGROUNG WATERS
	obszary dolinne zagrożone podtopieniami valley flood hazard area
· ·	granica działu wodnego drugiego rzędu water divide of second rank
	granica działu wodnego trzeciego rzędu water divide of third rank
	granica działu wodnego czwartego rzędu water divide of fourth rank
 144 	granica głównego zbiomika wód podziemnych wraz z jego numerem principle boundary aquifer with ID number
•	źródło spring
Zb. koło m. Bródki	zbiornik retencyjny wraz z jego nazwą water reservoir with its name
	ujęcie wód podziemnych o wydajności > 50 m ³ /h (k - komunalne, p - przemysłowe) uderground water intake with capacity > 50 m ³ /h (k - municipal, p - industrial)

* Wykorzystano Informacje udostępniane przez: RZGW, GDOŚ, GDLP, IMGW-PIB, NID, PSE, GAZ-SYSTEM, urzędy morskie oraz z baz danych PSG i PSH w PIG-PIB * Data source: RZGW, GDOŚ, GDLP, IMGW-PIB, NID, PSE, GAZ-SYSTEM, maritime offices and from database of PSG and PSH

2. BUDOWA GEOLOGICZNA 2.1. OGÓLNY ZARYS BUDOWY GEOLOGICZNEJ

W świetle regionalnego podziału na megajednostki strukturalne Polski (Żelaźniewicz i in., 2011) obszar przetargowy Cybinka-Torzym jest położony na platformie zachodnioeuropejskiej, zwanej także platformą paleozoiczną (Narocki i Becker, 2017). Składa się ona z podłoża waryscyjskiego oraz permskomezozoicznej i kenozoicznej pokrywy osadowej (Fig. 2.1–2.2).

Najstarsze utwory podłoża zostały rozpoznane wiertniczo na północny-wschód od obszaru przetargowego i są reprezentowane synmetamorficzne kwarcowoprzez servcytowe fyllity, najprawdopodobniej wieku dewońskiego (Żelaźniewicz i in., 2011). Skały te budują wyniesienie wolsztyńskie (Fig. 2.1B). Do utworów podłoża zalicza się również silnie sfałdowane utwory fliszu karbońskiego, interpretowane jako wielkopolskie pasmo fałdowo-nasunięciowe, będące fragmentem eksternidów waryscyjskich (Fig. 2.1B). Skały te nie zostały nawiercone na obszarze przetargowym, aczkolwiek ich występowanie udokumentowano w bliskim sąsiedztwie.

Na utworach podłoża neoproterozoicznopaleozoicznego zalega permsko-karbońska pokrywa wulkaniczna oraz permskomezozoiczna pokrywa osadowa (Fig. 2.1). Wulkanity tego obszaru wykazują przewagę skał andezytowo-bazaltowych nad skałami kwaśnymi (Maliszewska i in., 2016) i stanowią regionalnie wschodnią część prowincji wulkanicznej Brandenburgii (Benek i in., 1996). Pokrywa osadowa składa się z sukcesji: klastycznej czerwonego spągowca, węglanowo-ewaporatowej cechsztynu oraz klastyczno-weglanowej triasu, jury i kredy. Powyższe utwory zostały poddane niewielkim deformacjom tektonicznym w trakcie orogenezy kimeryjskiej oraz laramijskiej. Profil triasu, jury i kredy, w zależności od miejsca położenia na obszarze przetargowym, jest stratygraficznie zredukowany. W części południowej występują tylko utwory triasu, w centralnej triasu i dolnej jury, zaś w północno-zachodniej jego części udokumentowano skały dolnej i górnej kredy. Na obszarze przetargowym Cybinka-Torzym utwory pokrywy permsko-mezozoicznej budują zachodnia część monokliny przedsudeckiej (Fig. 2.1A).

Utwory permsko-mezozoiczne monokliny przedsudeckiej na obszarze przetargowym Cybinka-Torzym są w całości przykryte przez płasko zalegające osady kenozoiczne. Są one reprezentowane przez klastyczno-węglanowe osady paleogenu oraz klastyczne osady neogenu.

W dalszej części opracowania przedstawiono charakterystykę wydzieleń stratygraficznych. Do ich opisu wykorzystano dane pochodzące z otworów wiertniczych z obszaru przetargowego: Bytomiec-1, Chlebów 1, Cybinka 1, Cybinka 2, Grzmiąca 1, Grzmiąca 2, Grzmiąca 3, Grzmiąca 5, Grzmiąca 7, Kłopot 1, Kosarzyn-8, Kosobudz 1, Koziczyn-1, Miłów 1, Radomicko 1, Rąpice 1A, Rybaki 5, Rybaki 14, Sosna-1, Świebodzin 2 i Świebodzin 3 (ich lokalizację można znaleźć na Fig. 2.3).

CYBINKA-TORZYM

Fig. 2.1. A. Położenie obszaru przetargowego Cybinka-Torzym na szkicu głównych jednostek tektonicznych Niżu Polskiego na powierzchni podkenozoicznej (Nawrocki i Becker, 2017). **B**. Położenie obszaru przetargowego Cybinka-Torzym na szkicu głównych jednostek waryscyjskiego planu tektonicznego (Nawrocki i Becker, 2017).

CYBINKA-TORZYM

Fig. 2.2. Położenie obszaru przetargowego Cybinka-Torzym na tle mapy głównych jednostek tektonicznych Polski pod pokrywą permsko-mezozoiczną i kenozoiczną (Żelaźniewicz i in., 2011).

Fig. 2.3. Lokalizacja otworów wykorzystanych do charakterystyki geologicznej obszaru przetargowego Cybinka-Torzym.

2.2. TEKTONIKA

W planie waryscyjskim utwory najstarszego podłoża obszaru Cybinka-Torzym budują wyniesienie wolsztyńskie, które jest ograniczone w swej północno-wschodniej części regionalną nieciągłością tektoniczną - strefą uskokową Dolska (Fig. 2.2). Utwory neoproterozoiczne i dolnopaleozoiczne są tam zbudowane z kwarcowo-serycytowych fyllitów. Wyniki uzyskane z datowań izotopowych łyszczyków określają wiek metamorfizmu fyllitów na 340 mln lat (wczesny wizen; Żelaźniewicz i in., 2003) lub na przełom dewonu i karbonu - ok. 359 mln lat (Mazur i in., 2006b). Wyżej leżą silnie nachylone (osiągajace upady nawet do 90°) utwory karbonu, pocięte siecią licznych uskoków, mających w pewnych przypadkach charakter nasunięć (Pożaryski i Dembowski, 1983; Kudrewicz, 2008), które podkreślają ich blokową budowę. Powstały one w późnym karbonie w trakcie waryscyjskich deformacji fałdowo-nasunięciowych. W południowo-zachodniej części obszaru przetargowego Cybinka-Torzym występują powierzchnie nieciągłości są o kierunkach NW-SE i NE-SW. Maja one głębokie założenia tektoniczne związane ze strefą uskokowa środkowej Odry (Fig. 2.2). Na mapie strukturalnej powierzchni podpermskiej (Kudrewicz, 2007) utwory waryscyjskiego piętra strukturalnego pogrążone są na głębokości od około -2400 m n.p.m. do ponad -3200 m n.p.m. (Fig. 2.4).

Na północ od strefy uskokowej środkowej Odry występuje strefa rozłamów środkowej Odry (Fig. 2.5). Jest ona związana ze ścienieniem skorupy ziemskiej (Oberc, 1990), jak również z rozległym system głęboko zakorzenionych stromych uskoków prawdopodobnie o charakterze przesuwczym (Aleksandrowski, 1995; Aleksandrowski i in., 1997; Kiersnowski i Petecki, 2017). Strefa rozłamów środkowej Odry odgrywała ważną rolę podczas sedymentacji osadów permu i karbonu. Ich depozycja odbywała się w szeregu rowów tektonicznych (często połączonych ze sobą). Zdaniem Kiersnowskiego i Peteckiego (2017: za Aleksandrowskim, informacja niepublikowana, 2016), południową część obszaru wielkopolskiego pasma fałdowo-nasunięciowego można podzielić na dwie jednostki strukturalne: internidy północne i eksternidy południowe, których granicę stanowi zasięg występowania strefy rozłamowej środkowej Odry (Fig. 2.5). Znaczna część obszaru przetargowego Cybinka-Torzym w świetle powyższego podziału znajduje się w najbardziej wysuniętej, północnej części internidów północnych, pozostała zaś (północno-wschodnia) w zasięgu eksternidów południowych (Fig. 2.5).

Na całym obszarze przetargowym utwory laramijskiego piętra strukturalnego zalegają niezgodnie na skałach starszych. Składają się one z utworów węglanowo-ewaporatowych cechsztynu, klastyczno-węglanowych triasu, klastycznych jury i węglanowych kredy. W zależności od miejsca położenia na obszarze przetargowym, wielkość redukcji profilu triasu, jury i kredy wzrasta ku południowi. W części południowej pokrywa osadowa permsko-mezozoiczna jest pozbawiona skał jury i kredy. Zmierzając w kierunku północnym obszaru przetargowego Cybina-Torzym, w planie podkenozoicznym, najpierw pojawiają się wychodnie jury, a następnie kredy. Warto podkreślić, że pomimo występowania utworów jury i kredy, ich profile są zredukowane. Redukcja profilu skał mezozoicznych była związana z kimeryjskimi i laramijskimi ruchami tektonicznymi.

W planie strukturalnym podkenozoicznym utwory laramijskiego piętra strukturalnego charakteryzują się pasmowym układem wychodni o generalnym nachyleniu nie przekrakierunku czajacym 5° W północnowschodnim (Deczkowski i Gajewska, 1977). Powierzchnia ta jest pocieta licznymi uskokami o przebiegu NW-SE, N-S i NE-SE. Część z tych uskoków tworzy system rowów tektonicznych, majacych tensyjny i kompresyjny charakter (Sokołowski, 1967; Podemski, 1973; Deczkowski i Gajewska, 1977, 1980). Mają one starsze założenia tektoniczne (Deczkowski i Gajewska, 1977, 1980), których początek rozwoju jest datowany na przełom kajpru i retyku (Deczkowski i Gajewska, 1977, 1980), a nawet na wczesny trias (Grocholski, 1991; Kwolek, 2000). Ostateczne przebudowanie systemu rowów "triasowych" pozostałej powierzchni podkenozoicznej i nastąpiło na przełomie kredy i paleogenu, w wyniku ruchów tektonicznych orogenezy laramijskiej.

W południowo-zachodniej części obszaru przetargowego Cybinka-Torzym wystepuje najbardziej wysunięta na północ część dyslokacji środkowej Odry. Jest ona znana w literaturze jako struktura Rybaki (Fig. 2.6; Sokołowski, 1967; Deczkowski i Gajewska, 1977, 1979; Podemski, 1973). Występuje w formie wydłużonego bloku, o rozciągłości NNW-SSE, zwężającego się w kierunku północnopółnocno-zachodnim (Fig. 2.6). Struktura Rybaki jest ograniczona uskokami odwróconymi (Fig. 2.7), o przebiegu NNW-SSE. Dodatkowo jest ona podzielona na szereg mniejszych bloków porozcinanych powierzchniami nieciągłości (Fig. 2.6). Powstanie struktury Rybaki wiąże się z działalnością procesów halotektonicznych (Sokołowski, 1967).

Bardziej szczegółowe rozpoznanie pokrywy permsko-mezozoicznej wnoszą dane uzyskane dzięki zdjęciu sejsmicznemu 3D Cybinka-Torzym, wykonanemu na zlecenie firmy Aurelian Oil & Gas Sp. z.o.o. Uszczegółowia ono układ strukturalno-tektoniczny powierzchni podcechsztyńskiej oraz stropu dolomitu głównego. Również wnosi cenne informacje dotyczące pozostałych horyzontów sejsmicznych, które z naftowego punktu widzenia nie są perspektywiczne dla obszaru przetargowego, ale odgrywają ważną rolę w jego budowie strukturalnej.

Utwory kenozoiczne zalegają horyzontalnie, przykrywając na całym obszarze przetargowym lekko nachylone skały mezozoiku. Utwory kenozoicznego piętra strukturalnego reprezentowane przez paleogeńskosa neogeńsko-czwartorzędowe osady klastyczne. W osadach czwartorzędu zaobserwowano występowanie wielkoskalowych zaburzeń glacitektonicznych (Markiewicz, 2010). Ich powstanie jest związane z neotektoniczną reaktywacją obszaru w trakcie zlodowaceń plejstoceńskich (Markiewicz i Kraiński, 2002; Markiewicz i Winnicki, 2005, 2007a, b; Markiewicz, 2007).

Fig. 2.4. Położenie obszaru przetargowego Cybinka-Torzym mapie strukturalnej powierzchni podpermskiej (Kudrewicz, 2007).

Fig. 2.6. Szkic geologiczno-tektoniczny rowu Rybaki (Deczkowski i Gajewska, 1977). 1 – głębokie otwory wiertnicze, 2 – otwory wiertnicze kartujące powierzchnię podkenozoiczną, 3 – uskoki pewne, 4 – uskoki hipotetyczne, 5 – granice geologiczne, 6 – linie przekrojów. Stratygrafia: Q+T – czwartorzęd i neogen, J1 – dolna jura, Tre – trias retyk, Tk2c – trias warstwy gipsowe górne, Tk2b – trias piaskowiec trzcinowy, Tk2a – trias warstwy gipsowe dolne, Tk1 – trias dolny kajper, Tm – trias wapień muszlowy, Tp3 – trias ret, Tp2 – trias środkowy pstry piaskowiec, Tp1 – dolny pstry piaskowiec, P2 – perm cechsztyn, P1 – perm czerwony spągowiec.

Fig. 2.7. Przekroje przez strukturę Rybaki (Deczkowski i Gajewska, 1977; lokalizacja i objaśnienia – Fig. 2.6). 1 – uskoki, 2 – otwory wiertnicze; 3 – złoże ropy naftowej Rybaki, dg – dolomit główny.

2.3. STRATYGRAFIA 2.3.1. KARBON

Rozprzestrzenienie i miąższość

W żadnym z odwierconych otworów wiertniczych na obszarze Cybinka-Torzym nie udokumentowano występowania utworów karbonu. Zostały one rozpoznane jedynie w otworach znajdujących się poza obszarem przetargowym, m.in. Dęby 1, Dachów 1, Łagów 1 i Staropole 1 (Fig. 2.3).

Litologia i stratygrafia

Utwory karbonu w sąsiedztwie obszaru przetargowego są reprezentowane przez brunatnoczerwone i szare iłowce, mułowce z wkładkami drobno- i średnioziarnistych piaskowców. Skały te charakteryzują się występowaniem licznych spękań bądź powierzchni zlustrowań tektonicznych, jak również wysokim kątem nachylenia lamin/warstw, sięgającym nawet do 90°. Według Żelichowskiego (w: Wierzchowska-Kicułowa, 1984, 1987), utwory karbonu występujące w otworach m.in. Dachów 1, Niwiska 1, Piaski 1 i Staropole 1 należy traktować jako kompleks molasy górnego westfalu – stefanu (Fig. 2.1B–2.2). Dodatkowo, na podstawie zmienności litologicznej tych osadów, Żelichowski (w: Wierzchowska-Kicułowa, 1984, 1987) wyróżnił wśród nich dwie nieformalne jednostki litostratygraficzne w randze serii: arkozowo-szarogłazową (niższą) i piaskowców kwarcowych (wyższą). W wymienionych powyżej otworach, skały karbonu reprezentują serię arkozowo-szarogłazową. Na podstawie interpolacji oraz za interpretacja Wierzchowskiej-Kicułowej (1984, 1987) można zakładać, że utwory serii arkozowo-szarogłazowej występują pod skałami permsko-mezozoicznymi. W stropie powierzchni podpermskiej na obszarze przetargowym Cybinka-Torzym występują najprawdopodobniej utwory górnego? karbonu (Fig. 2.8). Głębokość ich pogrzebania wzrasta generalnie w kierunku północnym, osiągając w najbardziej wysuniętej północnej części głębokość powyżej -3200 m n.p.m. (Fig. 2.4). Generalnie, nachylenie stropu skał podpermskich jest łagodne i nie wykazuje dużych deniwelacji. Jedynie w południowo-zachodniej części obszaru przetargowego obserwuje się dosyć znaczne ich zapadanie.

Fig. 2.8. Fragment obszaru przetargowego Cybinka-Torzym (granatowy kontur; bez północno-zachodniej części) na szkicu powierzchni podpermskiej przedpola i pasma fałdowo-nasunięciowego waryscydów (wg Wierzchowskiej-Kicułowej, 2007; Kiersnowski i Petecki, 2017). Objaśnienia kolorów i ich numerów: 1 – molasa najmłodsza – stefanautun, 2 – molasa starsza – wyższy namur – westfal, molasa młodsza – westfal, 3 – flisz młodszy – utwory dolnego karbonu, namuru i dolnego westfalu sfałdowanego po westfalu dolnym, 4 – flisz starszy – utwory górnego dewonu, dolnego karbonu i dolnego namuru, sfałdowanego po dolnym namurze, 5 – fyllity bloku Leszna. Przedfliszowe piętro strukturalne, serie epimetamorficzne, sfałdowane w fazach bretońskich lub wczesnowaryscyjskich, 6 – permskomezozoiczne skały osadowe bloku przedsudeckiego, 7 – granitoidy, 8 – skały krystaliczne bloku przedsudeckiego.

2.3.2. PERM – CZERWONY SPĄGOWIEC

Rozprzestrzenienie i miąższość

Na obszarze przetargowym Cybinka-Torzym występowanie utworów czerwonego spągowca zostało udokumentowane w 7 otworach wiertniczych (żaden z nich nie przewiercił pełnej sukcesji) w interwałach:

- Bytomiec-1: 2203,0–2240,0 m,
- Grzmiąca 3: 2616,0–2634,0 m,
- Kosobudz 1: 2765,5–2974,0 m,
- Koziczyn-1: 2853,5–3208,0 m,
- Miłów 1: 2337,0–2401,0 m,
- Rapice 1A,
- Świebodzin 3: 2757,8–2804,0 m.

Miąższość utworów czerwonego spągowca w odwierconych otworach wiertniczych na waha się od 18,0 do 354,4 m.

Litologia i stratygrafia

W literaturze są znane dwa podziały litostratygraficzne utworów czerwonego spągowca. Pierwszy z nich, formalny, został opracowany przez Karnkowskiego (1987; 2.9) i jest oparty na zmienności Fig. litologicznej w basenie czerwonego spagowca. Drugi podział litostratygraficzny, nieformalny, zaproponowany przez Pokorskiego (1981, 1988, 1997; Fig. 2.9) posiada cechy allostratygrafii i tektonostratygrafii, co umożliwia jego korelację z osadami basenu północnoniemieckiego (Hoffmann i in., 1997). Z tego powodu, do analizy i opisu utworów czerwonego spagowca oparto się na nieformalnym podziale litostratygraficznym Pokorskiego (1981, 1988, 1997), na kanwie którego powstały także późniejsze opracowania traktujace o perspektywiczności naftowej tych utworów m.in. na obszarze Cybinka-Torzym (np. Wagner i in., 2008).

Dolny czerwony spągowiec

Na obszarze przetargowym Cybinka-Torzym, jak również w jego sąsiedztwie, w kilku otworach wiertniczych nawiercono skały wulkaniczne i piroklastyczne. Składają się one z ryolitów, dacytów i trachitów, jak również z tufów i tufitów. Powyższe skały reprezentują wielkopolską formację wulkanogeniczną (Fig. 2.9). Istnieje również szansa, że na obszarze przetargowym, pośród skał wulkanicznych, mogą występować wkładki skał osadowych. W sąsiadującym otworze Chyże 1 pod ryolitami Juroszek i in. (1981) udokumentowali występowanie poziomu piaskowca brunatnoszarego, tufogenicznego, laminowanego poziomo i skośnie. Kompleks ten w świetle podziału zaproponowanego przez Kiersnowskiego (2008) należy zaliczyć do skał osadowych międzywulkanicznych.

Pokrywa wulkaniczna czerwonego spągowca występuje na prawie całym obszarze przetargowym Cybinka-Torzym (Fig. 2.10). Jedynie południowo-zachodnia część obszaru jest jej pozbawiona ze względu na występowanie wychodni skał podpermskich, głównie karbonu.

Regionalny trend wzrostu miąższości wielkopolskiej formacji wulkanogenicznej w kierunku zachodnim jest również obserwowany na obszarze Cybinka-Torzym. Miąższość wulkanitów czerwonego spągowca w większości omawianego obszaru przekracza 600 m, a jedynie w najbardziej krawędziowych miejscach spada do 400 m (Fig. 2.10).

Nad wielkopolską formacją wulkanogeniczną na obszarze przetargowym Cybinka-Torzym wg Kiersnowskiego (2008) występują utwory osadowej serii nadwulkanicznej. Powstawały one w środowiskach stożków aluwialnych i fluwialnych równi powodziowych. Wyróżniono wśród nich osady mokrych stożków aluwialnych, rzeczne osady korytowe i pozakorytowe, miejscami także jeziorne (w tym cienkie warstwy wapieni), a także kompleksy określone jako aluwialnopiroklastyczne (Kiersnowski, 2003). Depozycja osadów serii nadwulkanicznej odbywała się w zachodniej części basenu Zielonej Góry (Fig. 2.8; Kiersnowski, 2008). Miaższość tych utworów jest zróżnicowana i waha się od kilku metrów w części marginalnej do ponad 500 m w centralnej części basenu (Fig. 2.11).

Górny czerwony spągowiec

Pomiędzy dolnym i górnym czerwonym spągowcem występuje luka czasowa, licząca co najmniej 10 mln lat (Nawrocki, 1995, 1997) lub nawet 20 mln lat (inf. ustna: H. Kiersnowski, 2021), podczas której nastąpiła erozja i peneplenizacja pokrywy wulkanicznej bądź wychodni skał przedpermskich.

Skały górnego czerwonego spągowca (sakson) składają się z drobno-, średnio- i gruboziarnistych piaskowców, jak również z zlepieńców, mułowców oraz iłowców. Są one wykształcone w facjach eolicznych, aluwialnych oraz w fluwialnych (Fig. 2.12). Głównym źródłem materiału klastycznego był wcześniej zdeponowany osad, który ulegał wielokrotnemu przerobieniu. Występujące kierunku północnym i północnow wschodnim - wyniesienie wolsztyńskie (Fig. 2.12) oraz południowo-zachodnim – wyniesienie Łużyc (Fig. 2.12) od granic obszaru przetargowego, stanowiły obszary alimentacyjne, które były również źródłem erodowanego materiału klastycznego, transportowanego i deponowanego m.in. na omawianym obszarze.

Utwory górnego czerwonego spągowca na obszarze przetargowym są monoklinalnie nachylone w kierunku północnym (Fig. 2.13). Najpłycej występują one W cześci południowej, osiągając głębokość poniżej -2200 m n.p.m. (Fig. 2.13; m.in. otwór wiertniczy Bytomiec-1). Układ zapadania powierzchni stropu górnego czerwonego spągowca jest stopniowy i charakteryzuje się układem pasowym. Swoje maksimum nachylenia na omawianym obszarze osiąga w północnej jego części, sięgając głębokości powyżej -2800 m n.p.m. (Fig. 2.13; m.in otwór wiertniczy Koziczyn-1). W stropie górnego czerwonego spągowca utworów się występowanie uskoków obserwuje głównie o kierunku W-E oraz w mniejszej ilości o kierunku NNW-SSE (Fig. 2.13). Najwiecej powierzchni nieciagłości tektonicznych występuje w południowozachodniej części obszaru przetargowego.

Na obszarze przetargowym Cybinka-Torzym utwory górnego czerwonego spągowca posiadają zmienną miąższość (Fig. 2.14). Największe jej wartości występują w centralnej części obszaru. W kierunku północno-wschodnim i południowo-zachodnim miąższość utworów górnego czerwonego spągowca się zmniejsza do poniżej 50 m, by całkowicie zaniknąć w części południowozachodniej. Utwory górnego czerwonego spągowca na obszarze przetargowym są reprezentowane w głównej mierze przez osady eoliczne (Fig. 2.12), charakteryzujące się dobrymi własnościami petrofizycznymi. Głębokość pogrzebania skał zbiornikowych występuje w przedziale od -2300 do -2900 m n.p.m. (Fig. 2.13). Niestety, w otworach, w których opróbowano interwał górnego czerwonego spągowca, uzyskano głównie przypływ gazu niepalnego – azotu (Fig. 2.15A). Regionalne mapy zawartości gazu, wskazują, że procentowy udział gazu palnego wzrasta w kierunku północno-wschodnim (Fig. 2.15A–B)

Wyniki badań petrograficznych górnego czerwonego spągowca

Wyniki badań petrograficznych prowadzonych bezpośrednio na obszarze przetargowym można uzyskać m.in z dokumentacji wynikowych otworów wiertniczych: Bytomiec-1, Grzmiąca 3, Koziczyn-1, Miłów 1.

Na podstawie dostępnych materiałów stwierdzono, iż seria osadowa czerwonego spągowca to głównie piaskowce od drobnodo gruboziarnistych. W jednym z otworów wiertniczych w próbkach okruchowych zidentyfikowano zlepieniec. Miejscami zauważa się przewarstwienia mułowców. Seria osadowa zalega na serii skał wylewnych.

Piaskowce charakteryzują się barwą ceglasto-czerwoną, sporadycznie szarą lub ciemnoszarą. Wykazują strukturę psamitową, teksturę bezładną, miejscami kierunkową, podkreśloną równoległym ułożeniem lamin piaskowców grubiej uziarnionych. Większość opisywanych piaskowców jest słabo zwięzła, aczkolwiek opisywano także odcinki zbite. Materiał detrytyczny jest półobtoczony i obtoczony, o różnym stopniu wysortowania. Głównym składnikiem piaskowców są ziarna kwarcu mono- i polikrystalicznego, niektóre z wrostkami biotytu i apatytu. W piaskowcach jednego z otworów wiertniczych stwierdzono, że ilość kwarcu waha się od 40% do 70% objętości skały. Skalenie są przeważnie reprezentowane przez albit i mikroklin w zmiennych ilościach. W odmianach arkozowych i subarkozowych zawartość skaleni średnio wynosi około 30% obj. Poza wymienionymi składnikami odnotowano obecność litoklastów, głównie pochodzenia wulkanicznego

(średnio około 10–15% obj.) oraz sporadycznie łyszczyków. Akcesorycznie występują: cyrkon, turmalin, granat. W piaskowcach z otworu wiertniczego Koziczyn-1 zauważono glaukonit. Powszechnie, choć w znikomych ilościach, występują tlenki i siarczki żelaza.

Spoiwo piaskowców jest zróżnicowane. Głównym składnikiem, nadającym brunatnoczerwone zabarwienie piaskowcom, jest substancja ilasto-żelazista. Tworzy ona przede wszystkim spoiwo typu kontaktowego. Miejscami zauważono spoiwo ilaste, najprawdopodobniej w części autigeniczne (chloryt, illit). W przestrzeniach porowych, lub jako masa wypełniająca występuje spoiwo anhydrytowe, kalcytowe, sporadycznie dolomitowe (piaskowce z otworu wiertniczego Koziczyn-1).

Mułowiec w dostępnych materiałach opisano jedynie w otworze wiertniczym Koziczyn-1. Jest to skała barwy brunatnoczerwonej, przeławicona piaskowcem drobnoi średnioziarnistym z glaukonitem.

Sądząc z analiz przeprowadzonych na etapie sporzadzania dokumentacji otworowych można w piaskowcach wyróżnić efekty następujących procesów diagenetycznych: kompakcja mechaniczna, cementacja, rozpuszczanie. Wyrazem słabego nasilenia kompakcji mechanicznej jest fakt, iż piaskowce określono - w większości - jako słabo zwięzłe. Głównym procesem diagenetycznym była cementacja. Podstawowym składnikiem cementów jest anhydryt, kalcyt, rzadko dolomit. Z uwagi na występowanie odmian arkozowych i subarkozowych, podobnie jak w piaskowcach z innych pobliskich obszarów (Maliszewska i in., 2016), ważne jest występowanie efektów rozpuszczania diagenetycznego materiału detrytycznego, co ma wpływ na tworzenie porowatości wtórnej.

CYBINKA-TORZYM

Fig. 2.9. Schemat stratygraficzny czerwonego spągowca polskiej części basenu południowo permskiego (Kiersnowski, w: Maliszewska i in., 2003).

Fig. 2.10. Mapa miąższości serii wulkanicznej na obszarze przetargowym Cybinka-Torzym i obszarach przyległych (Wagner i in., 2008)

Fig. 2.11. Mapa miąższości serii nadwulkanicznej na obszarze przetargowym Cybinka-Torzym i obszarach przyległych (Wagner i in., 2008)

Fig. 2.12. Mapa litofacjalno – paleogeograficzna stropowej części osadów górnego czerwonego spągowca obszaru przetargowego Cybinka-Torzym tuż przed transgresją morza cechsztyńskiego (Kiersnowski i in., 2020).

Fig. 2.13. Mapa strukturalna powierzchni podcechsztyńskiej obszaru przetargowego Cybinka-Torzym (Kudrewicz, 2007).

Fig. 2.14. Mapa miąższości utworów górnego czerwonego spągowca (Wagner i in., 2008).

Fig. 2.15. Mapa procentowej zawartości azotu (A) i metanu (B) na obszarze przetargowym Cybinka-Torzym (Wagner i in., 2008).

2.3.3. PERM – CECHSZTYN

Rozprzestrzenienie i miąższość

Na obszarze przetargowym Cybinka-Torzym wszystkie odwiercone otwory wiertnicze nawiercają utwory cechsztynu. Większość z nich sięga skał anhydrytu górnego (A1g) cyklotemu PZ1, a jedynie 7 z nich przewierca w całości utwory cechsztynu. Są to:

- Bytomiec-1: 1597,0–2203,0 m,
- Chlebów 1: 1776,5–2135,0 m,
- Cybinka 1: 2126,0–2586,0 m,
- Cybinka 2: 2000,0–2617,0 m,
- Grzmiąca 1: 1866,0–2155,0 m,
- Grzmiąca 2,
- Grzmiąca 3: 1989,0–2616,0 m,
- Grzmiąca 5,
- Grzmiąca 7,
- Kłopot 1,
- Kosarzyn-8,
- Kosobudz 1: 1930,0–2765,5 m,
- Koziczyn-1: 1948,0–2853,5 m,
- Miłów 1: 1606,5–2337,0 m,
- Radomicko 1,
- Rapice 1A,
- Rybaki 5: 1633,0–1988,0 m,
- Rybaki 14: 1533,0-2022,6 m,
- Sosna-1: 2017,0–2455,0 m,
- Świebodzin 2: 1943,0–1998,0 m,
- Świebodzin 3: 1905,0–2757,8 m.

Pod względem rozkładu sumarycznej miąższości cechsztynu, na obszarze przetargowym Cybinka-Torzym obserwuje się jej stopniowy i pasowy układ, której wartości zwiększają się w kierunku północno-wschodnim (Fig. 2.16). Południowo-zachodnia część charakteryzuje się miąższością nie przekraczającą 600,0 m. W świetle analizy paleotektonicznej cechsztynu, obszar ten stanowił zachodnia cześć garbu wolsztyńskiego, z niewielką elewacją Sulęcina (Wagner, 1988). Pozostała część obszaru przetargowego charakteryzuje się wzrostem miąższości powyżej 600,0 m w kierunku północnym i północno-wschodnim (Fig. 2.16). Odpowiada ona odpowiednio zachodniej części "skarpy" gorzowsko-kaliskiej oraz marginalnej części bruzdy środkowopolskiej (Wagner, 1988).

Litologia i stratygrafia

Założenia schematu stratygraficznego cechsztynu opracowanego przez Richter-Bernburga (1955) zostały zaadoptowane przez Tokarskiego (1958) i Poborskiego (1960) dla polskiej części basenu permskiego. W ciągu następnych lat schemat ten był modyfikowany (Wagner i in., 1978) i uzupełniany, zwłaszcza w swej najwyższej części (m.in. Wagner, 1987, 1988, 1994).

Utwory górnego permu składają się z czterech cyklotemów: PZ1, PZ2, PZ3 i PZ4 (Fig. 2.17). Cyklotemy PZ1-PZ3 są reprezentowane przez skały węglanowo-ewaporatowe. Ich depozycja odbywała się w wyniku z następujących po sobie cyklach transgresywnoregresywnych (Wagner, 1994; Wagner i Peryt, 1997, 1998). W przypadku ostatniego cyklotemu PZ4, czynnik warunkujący wytrącanie i dostarczanie osadu, jak również częściowo typ osadu, uległy zmianie. Występująca wcześniej sukcesja węglanowo-ewaporatowa wraz z rozpoczęciem sedymentacji cyklotemu PZ4 została zastąpiona przez sukcesję terygenicznoewaporatowa, zwiazana z wahaniami klimatycznymi uzależnionymi od cykliczności okresów suchych i mokrych (Wagner, 1994).

Za dolną granicę cechsztynu przyjmuje się pojawienie się utworów łupka miedzionośnego (T1; Fig. 2.17), bądź, w przypadku jego braku, następującego po nim wapienia cechsztyńskiego (Ca1; Peryt, 1976; Wagner i in., 1978). Strop cechsztynu został ustalony na podstawie kryterium litologicznego, czyli wraz z zakończeniem występowania utworów stropowej serii terygenicznej (PZt) oraz pojawieniem się skał dolnego pstrego piaskowca (Fig. 2.17).

Cyklotem PZ1

Na obszarze Cybinka-Torzym cechsztyn rozpoczyna się utworami łupka miedzionośnego (T1; Fig. 2.17). Jest on reprezentowany przez szaroczarne łupki wapniste, poziomo laminowane, bitumiczne, z występującymi szczątkami ryb (Wagner, 1994). Ich depozycja następowała poniżej sztormowej strefy falowania w warunkach anaerobowych (Oszczepalski i Rydzewski, 1987). Miąższość łupka miedzionośnego zazwyczaj ma od kilku do kilkudziesię-

ciu centymetrów, maksymalnie do 1 m. Na skałach łupka miedzionośnego (T1) zalegają utwory wapienia cechsztyńskiego (Cal). Składają się one z szarych, ciemnoszarych i rzadziej czerwonych wapieni, które w niektórych przypadkach są zastępowane w stropowych partiach przez dolomity. Osady wapienia cechsztyńskiego były deponowane w strefie płytkiej równi basenowej (Fig. 2.18). Miąższość utworów tej strefy jest niewielka, maksymalnie osiąga do 10 m. Pod koniec depozycji utworów Cal doszło do obniżenia się wody w zbiorniku morskim. Konsekwencją powyższego procesu było wynurzenie się obszarów platform węglanowych oraz równi basenowych, a zdeponowane w tych strefach osady uległy intensywprzemianom diagenetycznym (Peryt nym i Piątkowski, 1976, 1977; Peryt, 1984). Kolejna ingresja morska rozpoczęła ewaporatowy etap basenu permskiego. W skrajnie suchym klimacie doszło do sedymentacji anhydrytu dolnego (A1d; Fig. 2.17; Wagner, 1994). W niższych częściach profilu Ald występują skrajnie płytkowodne anhydryty gruzłowe i mozaikowe, przechodzące ku górze w bardziej głębokowodne nieregularnie warstwowane, aż do względnie głębokowodnych anhydrytów laminowanych (Kłapciński, 1991). Miąższość Ald na obszarze przetargowym Cybinka-Torzym jest zróżnicowana i waha się od prawie 30 do ponad 150 m. Następnie, na utworach Ald, zalegają utwory najstarszej soli kamiennej (Na1; Fig. 2.17). W strefach płytszych sól kamienna wypełniała obniżenia utworzone w wyniku sedymentacji A1d (Wagner, 1994). Ograniczające je bariery anhydrytowe spełniały rolę pułapek chemicznych, które uniemożliwiały odpływ ciężkich, nasyconych solanek. Dzięki nim powstał system izolowanych lagun i panwi solnych (Czapowski, 1983; Czapowski i Tomassi-Morawiec, 1985). Utwory Na1 zostały rozpoznane we wszystkich otworach przewiercających najstarszy cyklotem cechsztynu (PZ1). W większości przypadków miąższość tych skał sięga do 60 m. Jedynie w południowo-zachodniej części obszaru przetargowego wartości te są znacznie większe. Oprócz wzrostu miąższości, utwory Na1 mogą być rozdzielone przez skały anhydrytu środkowego (A1s; Fig. 2.19). Analogiczny przypadek został szczegółowo opracowany przez Dyjaczyńskiego i Peryta (2014) dla północnej części wału

wolsztyńskiego. Miąższość A1s jest niewielka, osiaga maksymalnie 7,5 m. W przypadku rozdzielonych utworów Na1 ich dolna część jest wyróżniana jako dolna najstarsza sól kamienna (Na1d; Fig. 2.19), górna zaś – jako górna najstarsza sól kamienna (Na1g; Fig. 2.19); osiągają one miąższość odpowiednio ponad 100 m oraz ponad 30 m. Ostatnia część sekwencji siarczanowo-węglanowej cyklotemu PZ1 jest reprezentowana przez utwory anhydrytu górnego (A1g; Fig. 2.17). Ich powstanie wiązało się z ponowną ingresją wód na obszar basenu permskiego. Zasięg A1g jest najprawdopodobniej nieco większy niż Ald i ma charakter sekwencji transgresywnej (Peryt, 1990). Wiekszość otworów wiertniczych zlokalizowanych na obszarze przetargowym Cybinka-Torzym nawierca stropowe jedynie partie Alg. W siedmiu otworach, które w całości przewierciły skały Alg, miąższość waha się od 18 m do 103 m, z czego w większości przypadków nie przekracza 60 m.

Wraz z końcem etapu sedymentacji osadów weglanowo-siarczanowo-ewaporatowych PZ1 większa część platform weglanowych Cal była odsłonięta, co bezpośrednio wiązało się z ich erozja i przemianami diagenetycznymi. Na pozostałym obszarze trwała sedymentacja A1g, pod którymi kryły się platformy A1d i liczne brzeżne izolowane baseny solne, a także płytkowodne otwarte baseny solne (Wagner, 1994). Sumaryczna miąższość całej sukcesji cyklotemu PZ1 na obszarze przetargowym Cybinka-Torzym jest znaczna. Najmniejsze jej wartości występują w północno-zachodniej części omawianego obszaru, osiągając około 100 m (Fig. 2.20). Największą miaższość PZ1 osiąga w części południowo-zachodniej, nie przekraczając jednak 300 m (Fig. 2.20).

Cyklotem PZ2

Znacząca ingresja wód morza cechsztyńskiego do basenu permskiego doprowadziła do przerwania sedymentacji ewaporatowosiarczanowej i jej zastąpienia na rzecz sedymentacji węglanowej. Dlatego cyklotem PZ2 rozpoczynają utwory dolomitu głównego (Ca2; Fig. 2.17). Mają one charakter transgresywnoregresywny (Wagner, 1994).

Układ paleogeograficzny dolomitu głównego (Ca2) był ściśle uzależniony od paleomorfologii anhydrytu górnego (A1g). Rozwój platformy A1g miał bezpośredni wpływ na szerokość i nachylenie stoków platformy węglanowej Ca2, jak również na rozwój jego części platformowej i basenowej. W obrazie paleogeograficznym Ca2 występują trzy główne strefy (Wagner, 1994, 2012), którym odpowiadają odrębne systemy depozycyjne (Jaworowski i Mikołajewski, 2007; Wagner, 2012).

- równi basenowej
- stoku platformy węglanowej
- platformy węglanowej

Obszar przetargowy Cybinka-Torzym jest położony w zachodniej części polskiego basenu dolomitu głównego. W jego rejonie występują wszystkie trzy główne strefy facjalne wyróżnione przez Wagnera (1994, 1998, 2012): platforma węglanowa, stok platformy węglanowej i równia basenowa (Fig. 2.21–2.22).

System depozycyjny równi basenowej w utworach dolomitu głównego można podzielić na dwie części: system głębszej i płytszej części. Osady głębszej części równi basenowej występują jedynie w północnej części obszaru przetargowego Cybinka-Torzym (Fig. 2.21-2.22). Składają się one z ciemnoszarych madstonów laminowanych - rytmitów, wapiennych i dolomitowych, mających małą miąższość, poniżej 10 m (Jaworowski i Mikołajewski, 2007). Charakteryzują się poziomą, gęstą laminacją, której ciemne laminy są zbudowane z substancji ilastej i substancji organicznej. Osady głębszej części równi basenowej zostały rozpoznane m.in. w otworach wiertniczych Świebodzin 3 i Kosobudz 1 (Tab. 2.1).

Płytsza część równi basenowej występuje w niewielkiej, centralnej części obszaru przetargowego (Fig. 2.21). Charakteryzuje się układem pasowym, równoległym do linii brzegowej. Według Wagnera (2012) wschodnia cześć platformy weglanowej jest rozcięta oraz odizolowana od pozostałej swej części przez osady płytkiej równi basenowej (Fig. 2.21). Powstałe ujście stanowi jedną z odnóg zatoki Będowa (Wagner, 1994, 2012). Należy mieć jednak na uwadze, że występowanie i zasięg osadów płytszej części równi basenowej zostały przez Wagnera (1994, 2012) zinterpretowane interpolacyjnie. Jedyny otwór wiertniczy dokumentujący omawiane osady położony jest poza obszarem przetargowym – Struga 1.

Utwory dolomitu głównego płytszej części równi basenowej składają się z dolomitów przewarstwianych warstwowanymi madstonami (Jaworowski i Mikołajewski, 2007). Pojawiają się wśród nich również cienkie wkładki wakstonów, rzadziej pakstonów, których powstanie należy wiązać z działalnością dennych prądów trakcyjnych bądź prądów zawiesinowych. Występujące w profilu muły węglanowe były miejscami stabilizowane przez działalność mikrobialną.

Pomiędzy osadami platformy węglanowej i równi basenowej występują osady stoku platformy weglanowej. Jej rozprzestrzenienie (szerokość i długość), miąższość oraz typ deponowanego osadu uzależnione były od paleomorfologii platformy Alg, kata nachylenia jej stoku oraz intensywności, a także typu spływów podmorskich. W utworach dolomitu głównego na podstawie zmienności powyższych cech zostały rozpoznane dwa typy stoków platform weglanowych: łagodne i strome. Osady stromego stoku platformy węglanowej występują w centralnej części obszaru przetargowego (Fig. 2.21–2.22). Charakteryzują się dosyć wąskim zasięgiem i rozciągłością równoleżnikowa. Reprezentowane są przez grainstrony oolitowe, madstony laminowane, jak również przez brekcje i zlepieńce węglanowo-siarczanowe (Jaworowski i Mikołajewski, 2007). Utwory dolomitu głównego osadów stromego stoku na obszarze przetargowym zostały rozpoznane w otworze wiertniczym Cybinka 1 (Tab. 2.1), zaś w jego sąsiedztwie, wokół podniesienia Gryżyny. Ich miąższość jest stosunkowo niewielka, nie przekracza 30 m.

We wschodniej części obszaru przetargowego Cybinka-Torzym występują osady łagodnego stoku platformy węglanowej (Fig. 2.21). Reprezentowane są przez wapienne i wapienno-dolomitowe utwory laminowanych facji mułowych – madstony, które w niektórych przypadkach są wzbogacone w drobne, subtelne smugi ilaste i/lub ilasto bitumiczne. Pomimo niskiego kąta nachylenia osady są deponowane także w wyniku grawitacyjnego transportu (Jaworowski i Mikołajewski, 2007).

Generalnie, miąższość utworów dolomitu głównego na przeciętnie nachylonym stoku waha się od kilkunastu do 60 m. W pewnych przypadkach obserwuje się jej znaczne zwiększenie. Dużą miąższość osadów łagodnego stoku platformy można wiązać z występowaniem bardziej urozmaiconej linii brzegowej, bądź wcięciami w jej powierzchnię w formie zatok. Wymienione obszary, przy jednoczesnej zwiększonej akumulacji materiału mułowego (madstony) i mikrytowego, a także znacznej subsydencji będą posiadały miąższość sięgającą prawie 200 m (Wagner, 1994).

Środkowa i południowa część obszaru przetargowego Cybinka-Torzym jest zlokalizowana w najbardziej wysuniętej na zachód polskiej części platformy sudecko-śląskiej platformy węglanowej (Wagner, 1994, 2012). Interpretacje występowania poszczególnych stref facjalnych są zgodne (Fig. 2.21-2.22), aczkolwiek obserwuje się znaczne różnice w zasięgu zachodniej części zatoki Będowa. Według Wagnera (2012) była ona znacznie szersza oraz dodatkowo rozcięta przez dwa ujścia, które izolowały platformę na dwie części - właściwą platformę i mikroplatformę Gryżyny (Fig. 2.21). Interpretacja Buniaka i in (2013) jest odmienna i przedstawia szerszy zasięg platformy węglanowej w kierunku wschodnim oraz mniejsze rozmiary samej zatoki Będowa (Fig. 2.19). Pomimo powyższych różnic interpretacyjnych, w dalszym opisie nie będzie przedstawiony oddzielny opis izolowanej mikroplatformy dla Gryżyny, a jedynie wspólny opis stref facjalnych dla tej części basenu.

przetargowym Na obszarze Cybinka-Torzym, obejmujący zachodnią część platformy sudecko-śląskiej, występują dwie strefy bariera i równia platformowa. Ze facjalne: względu na zróżnicowany układ paleogeograficzny elementów pozytywnych platformy węglanowej, można wyróżnić wśród niej dwa rodzaje barier: zewnetrzna i wewnetrzna. Zewnętrzna krawędź platformy weglanowej występuje w centralnej części obszaru przetargowego (Fig. 2.21-2.22). Rozciąga się ona równoleżnikowo, zgodnie z przebiegiem strefy równi basenowej i jest reprezentowana przez barierę onkolitowo-oolitową. W przypadku drugiego rodzaju bariery, tzw. wewnętrznej płycizny, składa się ona także z tych samych utworów, co bariera zewnętrzna. Jest położona w formie dwóch paleowzniesień w południowo-zachodniej części obszaru przetargowego. Osady bariery zewnętrznej i wewnętrznej są zbliżone, gdyż reprezentują aktywne środowisko związane z wysoką energią wody. Osady te składają się z pery- i sublitoralnych piasków węglanowych oraz utworów mikrobialnych, (Jaworowski i Mikołajewski, 2007), pośród których mogą się pojawiać węglanowe muły piaszczyste i zlepieńce węglanowe, tworząc greinstony, bandstony, podrzędnie pakstony oraz rzadziej wakstony, flotstony i rudstony. Na obszarze przetargowym Cybinka-Torzym osady zewnętrznej krawędzi platformy zostały udokumentowane w jednym otworze wiertniczym – Grzmiąca 3 (Tab. 2.1).

Za strefą bariery węglanowej oddzielającej strefę równi basenowej od platformy znajduje się równia platformowa (Fig. 2.21–2.22). Pod względem rozciągłości jest ona największą strefą paleogeograficzną występującą na obszarze platformy. Oprócz dużej przestrzeni, charakteryzuje się także zróżnicowaniem mikrofacjalnym oraz batymetrycznym. Pomimo niewielkich różnic w paleomorfologii dna, nawet małe zmiany w środowisku płytkowodnym wpływają na zmiany reżimów sedymentacyjnych. W jej obrębie oprócz omówionych powyżej wewnętrznych płyciznach węglanowych, występują dodatkowo strefy niskoenergetycznych równi.

Niskoenergetyczna równia platformowa na obszarze przetargowym Cybinka-Torzym jest zlokalizowana w zachodniej i wschodniej części platformy węglanowej (Fig. 2.21–2.22). Znajduje się ona na zapleczu barier zewnętrznych lub płycin wewnętrznych. Osady niskoenergetycznej równi platformowej składają się głównie z ciemnoszarych sublitoralnych węglanowych mułów piaszczystych i mułów węglanowych, również często pojawiają się węglanowe piaski mułowe oraz utwory mikrobialne tworzących wakstony, madstony, rzadziej pakstony i bandstony (Jaworowski i Mikołajewski, 2007).

Koncepcje poszukiwawcze w dolomicie głównym

Utwory Ca2 na obszarze przetargowym Cybinka-Torzym są w różnym stopniu rozpoznane geologicznie. Zaleganie powierzchni stropu Ca2 jest zgodne z regionalnym trendem strukturalnym monokliny przedsudeckiej. Generalnie, charakteryzują się one pasowym, równoleżnikowym nachyleniem w kierunku centrum basenu - na północ. W części południowozachodniej obszaru przetargowego strop Ca2 maksymalnie siega do 2000 m p.p.t. (m. in. otwory wiertnicze Bytomiec-1, Rybaki 5; Tab. 2.1). Głębokość zalegania stropu Ca2 pozostałej część platformy węglanowej waha się w przedziale od 2000 m do około 2400 m (m.in. Grzmiąca 1; Tab. 2.1). Reszta obszaru przetargowego charakteryzuje się coraz większym pogrzebaniem dolomitu głównego, którego największe wartości osiągane są w części północnej. Głębokość zalegania stropu sięga tam powyżej 2600 m (m.in. Kobosudz 1; Tab. 2.1).

O potencjale obszaru przetargowego Cybinka-Torzym mogą świadczyć licznie odkryte złoża weglowodorów znajdujące się w jego sąsiedztwie. Na południu udokumentowano występowanie złóż ropy naftowej, m.in. Rybaki, Połęcko, Kosarzyn oraz ropy naftowej i gazu ziemnego (stratyfikacja węglowodorów) Kosarzyn N. Maja one charakter szczelinowoporowy, a ich powstanie było związane z procesami halotektonicznymi. W kierunku południowo-wschodnim rozpoznano złoże ropy naftowej i gazu ziemnego Gryżyna. Skała zbiornikowa jest dwudzielna ze względu właściwości petrofizyczne oraz następstwo depozycji w profilu pionowym. Dolna część składa się z osadów płytkiej laguny, pośród której występują liczne kawerny i szczeliny, a także charakteryzują się dobrymi własnościami petrofizycznymi. Górna część składa się z osadów równi basenowej, pozbawionych dobrych własności kolektorskich.

Poszczególne odcinki rdzeni z interwałów Ca2, pochodzące z otworów wiertniczych zlokalizowanych na obszarze przetargowym, są nasycone węglowodorami. Wykonane opróbowania utworów Ca2 w niektórych otworach dały nieprzemysłowe przypływy ropy naftowej i słabe przypływy gazu ziemnego, jak również przemysłowe przypływy węglowodorów – w przypadku otworu Kosarzyn-8.

Wszystkie wymienione powyżej czynniki potwierdzają perspektywiczność obszaru przetargowego Cybinka-Torzym. Analiza i interpretacja zdjęcia sejsmicznego 3D Cybinka-Torzym doprowadziła do wykartowania nowych obiektów poszukiwawczych. Sugeruje się, aby wysiłek poszukiwawczy skierować na jego centralną i wschodnią część, która od niedawna stała się interesującym obszarem badawczym.

Wyniki badań petrograficznych dolomitu głównego

Obszar przetargowy Cybinka-Torzym rozciąga się wzdłuż krawędzi platformy weglanowej północna część tego obszaru znajduje się w obrębie równi basenowej, południowa zaś obejmuje platformę węglanową wraz z przykrawędziową barierą oolitową i wewnątrzplatformowymi płyciznami oolitowymi (Fig. 2.21-2.22). Taka sytuacja determinuje odmienne wykształcenie mikrofacjalne utworów Ca2 w obu częściach. W północnej strefie basenowej występują madstony (wg Peryta, 1978 w rejonie Świebodzina są one wykształcone jako laminowane zailone mikryty i sparyty), a w strefie platformowej często są to osady ziarniste ale także osady mikrytowe. Utwory Ca2 na omawianym obszarze, podobnie jak w innych częściach monokliny przedsudeckiej, są w większości zdolomityzowane.

W profilu osadów Ca2 na platformie opisywano w dokumentacjach geologicznych otworów (np. Grzmiąca 7 i Sosna-1) głównie różnego typu allochemowe greinstony (peloidowe, onkolitowe), wakstony/pakstony ooidowe, i miejscami bindstony. Pierwotna porowatość jest wypełniona przez różnej generacji cementy dolomitowe, anhydrytowe i rzadziej kalcytowe. Niektóre partie profili są silnie zrekrystalizowane (dolomity krystaliczne), tak że została zatarta pierwotna struktura skały. Niekiedy obserwowano kompakcję wadyczną osadów ziarnistych, prowadzącą do znacznej redukcji pierwotnej porowatości międzyziarnowej oraz rozpuszczanie pod ciśnieniem (stylololity). Spotyka się także sieci żyłek anhydrytowych (niekiedy również z fluorytem i halitem). Większość obserwowanych procesów diagenetycznych (cementacja, rozpuszczanie pod ciśnieniem) skutkowała redukcją porowatości.

Utwory Ca2 na obszarze przetargowym Cybinka-Torzym są przykryte utworami anhydrytu podstawowego (A2; Fig. 2.17). Granica między tymi jednostkami litostratygraficznymi ma charakter ciągłego przejścia, aczkolwiek zdarzają się przypadki w których występuje między nimi ostra, erozyjna granica (Wagner, 1994). Utwory A2 składają się z anhydrytów lamino-

wanych i warstwowanych (Kłapciński, 1991) i charakteryzują się niewielkimi miaższościami osiągającymi na obszarze przetargowym maksymalnie do 20 m. W profilu pionowym cyklotemu PZ2 utwory A2 zostają zastąpione przez skały starszej soli kamiennej (Na2; Fig. 2.17). Pod względem miąższości na obszarze przetargowym utwory Na2 charakteryzują się ogromnym zróżnicowaniem. Otwory wiertnicze położone w południowej jego części przewiercają najczęściej poniżej 100 m skał Na2 (m.in. otwory Bytomiec-1 i Radomicko 1). Jednakże, w wyniku działalności halotektonicznej w rejonie Grzmiącej, utwory Na2 i Na3 stanowią jeden kompleks, którego miąższość przekracza 100 m. Północna część obszaru przetargowego Cybinka-Torzym charakteryzuje się radykalnym wzrostem miąższości osiągającym nawet do 600 m (otwór wiertniczy Koziczyn-1).

Górna część profilu cyklotemu PZ2 na obszarze Cybinka-Torzym jest zredukowana. Nie występują utwory starszej soli potasowej (K2) i starszej soli kamiennej kryjącej (Na2r). Sedymentację cyklotemu PZ2 kończą skały anhydrytu kryjącego (A2r; Fig. 2.17). Depozycja tego osadu odbywała się w środowisku płytkowodnym, a ich zasięg występowania pokrywał się z zasięgiem Na2. Miąższość utworów A2r na obszarze Cybinka-Torzym - podobnie jak i w całym basenie - jest niewielka. Najczęściej nie osiąga nawet 5 m. Według Wagnera (1994): "W końcowym etapie rozwoju basenu cyklotemu PZ2 w całym zbiorniku panowały warunki skrajnie płytkowodne. Centralny basen sedymentacyjny został wypełniony osadami soli kamiennych i potasowych. Przybrzeżne części platform weglanowych zostały odsłoniete i trwała tu niezbyt intensywna sedymentacja terygeniczna, nieco silniejsza w południowej cześci basenu. Erozja i sedymentacja klastyków nie były silne, ponieważ panował w tym czasie skrajnie suchy klimat".

Utwory reprezentujące łącznie cały cyklotem PZ2 na obszarze Cybinka-Torzym charakteryzują się strefowym wzrostem miąższości (Fig. 2.23). Największe wartości występują w jego północnej i wschodniej części, osiągając powyżej 400 m (m.in. otwory wiertnicze Cybinka 1 i Świebodzin 3). Pozostała część obszaru przetargowego charakteryzuje się miąższością w przedziale od 107 do 171,5 m. Jedynie w rejonie Grzmiącej rozpozna otworami miąższość cyklotemu PZ2 nie przekracza 100 m.

Cyklotem PZ3

Sedymentacja sukcesji ewaporatowosiarczanowej cyklotemu PZ2 ostatecznie doprowadziła do wyrównania wszelkich deniwelacji, jakie występowały w polskim basenie permskim (Wagner, 1994). W jej wyniku, kolejny zalew morski, który zapoczątkował depozycję utworów trzeciego cyklotemu, wkroczył na obszar wyrównanego, płytkiego basenu salinarnego.

Cyklotem PZ3 na obszarze przetargowym rozpoczyna się utworami szarego iłu solnego (T3; Fig. 2.17). Charakteryzują się one małą miąższością, w większości przypadków nie przekraczającą 5 m. Następnie w profilu pionowym występują utwory dolomitu płytowego (Ca3; Fig. 2.17), które ze względu na bardzo małą miąższość (poniżej 1 m) oraz typ skały (anhydrytowo-dolomitowy) są włączane do poziomu anhydrytu głównego (A3; Fig. 2.17; Podemski, 1973). Miąższość poziomu A3 (wraz z Ca3) osiąga do 37 m (otwór Bytomiec-1). Na utworach A3 zalegają skały młodszej soli kamiennej (Na3; Fig. 2.17). W przypadku gdy nie występują one w formie tektonicznie zaburzonej (diapiry, wysady solne) ich miaższość jest zróżnicowana i waha się w przedziale 47,0–232,5 m.

Najmniejszą sumaryczną miąższość cyklotemu PZ3 stwierdzono w dwóch otworach znajdujących się południowo-zachodniej części obszaru przetargowego . Nie przekraczają one wartości 90 m. W pozostałych otworach wiertniczych miąższość cyklotemu PZ3 waha się od 119,5 do 164 m. Jedynie w dwóch otworach znajdujących się w południowej części omawianego obszaru przewiercono utwory cyklotemu PZ3, którego miąższość wynosi powyżej 230 m (m.in. otwór wiertniczy Rybaki 14). Obraz paleogeografii i sumarycznych miąższości cyklotemu PZ3 zilustrowano na Fig. 2.24.

Cyklotem PZ4

Wraz z rozpoczęciem sedymentacji utworów cyklotemu PZ4 doszło do zmiany czynnika kontrolującego depozycję w basenie. Wpływ cykli transgresywno-regresywnych zmniejsza się, zanikając zupełnie w trakcie subcyklotemu

PZ4c, na rzecz czynnika wahań klimatycznych (okresy wilgotne i suche; Wagner, 1994).

Subcyklotem PZ4a (Fig. 2.17) występuje w praktycznie wszystkich otworach wiertniczych nawiercających oraz przewiercających cechsztyn i jest reprezentowany przez skały czerwonego iłu solnego (T4a) oraz najmłodszej soli kamiennej (Na4a). Na nich, jedynie w rejonie Grzmiącej (otwory: Grzmiąca 1 oraz Grzmiąca 3), zalegają utwory subcyklotemu PZ4b (Fig. 2.17), składające się z czerwonego iłu solnego górnego (T4b) oraz najmłodszej stropowej soli kamiennej (Na4b2). Ostatnim poziomem cyklotemu PZ4 występującym we wszystkich otworach obszaru przetargowego są utwory stropowej serii terygenicznej (PZt; Fig. 2.17).

Na obszarze przetargowym Cybinka-Torzym sumaryczna miąższość utworów cyklotemu PZ4 charakteryzuje się małym zróżnicowaniem (Fig. 2.25). Najmniejsza miąższość wynosi 33 m, największa zaś 75 m.

Fig. 2.16. Sumaryczna miąższość cechsztynu na obszarze przetargowym Cybinka-Torzym (Wagner, 1998).

Fig. 2.17. Schemat stratygraficzny cechsztynu w Polsce (Wagner, 1987, 1988, 1994; Wagner i Peryt, 1997, 1998).

CYBINKA-TORZYM

Fig. 2.18. Mapa paleogeograficzno-miąższościowa wapienia cechsztyńskiego – Ca1 na obszarze przetargowym Cybinka-Torzym (Wagner, 1998).

Fig. 2.19. Stratygrafia cyklu PZ1 w rejonie wyniesienia brandenbursko-wolsztyńsko-pogorzelskiego (Dyjaczyński i Peryt, 2014).

Fig. 2.20. Mapa paleogeograficzno-miąższościowa cyklotemu PZ1 na obszarze przetargowym Cybinka-Torzym (Wagner, 1998). Objaśnienia na Fig. 2.18.

Fig. 2.21. Mapa paleogeograficzno-miąższościowa dolomitu głównego – Ca2 na obszarze przetargowym Cybinka-Torzym (Wagner, 2012).

Fig. 2.22. Mapa paleogeograficzna dolomitu głównego – Ca2 na obszarze przetargowym Cybinka-Torzym (Buniak i in., 2013).

Nazwa otworu:	Strop Ca2 [m]:	Spąg Ca2 [m]:	Spąg otworu [m]:	
Bytomiec-1	1888,5	1928,0	2240,0	
Chlebów 1	2089,0	2132,0	2135,0	
Cybinka 1	2538,0	2570,0	2586,0	
Cybinka 2	2616,0	-	2617,0	
Grzmiąca 1	2117,0	2148,0	2155,0	
Grzmiąca 2	Dane są własnością Inwes w niniejszy	Dane są własnością Inwestora i nie mogą być ujawnione w niniejszym opracowaniu		
Grzmiąca 3	2273,0	2317,0	2634,0	
Grzmiąca 5	Dane są własnością Inwes	2020,0		
Grzmiąca 7	w niniejszy	2120,0		
Kłopot 1	Dane są własnością Inwes	2125,0		
Kosarzyn-8	w niniejszy	m opracowaniu		
Kosobudz 1	2628,0	2652,5	2974,0	
Koziczyn-1	brak doloi	mitu głównego	3208,0	
Miłów 1	1985,0	2029,5	2401,0	
Radomicko 1	Dane są własnością Inwes	tora i nie mogą być ujawnione	2138,0	
Rąpice 1A	w niniejszy	m opracowaniu	2402,0	
Rybaki 14	1980,0	2021,5	2022,6	
Rybaki 5	1960,5	-	1988,0	
Sosna-1	2336,5	2376,0	2455,0	
Świebodzin 3	2632,5	2649,0	2804,0	

Tab. 2.1. Otwory wiertnicze nawiercające i przewiercające utwory dolomitu głównego (Ca2) na obszarze przetargowym Cybinka-Torzym. Kolorem podkreślono otwory, które nawiercają skały Ca2.

Fig. 2.23. Mapa paleogeograficzno-miąższościowa cyklotemu PZ2 na obszarze przetargowym Cybinka-Torzym (Wagner, 1998). Objaśnienia na Fig. 2.18.

Fig. 2.24. Mapa paleogeograficzno-miąższościowa cyklotemu PZ3 na obszarze przetargowym Cybinka-Torzym (Wagner, 1998). Objaśnienia na Fig. 2.18.

Fig. 2.25. Mapa paleogeograficzno-miąższościowa cyklotemu PZ4 na obszarze przetargowym Cybinka-Torzym (Wagner, 1998). Objaśnienia na Fig. 2.18.

zentowane

przez

2.3.4. TRIAS

Rozprzestrzenienie i miąższość

Na obszarze przetargowym Cybinka-Torzym utwory triasu wychodzą na powierzchnię podkenozoiczną wzdłuż jego południowej krawędzi (Fig. 2.26). W pozostałej części są przykryte utworami jury i kredy. Spośród wszystkich otworów wiertniczych znajdujących się na omawianym obszarze, tylko jeden z nich nie przewiercił utworów triasu – Świebodzin 1. W pozostałych trias nawiercono w interwałach:

- Bytomiec-1: 208,0–1597,0 m,
- Chlebów 1: 318,0–1776,5 m,
- Cybinka 1: 541,0–2126,0 m,
- Cybinka 2: 465,0–2000,0 m,
- Grzmiąca 1: 465,0–1866,0 m,
- Grzmiąca 2,
- Grzmiąca 3: 528,0–1989,0 m,
- Grzmiąca 5,
- Grzmiąca 7,
- Kłopot 1,
- Kosarzyn-8,
- Kosobudz 1: 410,0–1930,0 m,
- Koziczyn-1: 482,0–1948,0 m,
- Miłów 1: 245,0–1606,5 m,
- Radomicko 1,
- Rapice 1A,
- Rybaki 5: 228,0–1633,0 m,
- Rybaki 14: 256,0–1533,0 m,
- Sosna-1: 426,0–2017,0 m,
- Świebodzin 1: 458,0–1503,0 m,
- Świebodzin 2: 408,0–1943,0 m,
- Świebodzin 3: 230,0–1905,0 m.

Miąższość triasu rozpoznana za pomocą otworów wiertniczych na obszarze przetargowym Cybinka-Torzym osiąga powyżej 1000 m.

Litologia i stratygrafia

Utwory dolnego triasu na obszarze przetargowym rozpoczynają się kompleksem zdominowanym przez brunatnoczerwone oraz rzadziej szare iłowce. Pośród nich występują przeławicenia drobnoziarnistych piaskowców, mułowców oraz liczne wkładki i soczewki wapieni oolitowych. Kompleks ten reprezentuje utwory dolnego pstrego piaskowca (Szyperko-Teller, 1997). Następnie, na skałach dolnego pstrego piaskowca zalegają utwory środkowego pstrego piaskowca. Są one repreleżności od położenia na obszarze monokliny przedsudeckiej, udział jednego z tych dwóch typów litologicznych będzie ulegał zmianie w kierunku północnym rośnie procentowy udział węglanów w profilu, w kierunku południowym zaś klastyków. Dolny trias kończy się utworami górnego pstrego piaskowca retu (Szyperko-Teller, 1997). Składają się one głównie z siarczanowych oraz węglanowoilastych skał. Dodatkowo, na obszarze Ośno-Sulechów-Chlebowo w utworach retu zaobserwowano występowanie poziomów soli kamiennej (Gajewska, 1983; Czapowski i in., 1992). Utwory środkowego triasu w większej części profilu składają się z skał węglanowych (wa-

sukcesje

weglanowa (Szyperko-Teller, 1997). W za-

klastyczno-

pioniu składają się z skar węglanowych (wapienie i dolomity), pośród których występują także margle, iłowce i wkładki anhydrytowe (wapień muszlowy; m.in. Gajewska, 1997a). Jedynie w najwyższej części następuje wyraźna zmiana litologiczna. Sukcesja węglanowa zostaje zastąpiona przez sukcesję klastyczno-węglanową. Jest ona reprezentowana przez szare, czerwone i pstre iłowce pośród których występują wkładki mułowców, piaskowców, wapieni, dolomitów i margli (warstwy sulechowskie; Gajewska, 1997b). Często wśród tych skał pojawiają się zwęglone szczątki roślinne, tworzące cienkie warstewki węgla brunatnego.

W dolnej części profilu górnego triasu występują dwa miąższe kompleksy czerwonych skał ilasto-mułowcowych, z czego w dolnym pojawiaja wkładki siarczanowosie ewaporatowe (warstwy gipsowe dolne; Gajewska, 1997b), w górnym zaś udział utwoanhydrytowo-dolomitowo-piaskowcorów wych jest minimalny (warstwy gipsowe górne; Gajewska, 1997b). Powyższe kompleksy są rozdzielone sukcesją piaskowcową, z bardzo nielicznym udziałem śladów szczątków flory lub ilasto-mułowcowa, charakteryzującą się bardzo licznymi szczątkami roślinnymi (piaskowiec trzcinowy; Gajewska, 1997b). Następnie, w profilu górnego triasu, występują szare, szarozielone, wiśniowe oraz brunatnoczerwone iłowce. Wśród tych skał pojawiają się wkładki dolomitów, mułowców, iłowców dolomitycznych, iłowców gruzłowych, a także miejscami przewarstwienia zlepieńców (warstwy jarkowskie, warstwy zbąszyneckie; Deczkowski, 1997).

Fig. 2.26. Mapa geologiczna powierzchni podkenozoicznej na obszarze przetargowym Cybinka-Torzym (Dadlez i in., 2000; zmienione pod względem zasięgu utworów jury i kredy).

2.3.5. JURA

Rozprzestrzenienie i miąższość

Skały jury występują jedynie w centralnej i północnej części obszaru przetargowego Cybinka-Torzym (Fig. 2.26). Zostały one udokumentowane w następujących otworach w interwałach:

- Chlebów 1: 198,5–318,0 m,
- Cybinka 1: 356,0–541,0 m,
- Cybinka 2: 265,0–465,0 m,
- Grzmiąca 1: 211,5–465,0 m,
- Grzmiąca 2,
- Grzmiąca 3: 232,0–528,0 m,
- Grzmiąca 5,
- Grzmiąca 7,
- Kłopot 1,

- Kosobudz 1: 230,0–410,0 m,
- Koziczyn-1: 232,0–482,0 m,
- Radomicko 1,
- Rapice 1A,
- Sosna-1: 272,5–426,0 m,
- Świebodzin 1: 255,0–458,0 m,
- Świebodzin 2: 233,0–408,0 m,
- Świebodzin 3: 230,0–396,5 m.

Udokumentowana miąższość jury w otworach wiertniczych waha się od 148 m do 317 m.

Litologia i stratygrafia

Na obszarze przetargowym Cybinka-Torzym profil jury jest zredukowany. W odwierconych otworach wiertniczych rozpoznano tylko skały reprezentujące jego dolną część (Fig. 2.26). Utwory dolnej jury występują w formie klastycznej sukcesji. Składają się z szarych, drobno- i średnioziarnistych, rzadziej gruboziarnistych piaskowców. Obserwuje się wśród nich laminację poziomą lub skośną. Oprócz piaskowców występują przeważnie szare, ale mające czasem inną barwę iłowce i mułowce. Charakterystyczną cechą jest występowanie pośród tych utworów konkrecji syderytowych. Dodatkowo, w niektórych otworach wiertniczych (np. Koziczyn-1), występują niewielkiej miąższości poziomy węglowe.

2.3.6. KREDA

Rozprzestrzenienie i miąższość

Utwory kredy rozpoznano w 5 otworach wiertniczych usytuowanych w północno-zachodniej części obszaru przetargowego:

- Cybinka 1: 272,0–356,0 m,
- Cybinka 2: 200,0–265,0 m,
- Grzmiąca 1: 193,0–211,5 m,
- Grzmiąca 3: 201,0–234,0 m,
- Koziczyn-1: 194,0–232,0 m.

Miąższość utworów kredy wynosi od 18,5 m w otworze Grzmiąca 1 do 86,0 m w otworze Cybinka 1.

Litologia i stratygrafia

W kredzie nie wydzielono jednostek litostratygraficznych. Zgodnie z podziałem chronostratygraficznym (Jaskowiak-Schoeneichowa, 1981), na tym obszarze występuje kreda dolna, reprezentowana przez alb górny, oraz kreda górna, reprezentowana przez cenoman i turon.

Alb górny stwierdzono w otworach Cybinka 1 i 2 oraz Grzmiąca 3. W tych samych otworach stwierdzono cenoman. Turon rozpoznano w otworach Cybinka 1 i 2. W otworze Koziczyn-1 kreda jest nierozdzielona. Alb górny jest dwudzielny litologicznie: część górna jest reprezentowana przez margle, natomiast w spągu występują piaskowce z konfosforytowymi. otworze krecjami W Cybinka 1 z górnego albu pobrano rdzeń, w którym stwierdzono wystepowanie szarych margli, twardych i zwięzłych, zawierających szczątki inoceramów, przechodzących ku spągowi w piaskowce różnoziarniste, margliste, szare, z konkrecjami fosforytów i glaukonitem. Cenoman budują wapienie, wapienie margliste i margle. W turonie występują wapienie i wapienie margliste. W otworze Cybinka 1 z turonu pobrano rdzeń, w którym stwierdzono występowanie wapieni marglistych, jasnoszarych, laminowanych szarozielonymi marglami. W skale występuja szczatki inoceramów.

Granice spągu i stropu kredy są granicami erozyjnymi. Luka stratygraficzna obejmuje prawie całą dolną kredę (bez albu górnego). W późnej kredzie sedymentacja na obszarze przetargowym trwała prawdopodobnie do mastrychtu włącznie, ale na przełomie kredy i paleogenu oraz w paleogenie znaczna część utworów górnej kredy została całkowicie usunięta wskutek procesów erozji i denudacji (Jaskowiak-Schoeneichowa, 1981).

2.3.7. KENOZOIK

Rozprzestrzenienie i miąższość

Na obszarze przetargowym w głębokich i płytkich otworach wiertniczych występują utwory paleogenu i neogenu. Utwory paleogenu są reprezentowane przez osady oligocenu (Jeziorski, 1987; Skompski, 1988; Sztromwasser, 2003, 2005; Chmal, 2003; Urbański i Skompski, 2012). Jedynie w północno-wschodniej części obszaru przetargowego natrafiono na osady z pogranicza eocenu i oligocenu (Chmal, 2003). Neogen jest reprezentowany głównie przez osady miocenu (Jeziorski, 1987; Skompski, 1988; Sztromwasser, 2003, 2005; Chmal, 2003; Urbański i Skompski, 2012), jednakże w północnowschodniej części obszaru przetargowego udokumentowano osady plioceńskoplejstoceńskie (Urbański i Skompski, 2012). Na miąższość i głębokość zalegania utworów paleogeńsko-neogeńskich miały wpływ morfologia powierzchni podkenozoicznej, glacitektonika oraz erozyjna działalność lądolodów.

Litologia i stratygrafia

Skały z pogranicza eocenu i oligocenu są zlokalizowane jedynie w północno-wschodniej części obszaru przetargowego. Są reprezentowane przez szare i szarozielone, drobnoziarniste i pyłowate piaski kwarcowe z glaukonitem. Ich średnia miąższość wynosi 6 m (Chmal, 2003).

Utwory oligocenu występują na całym obszarze przetargowym i prawdopodobnie tworzą ciągłą pokrywę. Ich depozycja odbywała się w warunkach morskich (wczesny oligocen) i lądowo-brakicznych (późny oligocen) (Jeziorski, 1987; Skompski, 1988; Sztromwasser, 2003, 2005; Chmal, 2003; Sztromwasser, 2005; Urbański i Skompski, 2012).

Utwory neogenu pokrywają cały obszar przetargowy. Są reprezentowane przez piaski drobnoziarniste, piaski pylaste, mułki szare i jasnoszare, iły i węgle brunatne, a miejscami także mułowce i iłowce. Osady te zaliczane są do dolnego, środkowego i górnego miocenu. Osady dolnego miocenu pokrywają cały obszar, zaś środkowego i górnego występują tylko fragmentarycznie.

Utwory plejstocenu były deponowane w czasie zlodowaceń południowo-, środkowoi północnopolskich. Są to piaski, żwiry, gliny zwałowe, iły i mułki związane akumulacyjną działalnością lądolodu, wód roztopowych, rzecznych i procesów eolicznych.

Utwory holoceńskie związane są z akumulacyjną działalnością rzek i jezior, z torfowiskami, jak również znaleźć je można w obszarach zagłębień bezodpływowych lub częściowo przepływowych. Są to żwiry, piaski, mułki, iły, gytie, kreda jeziorna, namuły piaszczyste i torfiaste, torfy (Jeziorski, 1987; Skompski, 1988; Sztromwasser, 2003, 2005; Chmal, 2003; Urbański i Skompski, 2012).

2.4. HYDROGEOLOGIA

Obszar przetargowy Cybinka-Torzym jest położony w regionie wodnym Środkowej Odry. Obejmuje również fragmenty dwóch obszarów bilansowych, których procentowy udział powierzchni w obrębie obszaru przetargowego kształtuje się następująco: S-X Ilanka, Pliszka, Konotop – 61%, W-XI (WR) Przyodrze (WR) – 39%. W podziale na jednolite części wód podziemnych należy do następujących obszarów JCWPd (Fig. 2.27): JCWPd nr 58 (w udziale 61% powierzchni), JCWPd nr 68 (w udziale 39%) oraz JCWPd nr 59 i 76 (o bardzo niewielkim udziale w powierzchni obszaru przetargowego, odpowiednio 0,001% i 0,003%).

Obszar przetargowy jest położony w obrębie zlewni I rzędu rzeki Odry. Odwadniany jest przez następujące rzeki: Odra, Nysa Łużycka (lewobrzeżny dopływ Odry), Konotop (prawobrzeżny dopływ Odry), Pliszka, Ołobok Borowianka, Świebodka, Gryżynka, Biela, Lińska Struga. Zachodnia część obszaru odwadniana jest przez Kanał Luboński (z całym systemem rowów melioracyjnych), który odprowadza nadmiar wód powierzchniowych i gruntowych przez jezioro Urad do Odry. Występuje tu także wiele jezior: Urad, Głębokie, Leśne, Krzesińskie, Wielkie, Ratno, Trzebisz, Grochoń, Kokno, Dobrosułowskie, Małe, Gryżyńskie, Niesłysz, Ołobockie, Księżno, Lubich, Wilkowskie.

Zgodnie z podziałem regionalnym zwykłych wód podziemnych (Paczyński i Sadurski, 2007) cały obszar należy do prowincji Odry, RŚO – regionu Środkowej Odry, subregionu Środkowej Odry północnego SŚOPł. Charakterystyka głównego użytkowego poziomu wodonośnego (GUPW) została przedstawiona na Mapach hydrogeologicznych Polski w skali 1 : 50 000 (MhP GUPW) arkusze: Rybocice (Sokolińska, 2000a), Cybinka (Krawczyk i Gorczyca, 2000a), Torzym (Krawczyk i Gorczyca, 2000b), Toporów (Formowicz i in., 2004), Rapice (Sokolińska, 2000b), Chlebowo (Gad, 2000), Krosno Odrzańskie (Kiełczawa, 2004), oraz niewielki fragment arkusza Czerwieńsk (Zembal i in., 2004).

Charakterystyka pierwszego poziomu wodonośnego (PPW) została przedstawiona na Mapach hydrogeologicznych Polski w skali 1 : 50 000 (MhP PPW WH) – arkusze: Rybocice (Wojciechowska i Ruszkiewicz, 2006), Cybinka (Wojciechowska, 2006), Torzym (Dąbrowska i in., 2011), Toporów (Zachaś-Janecka, 2011), Rąpice (Bielecka i Jednoróg, 2006a), Chlebowo (Bielecka i Jednoróg, 2006b), Krosno Odrzańskie (Jedynak, 2011a), Czerwieńsk (Jedynak, 2011b).

Opis warunków hydrogeologicznych obszaru przetargowego Cybinka-Torzym wykonano na podstawie materiałów kartograficznych oraz regionalnych dokumentacji hydrogeologicznych.

Wody podziemne słodkie (zwykłe) występują w obrębie dwóch pięter wodonośnych: czwartorzędowego oraz lokalnie neogeńskopaleogeńskiego. Piętra te mogą pozostawać ze sobą w bezpośredniej więzi hydraulicznej. Na północnym-wschodzie omawianego obszaru główny użytkowy poziom wodonośny stanowi kompleks czwartorzędowych i neogeńskopaleogeńskich utworów wodonośnych i związany jest z obszarem zaburzeń glacitektonicznych w postaci moren spiętrzonych powstałych w czwartorzędzie w trakcie zlodowacenia Sanu (Formowicz i in., 2004). W tym rejonie zwierciadło wody ma charakter swobodny, lokalnie naporowy. Głębsze, mezozoiczne piętra wodonośne nie są rozpoznane i eksploatowane.

Na rozpatrywanym obszarze przetargowym regionalny przepływ wód podziemnych odbywa się generalnie w kierunku zachodnim, południowo-zachodnim i południowym w kierunku głównej bazy drenażu jaką jest dolina Odry.

<u>Czwartorzędowe poziomy wodonośne</u> tworzą piętrowy układ o zróżnicowanym rozprzestrzenieniu. W obrębie utworów czwartorzędowych można wyróżnić następujące poziomy wodonośne:

- poziom wód gruntowych,
- poziom międzyglinowy (górny i dolny),
- lokalnie poziom podglinowy.

Osady wodonośne w poszczególnych strukturach wykazują dobrą łączność hydrauliczną pomiędzy poszczególnymi poziomami.

Poziom wód gruntowych jest związany z osadami piaszczysto-żwirowymi holocenu i zlodowacenia północnopolskiego. Ma on charakter nieciągły, o bardzo zmiennym rozprzestrzenieniu i miąższościach (najczęściej 5-20 m; lokalnie >40 m). Na jego występowanie duży wpływ mają warunki geomorfologiczne, sieć rzeczna i czynniki klimatyczne. Cechuje się on dużą zmiennością w cyklu rocznym, uwarunkowana zasilaniem i drenażem. Współczynnik filtracji mieści się w przedziale od 5 do 60 m/24h. Wydajności uzyskiwane z pojedvnczych studni wierconych, w zależności od parametrów hydrogeologicznych warstwy wodonośnej, są zróżnicowane od 5,0 do 76,2 m³/h. Przewodność poziomu wodonośnego wynosi średnio 250 m²/24h. Zwierciadło wody ma charakter swobodny i zalega na głębokościach od poniżej 1 m na tarasach zalewowych cieków i wzdłuż linii brzegowej jezior, do ponad 30 m w strefach wododziałowych. Najczęściej poziom ten jest pozbawiony utworów izolujących, co wpływa na niską odporność poziomu na zanieczyszczenia z powierzchni terenu. Zasilanie poziomu zachodzi w głównej mierze z infiltracji opadów, a lokalnie w dolinach rzecznych zasilanie poziomu może następować z głębszych pięter. Poziom ten drenują cieki powierzchniowe i jeziora omawianego obszaru. Ujmowany jest powszechnie do eksploatacji w rejonie Kłopotu, Rapic, Grzmiącej, Białkowa.

<u>Poziom międzyglinowy</u> – w jego obrębie można wyróżnić dwie warstwy wodonośne międzyglinowe – górną i dolną, które lokalnie pozostają w łączności hydraulicznej, tworząc jedną, wspólną warstwę wodonośną.

Górny poziom międzyglinowy budują osady piaszczyste o różnym uziarnieniu (piaski ze żwirem oraz żwiry rzeczne i wodnolodowcowe (fluwioglacjalne)) rozdzielające gliny morenowe zlodowacenia północnopolskiego (wisły) od środkowopolskich (warty, odry). Miąższość warstwy wodonośnej wynosi od kilku do ponad 40 m. Współczynnik filtracji zawiera się w przedziale 7,8–84,0 m/24h, a przewodność 84,0–1500 m²/24h. Zwierciadło wody ma charakter naporowo-swobodny i występuje na zmiennych głębokościach. Strop warstwy wodonośnej zazwyczaj występuje na głębokości od około 2 m do 26 m w południowo-zachodniej części obszaru. Wydajności potencjalne studni wynoszą od 10 do powyżej 70 m³/h. Zasilanie poziomu zachodzi na drodze infiltracji opadów, jak również z ascenzyjnego zasilania z poziomów głębszych oraz lokalnie poprzez przepływy z poziomu gruntowego. Bazę drenażu stanowią cieki powierzchniowe i jeziora. Jest to poziom powszechnie ujmowany na omawianym obszarze a największe ujęcia wód podziemnych zlokalizowane są w rejonie jeziora Niesłysz.

Dolny poziom międzyglinowy jest związany z osadami rzecznymi (piaski średnioziarniste, drobnoziarniste, gruboziarniste i pylaste, lokalnie żwiry i piaski ze żwirem) interglacjału mazowieckiego oraz fluwioglacjalnymi wód roztopowych (piaski, żwiry) zlodowaceń środkowopolskich (warty, odry) i południowopolskich (sanu, nidy). Miąższość warstw wodonośnych poziomu wynosi od kilku do 40 m (najczęściej 10-20 m), a współczynnik filtracji 10,2-68,5 m/24h. Przewodność poziomu jest zróżnicowana i waha się w przedziale 119,0-1270,0 m²/24h. Poziom ten jest poziomem naporowym. Wydajności studni wierconych wynoszą od 50,0 do 70,0 m³/h. Zasilanie poziomu odbywa się poprzez bezpośrednią infiltrację wód opadowych na wychodniach warstw oraz przez okna hydrogeologiczne, a drenaż przez rzeki, m.in. Odrę i Pliszkę. Ujęcia wód z poziomu międzyglinowego zlokalizowane są w Gęstowicach, Trzebiechowie, Borowie.

Poziom wodonośny podglinowy jest związany z występowaniem dolin kopalnych interstadiałów zlodowaceń południowopolskich (sanu, nidy) i ich fluwioglacjałów. Utwory piaszczyste występują w formie soczew i nie stanowią ciągłego poziomu. Jest to poziom lokalny o niewielkim znaczeniu użytkowym. Strop warstwy wodonośnej występuje na głębokości od około 20 m do ponad 70 m, zwierciadło stabilizuje się w przedziale 18,7-9,7 m p.p.t. Miąższość warstwy wodonośnej zazwyczaj wynosi od około 10 m do 30,0 m, lokalnie dochodzi do ponad 40 m. Współczynnik filtracji wynosi od 1,8 do ok. 6,7 m/24h, a przewodność waha się od 80 do 201 m²/24h. Poziom ten kontaktuje sie bezpośrednio z poziomami międzyglinowymi oraz lokalnie z poziomem mioceńskim. Jest on eksploatowany w m. Tawęcin (wydajność studni wynosi 18,0 m³/h), oraz Wyczółowo (wydajność studni waha się od 5,0 do 12,0 m³/h.).

W granicach obszaru przetargowego Cybinka-Torzym występują dwa główne zbiorniki wód podziemnych (Mikołajków i Sadurski, 2017) (Fig. 2.27). GZWP nr 144 Dolina Kopalna Wielkopolska obejmuje niewielkie północne fragmenty omawianego obszaru. W całości zajmuje powierzchnię 4122,40 km², z czego w granicach obszaru przetargowego znajduje się jedynie 14,7 km² (2,2% powierzchni omawianego obszaru). Utworami wodonośnymi zbiornika są czwartorzędowe piaski średnioziarniste, gruboziarnista i drobnoziarniste, lokalnie mułkowate, piaski ze żwirem oraz żwiry (Dąbrowski i in., 2011; Mikołajków i Sadurski, 2017). W jego obrębie wydzielono trzy poziomy wodonośne:

- poziom wód gruntowych, o zwierciadle swobodnym, zasilany infiltracją opadów, a w dolinach rzecznych – z poziomów wód wgłębnych,
- poziom międzyglinowy górny i dolny: górny o zwierciadle naporowym lub swobodnym, zasilany przez infiltrację opadów lub przesączanie przez gliny zwałowe oraz poziom międzyglinowy dolny gromadzący wody naporowe występujące na głębokości 10–65 m pod nadkładem glin morenowych, zasilany na drodze przesączania się wód przez gliny morenowe z nadległych poziomów wodonośnych i lokalnie przez okna hydrogeologiczne,
- poziom podglinowy występujący lokalnie bez znaczenia gospodarczego.

Szacunkowe zasoby dyspozycyjne zbiornika wynoszą 394298,4 m³/d (16429,1 m³/h).

GZWP nr 148 Sandr rzeki Pliszka o powierzchni 486,2 km² z czego na omawianym obszarze jest 198,5 km² (29,7 % powierzchni obszaru przetargowego). Jest to zbiornik wydzielony w porowych utworach czwartorzędu (rzeczne i fluwioglacjalne piaski i żwiry). W obrębie zbiornika głównym użytkowym poziomem wodonośnym jest poziom wód gruntowych i międzyglinowy górny o swobodnym, lokalnie napiętym zwierciadle wody - w rejonach, gdzie warstwa wodonośna jest przykryta pakietem utworów słabo przepuszczalnych (Mikołajków i Sadurski, 2017). Miąższość osadów wynosi od 10 m do ponad 40 m (najczęściej 5-25 m); współczynnik filtracji 1,2-240 m/24h. Wodoprzewodność poziomu jest zmienna 19–2700 m²/24h, najczęściej 120–480 m²/24h. Zasoby odnawialne określono na 297857 m³/24h przy module 7,09 l/s/km², a zasoby dyspozycyjne oszacowano na 174528 m³/24h przy module zasobowym 4,15 l/s/km² (Kowalski i in., 2011). Zasilanie pierwszej warstwy wodonośnej odbywa się przez infiltrację wód opadowych, jak również przez dopływ boczny. Zbiornik ten na większości obszaru jest pozbawiony izolacji utworami słabo przepuszczalnymi (Mikołajków i Sadurski, 2017).

Chemizm wód piętra czwartorzędowego jest zmienny w zależności od głębokości zalegania poziomów wodonośnych i stopnia ich izolacji. Są to wody typu: HCO₃-Ca-Mg, HCO₃-Ca, lokalnie HCO₃-SO₄-Ca-Mg. Są one słabo zmineralizowane, o suchej pozostałości mieszczącej się w granicach od 150 do 518 mg/dm³. Są to wody średnio twarde i twarde (168–455 mg CaCO₃/dm³), o odczynie obojętnym i słabo zasadowym.

Wody poziomu gruntowego z uwagi na brak izolacji są podatne na infiltrację zanieczyszczeń z powierzchni terenu. Zawartość chlorków wynosi od 0,06 do 34 mg Cl/dm³ (lokalnie 127 mg/dm³), a związków azotu (azot amonowy) do 1,36 mg N/dm³. Obecność związków żelaza i manganu jest powszechna, a ich stężenia są zmienne. Na ogół wartości żelaza wynoszą do 0,5 mg/dm³ (lokalnie 4,0 mg/dm³), manganu do 0,1 mg/dm³ (lokalnie 0,283 mg/dm³). Lokalnie stwierdzono podwyższone stężania siarczanów dochodzące do 231 mg/dm³.

Wody poziomu międzyglinowego charakteryzują się podwyższoną zawartością żelaza (0,02–12,0 mg Fe/dm³) i manganu (lokalnie 2,8 mg Mn/dm³). Stężenia siarczanów wynoszą 0,0–223,0 mg SO₄/dm³, a chlorków od 3,2 do 5,3 (lokalnie 142,0 mg Cl/dm³). Zawartość związków azotu kształtuje się następująco: azotany 0,00–10,0 (lokalnie 19,7) mg N/dm³, azotyny 0,00–0,09 mg N/dm³, azotu amonowego 0,08–1,89 mg N/dm³ (lokalnie 3,50 mg N/dm³).

Wody poziomu podglinowego mają zbliżony chemizm do wód poziomu międzyglinowego. Zawartość podstawowych składników w obu poziomach jest do siebie podobna, jednak w poziomie podglinowym są niższe wartości: żelaza (0,14–2,90 mg Fe/dm³), manganu (0,02–0,23 mg Mn/dm³) i siarczanów (5,0–19,0 mg SO₄/dm³). Zawartość chlorków wynosi 3,2–7,46 mg Cl/dm³, a azotu amonowego od 0,08 do 0,61 mg N/dm³.

Podwyższone zawartości żelaza i manganu w wodach czwartorzędowych na całym obszarze mają charakter geogeniczny, typowy dla poziomów czwartorzędowych (Kowalski i in., 2011).

Prawie na całym omawianym obszarze stopień zagrożenia wód podziemnych użytkowych poziomów wodonośnych określono jako wysoki i średni (Fig. 2.28). Wysoki stopień zagrożenia wód podziemnych wyznaczono na obszarach gdzie poziom wodonośny występuje na niewielkich głębokościach i jest pozbawiony izolacji lub warstwa izolująca jest niewielkiej miąższości, oraz na obszarach gdzie występują potencjalne ogniska zanieczyszczeń. Wysoki stopień zagrożenia obejmuje zachodnią oraz wschodnią część obszaru. Na zachodzie został on wyznaczony w dolinie Odry i w rejonie Kanału Lubońskiego, gdzie zwierciadło wody występuje płytko pod powierzchnią terenu.

W okolicach Cybinki, z uwagi na znaczną ilość obiektów uciążliwych, także przyjęto wysoki stopień zagrożenia. Na zachodzie obejmuje on tereny wokół jezior Niesłysz i Trzeboch oraz wzdłuż rzeki Ołobok.

Na pozostałym obszarze wyznaczono średni stopień zagrożenia. Są to obszary o niskiej odporności na czynniki zewnętrzne, bez ognisk zanieczyszczeń oraz o ograniczonej dostępności (np.: Obszary Chronionego Krajobrazu (OCHK), lasy).

Generalnie w mniejszym stopniu na zanieczyszczenia narażone są poziomy międzyglinowy i podglinowy, które są izolowane warstwami słabo przepuszczalnymi, co jednak nie zwalnia z obowiązku ich ochrony. Neogeńsko-paleogeńskie poziomy wodonośne są bardzo dobrze izolowane w sposób naturalny. Wody podziemne występujące w <u>neogeńsko-</u> paleogeńskim piętrze wodonośnym są związane z utworami piaszczystymi oligocenu i miocenu poprzedzielanymi warstwami mułkowo-ilastymi i węglanowymi. Lokalnie piętro neogeńsko-paleogeńskie jest w łączności hydraulicznej z poziomem czwartorzędowym. Ma znaczenie podrzędne z uwagi na lepsze parametry hydrogeologiczne warstw czwartorzędowych. W obrębie piętra Ng-Pg występują dwa poziomy wodonośne: mioceński i oligoceński.

<u>Mioceński poziom wodonośny</u> – w jego obrębie można wydzielić dwie warstwy wodonośne: górną i dolną.

Warstwę górną tworzą piaski drobnoziarniste i pylaste o miąższości od 5 do 20 m, występujące w górnej serii burowęglowej, wśród mułków i iłów. Warstwa ta występuje w przedziale rzędnych od -10 do 10 m n.p.m., t.j. w przedziale występowania poziomu międzyglinowego dolnego i podglinowego. Współczynnik filtracji waha się w przedziale 1,2-4,8 m/24h, a przewodność 0,1-5,0 m²/h. Układ krążenia wód jest związany z poziomem czwartorzędowym, gdyż posiada podobne obszary zasilania i drenażu. Warstwa ujmowana jest w Trzebiechowie (miąższość warstwy wynosi od 5,0 do 10,3 m, wydajność studni waha się od 20,0 do 24,0 m^3/h).

Warstwa dolna jest podstawową warstwą mioceńskiego poziomu wodonośnego, którą tworzy seria piasków drobnych i mułkowatych, lokalnie średnioziarnistych dolnego miocenu o miąższości 50–95 m. Współczynnik filtracji waha się w przedziale 1,7– 29,0 m/24h, przewodność 3,5–13 m²/h. W rejonie Maszewa warstwa ta występuje na głębokości 142 m, osiągając miąższości powyżej 63 m. Wydajność odwierconej tu studni wynosi 50,4 m³/h (Gad, 2000).

Mioceński poziom wodonośny jest eksploatowany także w m. Bieganów i Sądów. W Bieganowie jest to warstwa pozbawiona izolacji, o miąższości 20–40 m i współczynniku filtracji k=4,5 m/24h. W Sądowie warstwa wodonośna jest dobrze izolowana warstwą iłów. Zwierciadło wody ma charakter napięty, miąższość warstwy wodonośnej wynosi 10–20 m, a współczynnik filtracji k=11,3 m/24h. Potencjalna wydajność studni na obu ujęciach mieści się w przedziale od 30 do 50 m³/h.

Warstwa mioceńska (górna i dolna) jest zasilana poprzez przesączanie się wód z nadległych poziomów czwartorzędowych przez warstwy słabo przepuszczalnych mułków, iłów i glin morenowych. Drenowana jest w dolinie Odry i lokalnie w dolinie Pliszki.

<u>Oligoceński poziom wodonośny</u> tworzą piaski drobnoziarniste, pylaste i lokalnie średnioziarniste, piaski glaukonitowe oraz iły i miejscami piaskowce występujące wśród warstw ilasto-mulastych lub bezpośrednio na utworach mezozoicznych. Miąższość warstwy nie przekracza 25 m (najczęściej 10–15 m). Od dolnej warstwy mioceńskiej jest oddzielony warstwą mułków, względnie jest z nią w bezpośrednim kontakcie. Poziom ten jest zasilany z mioceńskiego poziomu przez przesączanie.

Skład chemiczny wód mioceńskiego i oligoceńskiego poziomu wodonośnego jest zbliżony do składu wód czwartorzędowych. Są to wody HCO₃-Ca-Mg, HCO₃-Ca, o suchej pozostałości w granicach do 300 mg/l. Wody piętra Ng-Pg charakteryzują się zmiennością składu chemicznego w zależności od głębokości. Są to wody średnio twarde i twarde. Wody te zazwyczaj wymagają prostego uzdatniania ze względu na przekroczenia dopuszczalnych stężeń żelaza i manganu (Fe 0,2–1,9 mg/dm³, Mn 0,1–0,8 mg/dm³). Zawartości siarczanów zwykle nie przekraczają 10 mg/dm³, chociaż lokalnie mogą występować wartości rzędu 22 mg/dm³. Zawartość chlorków jest niewielka i wynosi od 3,6 do 6,7 mg/dm³ (lokalnie 13 mg Cl/dm³). Nie stwierdzono podwyższonych zawartości związków azotu (0,0–0,4 mg N-NO₃/dm³, 0,1–0,5 mg N-NH₄/dm³).

Wody głębszych poziomów wodonośnych (dolnego miocenu) i oligocenu wykazują wyższe wskaźniki barwy i mętności oraz zwiększone ilości żelaza i manganu, a także mają podwyższoną mineralizację (przy wysokiej zawartości chlorków i siarczanów).

Na omawianym obszarze zlokalizowanych jest kilkadziesiąt ujęć wód podziemnych, które eksploatują wody piętra czwartorzędowego, lokalnie neogeńsko-paleogeńskiego. Na podstawie danych z bazy "Pobory" w 2019 r. sumaryczne pobory w obszarze przetargowym wyniosły prawie 759000 m³/24h. Ujęcie o największych poborach >500 m³/24h, znajduje się w Białkowie.

Informacje o zasobach eksploatacyjnych oraz o średnim poborze wód podziemnych ujęć zlokalizowanych w granicach obszaru przetargowego podano w Tab. 2.2. Podane tam wartości poboru wód podziemnych nie uwzględniają tzw. poboru nierejestrowanego – tzn. niezgłoszonego przez użytkowników, wynikającego z luk ewidencyjnych oraz poboru w ramach zwykłego korzystania z wód.

Na omawianymi obszarze brak jest ustanowionych stref ochrony pośredniej ujęć.

Fig. 2.27. Położenie obszaru przetargowego Cybinka-Torzym na tle jednostek fizycznogeograficznych oraz JCWPd i GZWP.

Fig. 2.28. Położenie obszaru przetargowego Cybinka-Torzym na tle jednostek hydrogeologicznych.

CYBINKA-TORZYM

Użytkownik ujęcia	Nazwa ujęcia/ miejscowość	Nr ujęcia CBDH	Zasoby eksploatacyjne [m ³ /h]	Wiek war- stwy wodo- nośnej	Pobór 2019 [m ³ /24h]
Zakład Usług Komunalnych Cybinka Sp. z o.o.	ujęcie Białków	5350018	138	Q	617,28
Zakład Usług Komunalnych Cybinka Sp. z o.o.	ujęcie Bieganów	4990002	90	Pg-Ng	321,91
Gmina Maszewo	SUW Korczyców	5350036	48	Q	344,28
Elektrociepłownia "Zielona Góra" S.A.	Ośrodek Wypoczynkowy Elektrociepłowni Zielona Góra S.A./Tyczyn	5010101	4,1	Q	2,33
Zakład Gospodarki Komunalnej w Bytnicy	ujęcie Bytnica	5360040	18	Q	9,38
Zakład Gospodarki Komunalnej w Bytnicy	ujęcie Gryżyna	5010003	15	Q	11,64
Zakład Gospodarki Komunalnej w Bytnicy	ujęcie Budachów	5360001	69	Q	90,40
Zakład Gospodarki Komunalnej w Bytnicy	ujęcie Dobrosułów	5000005	15	Q	31,37
Gmina Bytnica	ujęcie Bytnica st. 4	5360046	35	Q	108,8
Gmina Maszewo	SUW Gęstowice	5350004	33	Q	29,18
Gmina Maszewo	ujęcie wody Trzebiechów	bd	54	Q	21,70
Nadleśnictwo Krosno Odrzańskie Osiecznica	szkółka leśna Rzeczyca	4990016	46	Q	19,42
Liberty Farm Sp. z o.o.	Trzebiechów	5350003	bd	Q	7,18
Nadleśnictwo Torzym	ujęcie wody Drzewce Kol.	5000002	3	Q	0,17
Kormoran Niesulice Ośrodek Wypoczynkowy	ujęcie wody Niesulice	5010014	36	Q	17,14
Ośrodek "LAGO"	OW Lago Niesulice	bd	bd	bd	10,42
Ośrodek wypoczynkowy IRENA	OW IRENA Niesulice	5010015	27,5	Q	3,93
Ośrodek Wypoczynkowy Relaks	Camping Relaks Tyczyno	5010040	5	Q	0,93
PPHU ADA, Cigacice1c	OW Ada/Niesulice	bd	bd	bd	7,93
os. prywatna	OW ANAPAUSIS, Gryżyna	5010004	11	Q	0,32
Zakład Gospodarki Komunalnej i Mieszkaniowej w Gronowie	ujęcie Niedźwiedź	5010001	54	Q	15,72
Zakład Usług Komunalnych Cybinka Sp. z o.o.	ujęcie Tawęcin	5340001	18	Q	5,12
Zakład Usług Komunalnych Cybinka Sp. z o.o.	ujęcie Rąpice	5340003	22	Q	69,10
Zakład Usług Komunalnych Cybinka Sp. z o.o.	ujęcie Drzeniów	4990020	48	Q	78,81
Zakład Wodociągów i Kanalizacji w Skąpem	ujęcie Kalinowo	5010019	66,5	Q	30,23
Zakład Wodociągów i Kanalizacji w Skapem	boisko sportowe/Ołobok	5010122	10	Q	23,07
Zakład Wodociągów Kanalizacji i Usług Komunalnych Sp. z o.o. w Świebodzinie	ujęcie Lubogóra	5010018	62,85	Q	33,46
Zakład Wodociągów i Kanalizacji w Skąpem	ujęcie Borów	5010009	67	Q	23,48
ZPM AGMA Sp. z o.o.	ujęcie wody Białków	5350058	7	Q	31,45

bd – brak danych

Tab. 2.2. Wykaz ujęć zbiorowego zaopatrzenia w wodę w granicach obszaru przetargowego Cybinka-Torzym

3. SYSTEM NAFTOWY 3.1. OGÓLNA CHARAKTERYSTYKA NAFTOWA OBSZARU PRZETARGOWEGO

System naftowy jest określany jako zespół procesów geologicznych i naftowych prowadzący do powstania złoża węglowodorów. Do podstawowych elementów systemu naftowego zalicza się: skałę macierzystą – ze względu na zawartość kopalnej substancji organicznej stanowi źródło powstawania węglowodorów, skałę zbiornikową - której odpowiednie właściwości petrofizyczne (porowatość, przepuszczalność) pozwalają na akumulację węglowodorów oraz skałę uszczelniającą - która jest skałą nieprzepuszczalną i uniemożliwia ucieczkę medium złożowego. Ponadto nieodzownym elementem systemu naftowego w złożach konwencjonalnych jest pułapka naftowa, która ze względu na swoje cechy strukturalne lub stratygraficzno-litologiczne tworzy miejsce akumulacji weglowodorów. Niezbędnym do zaistnienia systemu naftowego i powstania złoża węglowodorów jest zespół procesów umiejscowionych w przestrzeni i w czasie geologicznym, na które składają się: generowanie, ekspulsja, migracja i akumulacja weglowodorów oraz formowanie pułapki złożowej. Wzajemne relacje czasowe pomiędzy wspomnianymi elementami i procesami systemu naftowego pozwalają na powstanie złoża.

Budowa geologiczna obszaru przetargowego Cybinka-Torzym oraz parametry węglowodorowe w poszczególnych piętrach strukturalnych pozwalają rozróżnić w jego odrębnie jeden – cechsztyński system naftowy.

Cechsztyński system naftowy stanowi zamknięty system hydrodynamiczny. Oznacza to, że system ten jest uszczelniony zupełnie od otoczenia, a utwory dolomitu głównego (Ca2) pełnią rolę jednocześnie skały macierzystej oraz skały zbiornikowej (Fig. 3.1). Za skały macierzyste uznaje się skały pochodzenia mikrobialnego (cyjanobakterie) i glonowego (Kotarba i Wagner, 2007), które mogą występować w dwóch odmianach: 1) zwartej - kompleksy związane z budowlami mikrobialno-glonowymi oraz warstwami mudstonów, 2) rozproszonej – tworzące laminy cyjanobakterii, stabilizujace osad ziarnisty (Słowakiewicz i Gąsiewicz, 2013; Słowakiewicz i in., 2016). Skała zbiornikowa składa się najczęściej z wapieni i dolomitów reprezentowanych przez greinstony i pakstony. Odnotowuje się wśród nich liczne objawy na rdzeniach wiertniczych, jak również udokumentowano liczne złoża ropy naftowej, ropy naftowej i gazu ziemnego oraz gazu ziemnego. Cechsztyński system naftowy posiada podwójne, bardzo efektywne uszczelnienie. Od spągu, jak również od stropu, jest uszczelniony miąższymi ewaporatami cyklotemów PZ1 i PZ2 (Fig. 3.1).

Wokół obszaru przetargowego Cybinka-Torzym odkryto kilka złóż ropy naftowej i gazu ziemnego w utworach dolomitu głównego. W południowo-zachodniej części omawianego obszaru odkryto otworem wiertniczym Kosarzyn-8 złoże ropy naftowej Kosarzyn N, którego eksploatacja została czasowo zaniechana (Czapigo-Czapla i Brzeziński, 2021).

CYBINKA-TORZYM

Fig. 3.1. Schemat prezentujący poszczególne elementy cechsztyńskiego systemu naftowego dla obszaru przetargowego Cybinka-Torzym. Ciemniejszy kolor przedstawia pewne elementy systemu naftowego, zaś jaśniejszy kolor przedstawia mniej pewne/hipotetyczne elementy systemu naftowego.

3.2. SKAŁY MACIERZYSTE

Dolomit główny Litologia: dolomity i wapienie: madstony, bandstony, pakstony i greinstony

Główną skałą macierzystą dolomitu głównego stanowią osady platformy węglanowej (Fig. 3.1). Są one pochodzenia mikrobialnego (cyjanobakterie) i glonowego (algi). Badania geochemiczne próbek dolomitu głównego pochodzących z otworów wiertniczych północnej części platformy śląsko-sudeckiej (m.in z obszaru przetargowego Cybinka-Torzym) zostały przedstawione w pracach Kosakowskiego i Wróbla (2010) oraz Kosakowskiego i Krajewskiego (2014).

Kosakowski i Wróbel (2010) wykonali badania geochemiczne w 39 otworach wiertniczych. Według mapy paleogeograficznej dolomitu głównego (Wagner, 2012) ponad połowa z tych otworów położona jest w północno-zachodniej i północnej części platformy śląsko-sudeckiej. Materia organiczna składa się głównie z macerałów grupy liptynitu, wskazujących II typ kerogenu (Fig. 3.2). Obserwuje się strefowość dojrzałości termicznej materii organicznej, która odzwierciedla

układ paleogeograficzny dolomitu głównego (Kosakowski i Wróbel, 2010). Charakteryzuje sie ona zwiekszeniem dojrzałości termicznej materii organicznej od osadów platformy węglanowej w kierunku równi basenowej. Refleksyjność witrynitu utworów północnej części platformy ślasko-sudeckiej waha się od 0,5 do 1,35% Ro (Fig. 3.2), co odpowiada tzw. oknu ropnemu. Pobrane próbki dolomitu głównego do badań geochemicznych z obszarzu północnej i północno-zachodniej części platformy śląsko-sudeckiej potwierdzają, że były one "aktywna" skała macierzystą (Fig. 3.2).

Szczegółowe badania sedymentologicznogeochemiczne dolomitu głównego jako skały macierzystej zostały przedstawione w pracy Kosakowskiego i Krajewskiego (2014). Wyniki badań przedstawiają regionalną charakterystykę mikrofacjalną i geochemiczną m.in. północnej części platformy śląsko-sudeckiej (Tab. 3.1–3.3), której najbardziej skrajną, północno-zachodnią część reprezentuje obszar przetargowy Cybinka-Torzym. Ilościowo, najlepszymi parametrami zawartości węglowodorów (HI) i całkowitej zawartości materii organicznej (TOC) charakteryzują się osady platformy węglanowej (Fig. 3.3; Pletsch i in., 2010). Jednakże, w pionowym profilu geochemicznym utwory dolomitu głównego wykazują większe ich zróżnicowanie. Wysokie zawartości TOC i HI wydają się nie występować w całym profilu, lecz jedynie w jego najpłycej pogrzebanych częściach (Fig. 3.3; Kotarba i Wagner, 2007). W świetle badań geochemicznych (Kosakowski i Krajewski, 2014) osady stoku platformy węglanowej mają słaby lub dobry potencjał węglowodorowy (średnia zawartość bituminów 1430 ppm; Fig. 3.4), osady platformy węglanowej – dobry potencjał węglowodorowy (średnia zawartość bituminów 4930 ppm; Fig. 3.4), natomiast osady przykrawędziowej bariery mają najwyższy potencjał węglowodorowy (średnia zawartość bituminów 9560 ppm; Fig. 3.4).

Fig. 3.2. Charakterystyka skały macierzystej dolomitu głównego obszaru SW części Polski (Kosakowski i Wróbel, 2010).

_															
	Index	II		III		IV		V	VII		IX		XI	XIII	
	Total organic carbon (TOC) (wt. %)	0.01 to 3.36 0.21	(<u>183)</u> (13)	0.00 to 3.87 0.83	(<u>34)</u> (8)	0.00 to 0.77 0.19	(<u>30)</u> (7)	0.04 to 0.11 0.08	$(\frac{10}{-(2)}) \frac{0.01 \text{ to } 0}{0.02}$	$\frac{0.04}{-(1)}$	0.01 to 0.83 0.19	(<u>20)</u> (3)	0.01 to 0.77 0.27	$(\frac{7}{1}) \frac{0.01 \text{ to } 0}{0.03}$. <u>11</u> (<u>5)</u> (1)-
	$S_1 + S_2 (mg HC/g rock)$	0.18 to 3.12 0.86	(<u>38)</u> (5)	0.08 to 10.71 2.01	$(\frac{8}{4})$	0.11 to 0.98 0.65	$(\frac{8}{5})$	-	-		0.51 to 2.51 1.24	$(\frac{5}{1})$	0.33 to 2.26 1.25	$\frac{(4)}{(1)}$ -	
	Hydrogen index (HI) (mg HC/g TOC)	25 to 225 75	$(\frac{38}{5})$	67 to 166 116	$(\frac{8}{4})$	56 to 10 83	$(\underline{8})$ (5)	-	-		52 to 170 109	$(\frac{5}{1})$	90 to 145 119	$\frac{(4)}{(1)}$ -	
	Oxygen index (OI) (mg CO ₂ /g TOC)	6 to 219 103	(38) (5)	5 to 180 74	$(\frac{8}{4})$	8 to 204	$(\underline{8})$ (2)	<u>-</u>	-		<u>93 to 604</u> 280	(5) (1)	69 to 223	$(\underline{4}) - (\underline{1})$	
	T_{max} (°C)	434 to 510 454	(31)	435 to 462 449	(<u>6)</u> (<u>3)</u>	420 to 456 436	$(\frac{8}{5})$		-		433	(1)	433 to 442	$\frac{(2)}{(1)} =$	
	Production index (PI)	0.30 to 0.89	(38)	0.22 to 0.53	$(\frac{8}{4})$	0.36 to 0.56	(8)		-		0.38 to 0.69	(5)	0.33 to 0.87	$(\underline{4}) - (\underline{1}) -$	
	Bitumens (ppm)	210 to 2800	(19)	190 to 2370	$(\frac{8}{4})$	440 to 1070	(3)	-			100 to 5380	(3)	1880	(1) -	
	Aromatics HC (%)	<u>13 to 46</u>	(10)	29 and 39	$(\frac{1}{2})$	36			-		-	(1)	22	-	
	Saturated HC (%)	<u>10 to 37</u>	(10)	28 and 32	(2) (2) (2)	16		-	-		-		10	-	
	Resins (%)	3 to 22	(10)	20 and 21	(2) (2)	12			-		-		19	-	
	Asphaltenes (%)	14 14 to 49	$(\frac{10}{5})$	9 and 22	(2) (2) (2)	36		-	-		-		10	-	
		1			121								40		

 $TOC - total organic carbon; Tmax - temperature of maximum of S_2 peak; S_2 - residual petroleum potential; S_1 - oil and gas yield (mg HC/g rock); PI - production index; HI - hydrogen index; OI - oxygen index. Range of geochemical parameters is given as numerator; median values in denominator, in parentheses: number of samples from wells (numerator) and number of sampled wells (denominator).$

← Tab. 3.1. Wyniki analizy pirolitycznej Rock-Eval oraz składu grupowego bituminów z podziałem na mikrofacje w dolomicie głównym dla facji skłonu i podnóża skłonu platformy węglanowej (Kosakowski i Krajewski, 2014). Objaśnienia parametrów: TOC – całkowity węgiel organiczny, T_{max} – temperatura maksymalnej generacji węglowodorów w trakcie crackingu kerogenu, S2 – potencjał generacyjny, S1 – wolne węglowodory, PI – wskaźnik produkcyjności, HI – wskaźnik wodorowy, OI – wskaźnik tlenowy, Bitumens – zawartość bituminów, Aromatics HC – zawartość węglowodorów nasyconych, Resins – zawartość żywic, Asphaltenes – zawartość asfaltenów. Zakres parametrów geochemicznych podany jest w liczniku, wartości średnie w mianowniku, w nawiasie: liczba próbek (licznik) oraz liczba otworów (mianownik).

Objaśnienia przebadanych pod względem macierzystości mikrofacji występujących na obszarze północnej części platformy śląsko-sudeckiej (w tym obszar przetargowy Cybinka-Torzym): II – mikrobialno-klastyczne dolopakstony i dolomadstony (facja środkowej i dolnej partii oraz podstawy skłonu platformy węglanowej); III – mikrobrekcje, litoklastyczne dolopakstony, greinstony, dolofloatstony, dolomadstony (facja górnej i środkowej partia skłonu platformy wę glanowej); IV – laminowane dolopakstony peloidalne, dolobindstony, dolomadstony (facja rampy stoku platformy węglanowej); V – dologreinstony i dolo-pakstony ooidowe (facja wysokoenergetycznej, płytkiej bariery platformy węglanowej, facja wewnątrzplatformowej ławicy oolitowej oraz facja wyższej partii stoku platformy węglanowej); VII – mikrobialne dolobindstony i mikroframestony, dolopakstony (facja płytkich, krawędziowych lub wewnątrzplatformowych raf mikrobialnych); IX – algowe dolopakstony i grainstony z ziarnami agregatowymi, dolobindstony (facja płytkiej, otwartej lub ograniczonej wewnętrznej platformy węglanowej, budowle mikrobialno-glonowe); XI – fenestralne, mikrobialne dolobindstony, dolomadstony i dolopakstony (facja wewnątrzplatformowej równi pływowej); XIII – dolorudstony i floatstony litoklastyczne, dolopakstony (facje wewnątrzplatformowych kanałów i równi pływowych).

Index	Facies					
	v		XII/V			
Total organic carbon	0.09 to 1.92	(3)	0.37 to 1.13	(5)		
(TOC) (wt. %)	0.83	(1)	0.75	(1)		
$S_1 + S_2$ (mg HC/g rock)	4.50 and 9.87	(2)	4.07 to 11.75	(5)		
		(1)	6.62	(1)		
Hydrogen index (HI)	147 and 164	(2)	147 to 207	(5)		
(mg HC/g TOC)	((1)	156	(1)		
Oxygen index (OI)	24 and 94	(2)	24 to 153	(5)		
(mg CO ₂ /g TOC)	-	(1)	156	(1)		
$T_{\rm max}$ (°C)	434	(1)	()			
Production index (PI)	0.68 and 0.84	(2)	0.79 to 0.86	(5)		
	-	(1)	0.83	(1)		
Bitumens (ppm)	12440	(1)	7540 to 12800	(3)		
			9560	(1)		
Aromatics HC (%)	21	(1)	=			
Saturated HC (%)	45	(1)	=			
Resins (%)	7	(1)				
Asphaltenes (%)	27	(1)	Ξ			

Tab. 3.2. Wyniki analizy pirolitycznej Rock-Eval oraz składu grupowego bituminów z podziałem na mikrofacje w dolomicie głównym dla mikrofacji krawędzi platformy węglanowej (Kosakowski i Krajewski, 2014). Objaśnienia dla parametrów geochemicznych i mikrofacji – Tab. 3.1.

Index	II		IX		Х		XI		XIV	
Total organic carbon (TOC) (wt. %)	0.03 to 2.95 0.35	(<u>30)</u> (3)	0.01 to 1.32 0.23	(<u>86)</u> (7)	0.03 to 1.33 0.23	(<u>19)</u> (3)	0.03 to 0.71 0.27	$\frac{(6)}{(4)}$	0.07 to 0.84 0.27	$\frac{(8)}{(1)}$
$S_1 + S_2 (mg HC/g rock)$	0.58 to 5.16 2.32	$(\frac{13}{3})$	0.23 to 11.8 2.32	(<u>30)</u> (6)	0.52 to 3.20 1.62	(<u>5)</u> (2)	0.22 to 2.21 0.74	$\frac{(4)}{(3)}$	0.28 to 1.90 0.70	$\frac{(5)}{(1)}$
Hydrogen index (HI) (mg HC/g TOC)	70 to 106 88	$(\frac{13}{3})$	70 to 106 88	(<u>30)</u> (6)	60 to 116 101	(<u>5)</u> (2)	63 to 180 106	$(\frac{4}{3})$	72 to 152 103	$\frac{(5)}{(1)}$
Oxygen index (OI) (mg CO ₂ /g TOC)	17 to 233 101	(<u>13)</u> (3)	69 to 336 172	(<u>30)</u> (6)	1 <u>6 to 153</u> 88	(<u>5)</u> (2)	45 to 261 153	$(\frac{4}{(3)})$	43 to 95 80	(<u>5)</u> (1)
<i>T</i> _{max} ([°] C)	437 to 448 445	$\frac{(7)}{(2)}$	438 to 457 445	$(\underline{11})$ (4)	437 to 446 442	$(\frac{4}{2})$	429 to 444 434	$(\frac{3}{2})$	429 to 441 437	$\frac{(5)}{(1)}$
Production index (PI)	0.44 to 0.94 0.67	$(\frac{13}{3})$	0.27 to 0.83 0.59	(<u>30)</u> (6)	0.46 to 0.77 0.60	(<u>5)</u> (2)	0.19 to 0.85 0.56	$(\frac{4}{2})$	0.33 to 0.47 0.43	$\frac{(5)}{(1)}$
Bitumens (ppm)	870 to 5360 2500	$(\frac{11}{2})$	510 to 15760 2500	$(\frac{15}{5})$	1950 to 4440 2950	(<u>3)</u> (2)	660 and 1010 -	(2) (2)	660 and 1320	(1) (1)
Aromatics HC (%)	<u>24 and 29</u> —	$\frac{(2)}{(2)}$	<u>19 to 34</u> 26	(8) (4)	20		<u>20 and 28</u> —	$\frac{(2)}{(2)}$	-	
Saturated HC (%)	<u>39 and 40</u> —	$(\frac{2}{2})$	<u>9 to 69</u> 40	$(\frac{8}{(4)})$	14		14 and 40 _	(2) (2)	-	
Resins (%)	<u>17 and 17</u> —	$(\frac{2}{2})$	7 to 24 14	$(\frac{8}{(4)})$	17		9 and 29 —	$(\frac{2}{2})$	-	
Asphaltenes (%)	<u>14 and 22</u> —	$\frac{(2)}{(2)}$	3 to 56 20	$(\frac{8}{4})$	21		23 and 37 -	$\frac{(2)}{(2)}$	-	

TOC – total organic carbon; Tmax – temperature of maximum of S_2 peak; S_2 – residual petroleum potential; S_1 – oil and gas yield (mg HC/g rock); PI – production index; HI – hydrogen index; OI – oxygen index. Range of geochemical parameters is given as numerator; median values in denominator, in parentheses: number of samples from wells (numerator) and number of sampled wells (denominator).

Tab. 3.3. Wyniki analizy pirolitycznej Rock-Eval oraz składu grupowego bituminów z podziałem na mikrofacje w dolomicie głównym dla facji wewnętrznej części platformy węglanowej (Kosakowski i Krajewski, 2014). Objaśnienia dla parametrów geochemicznych i mikrofacji – Tab. 3.1.

Fig. 3.3. Diagram potencjału materii organicznej dolomitu głównego północnej części platformy śląsko-sudeckiej (Kosakowski i Krajewski, 2014). Kółko – osady skłonu, trójkąt – osady bariery, kwadrat – osady platformy. A klasyfikacja wg Hunt (1996). B. Klasyfikacja wg Peters i Cassa (1994).

Fig. 3.4. Diagram zawartości węglowodorów względem całkowitej zawartości materii organicznej dolomitu głównego północnej części platformy śląsko-sudeckiej. Kółko – osady skłonu, trójkąt – osady bariery, kwadrat – osady platformy. Klasyfikacja wg Hunt (1996) i Leenher (1984; z Kosakowski i Krajewski, 2014).

3.3. SKAŁY ZBIORNIKOWE

Dolomit główny Litologia: dolomity i wapienie: greinstony i pakstony

Miąższość: w części północnej do 30 m; w części południowo-zachodniej od 20 do 50 m; w części południowo-wschodniej od kilku do 40 m; w części północno-wschodniej od 20 do ponad 140 m.

Głębokość stropu:

<2000 m w rejonie Kosarzyn-Grzmiąca-Rybaki (południowo-zachodnia część obszaru),

>2500 m – Cybinka 1 (północna część obszaru),

~2000–2500 m w rejonie Radomicko-Sosna-Świebodzin (południowo-wschodnia i południowa część obszaru).

Utwory dolomitu głównego na obszarze przetargowym Cybinka-Torzym są bardzo zróżnicowane mikrofacjalnie. Uległy one prawie całkowitej wczesnej dolomityzacji (Peryt, 1978). Południowa część obszaru jest zlokalizowana na platformie węglanowej i jej skłonie, gdzie występują kilkudziesięciometrowej miaższości greinstony, pakstony, a także bandstony czy madstony/wakstony (Wagner, 2012). W północnej części omawianego obszaru występują niewielkiej miaższości madstony deponowane w głębszym środowisku równi basenowej (Wagner, 2012). Pierwotnie wymienione utwory charakteryzowały się zupełnie odmiennymi własnościami zbiornikowymi. Utwory platformowe przynajmniej lokalnie mogły charakteryzować się dobrą porowatością i przepuszczalnością, które jednak w trakcie diagenezy ulegały pogorszeniu głównie na skutek scementowania przestrzeni porowej i kompakcji chemicznej. Osady basenowe od początku charakteryzowały się słabymi własnościami zbiornikowymi.

Na obszarze przetargowym Cybinka-Torzym udokumentowano następujące procesy diagenetyczne, które miały wpływ na właściwości petrofizyczne skał: dolomityzacja, kalcytyzacja (dedolomityzacja), anhydrytyzacja, wczesno- i późnodiagenetyczna cementacja (dolomit, kalcyt, anhydryt, halit), rekrystalizacja, rozpuszczanie (np. wczesnego cementu aragonitowego, części szkieletów organizmów/bioklastów), kompakcja, stylolityzacja (Peryt, 1978). Procesy diagenetyczne miały różny, z reguły destrukcyjny, wpływ na własności zbiornikowe. Jedynie dolomityzacja mogła teoretycznie przyczynić się do wzrostu mikroporowatości międzykrystalicznej, a procesy rozpuszczania do rozwoju makroporowatości. Czesto w próbkach/rdzeniach Ca2 obserwuje się także zeszczelinowacenie, które o ile szczeliny nie są wtórnie wypełnione cementami – ma bardzo duży wpływ na porowatość i przepuszczalność. Pozostałe zjawiska diagenetyczne (w szczególności cementacja i rozpuszczanie pod ciśnieniem/stylolityzacja) prowadziły do redukcji porowatości i przepuszczalności.

Semyrka i in. (2015) analizowali dane dotyczące porowatości i przepuszczalności osadów Ca2 platformy Grotowa, północnej części platformy wielkopolskiej i wschodniej części platformy Gorzowa, które są położone na północ od omawianego obszaru przetargowego. Wyróżnili tam trzy podstawowe mikrofacje: utwory ziarnozwięzłe (pakstony, greinstony, flotstony i rudstony), mułozwięzłe (madstony i wakstony) oraz mikrobialne (bandstony – maty i budowle mikrobialne; Tab. 3.4). Wydzielone mikrofacje charakteryzują się nie tylko odmiennym rozwojem litoale również zróżnicowanymi logicznym. wielkościami parametrów petrofizycznych. Na podstawie przeprowadzonej analizy statystycznej porównano parametry petrofizyczne wyżej wymienionych trzech mikrofacji i stwierdzono, iż utwory ziarnozwięzłe charakteryzują się najlepszymi właściwościami zbiornikowymi (Tab. 3.4). Dla tych utworów stwierdzono wysoką średnią porowatość efektywną oraz wysoką średnią porowatość dynamiczną dla gazu i ropy. Utwory te charakteryzują się także wysoką przepuszczalnością. Wartości parametrów zbiornikowych Ca2 pomierzone na rdzeniach z otworów wiertniczych zlokalizowanych na omawianym obszarze przedstawia Tab. 3.4. Porowatość w poszczególnych próbkach jest bardzo niska i waha się od wartości bliskich 0 do około 3% i w kilku przypadkach do prawie 6% (dane z 9 otworów; Tab. 3.5). Przepuszczalność omawianych utworów jest również bardzo niska – praktycznie w większości otworów stwierdzono jej brak, a w dwóch otworach stwierdzono do 2–3 mD, a w jednym – ponad 18 mD (otwór Kosobudz 1; Tab. 3.5).

Na obszarze Cybinka-Torzym we wszystkich otworach wiertniczych, w których rdzeniowano utwory Ca2, występują punktowe ślady węglowodorów (najczęściej ropy naftowej; Tab. 3.6). Ze względu na właściwości petrofizyczne skał oraz czas generacji, ekspulsji i migracji węglowodorów, część z otworów poszukiwawczych podczas prowadzenia testów złożowych nie uzyskała przypływu fluidów (Tab. 3.6). Nie oznacza to, że wszystkie otwory z obszaru Cybinka-Torzym miały negatywne wyniki złożowe. W otworach wiertniczych uzyskiwano przypływy solanek (m.in. Kosobudz 1), przypływy zgazowanych solanek, jak również nieprzemysłowy przypływ gazu ziemnego o zawartości 30% węglowodorów (Tab. 3.6). Dodatkowo, na obszarze przetargowym uzyskano w otworze Kosarzyn-8 przemysłowy przypływ ropy naftowej (Tab. 3.6), dokumentując złoże Kosarzyn N.

	Bandstony	Utwory mułozwięzłe	Utwory ziarnozwięzłe
Gęstość szkieletowa [g/cm ³]	2,79	2,75	2,76
Gęstość objętościowa [g/cm ³]	2,47	2,51	2,37
Porowatość efektywna [%]	12,09	8,92	14,16
Średnia kapilarna [µm]	0,49	0,82	1,65
Powierzchnia właściwa [m ² /g]	0,62	0,64	0,49
Średnica progowa [µm]	9,67	6,08	9,43
Porowatość dynamiczna dla ropy [%]	5,79	5,67	8,45
Porowatość dynamiczna dla gazu [%]	10,80	7,92	13,64

Tab. 3.4. Wyniki badań porozymetrycznych subfacji dolomitu głównego (na podstawie Semyrka, 2013, z Waśkiewicz i Kiersnowski, 2020) z obszaru półwyspu Grotowa, północnej części platformy wielkopolskiej i wschodniej części platformy Gorzowa, mogące stanowić analogiczne własności petrofizyczne dla stref facjalnych obszaru przetargowego Cybinka-Torzym.

Nazwa otworu:	Głębokość [m] (ilość próbek)	Przepuszczalność [mD] (średnia)	Porowatość [%] (średnia)	Bitumiczność [%] (średnia)
Bytomiec 1	1894,9–1898,3	0,0189–0,1599	0,08–2,91	0,0118-0,1185
Bytonnee 1	(33)	(0,059)	(0,79)	(0,0338)
Chlabów 1	2092,5-2135,0	0,0434–0,4676	0,18–5,72	0,0133–0,147
	(34)	(0,1688)	(1,11)	(0,0379)
Cybinka 1	2539,7–2569,6 (10)	0,035–0,083	0,11–0,57	Ślady-0,063
Graminan 1	2117,8–2152,0	<0,01–0,2356	0,23–3,3	0,018–0,1975
Grzmiąca i	(24)	(0,0921)	(1,17)	(0,0486)
Graminan 2	2274,8-2316,3	0,0255-0,3364	0,15–2,57	0,015-0,2113
Orziniąca 5	(44)	(0,1021)	(0,6723)	(0,0696)
Kosobudz 1	2631,0–26532 (4)	0,72–18,034	0,41–1,04	0,0205–0,1625
Rybaki 5	1960,5–1988,0 (10)	b.p.	0,8–2,41	0,0270–0,1165
Rybaki 14	1980,0–2021,5 (11)	0,107–0,938	0,28–4,88	0,0225–0,1790
Świebodzin 3	2631,0–2649,0 (10)	0,22–2,527	0,54–2,28	0,033–0,3325

b.p. – brak porowatości /przepuszczalności

Tab. 3.5. Własności zbiornikowe utworów dolomitu głównego (Ca2) na obszarze przetargowym Cybinka-Torzym – zestawione dane pochodzą z dokumentacji otworowych.

Nazwa otworu:	Objawy na rdzeniach:	Odcinki opróbowane [m]:	Wyniki opróbowań:	Zawartość: Solanka [g/l] Gaz [%]
Bytomiae 1		1884,5–1909,0	brak przypływu	
Bytonnec-1	+	1903,0–1937,5	brak przypływu	_
Chlebów 1	–	2087,0-2118,0	brak przypływu	_
	1	2095,0-2135,0	brak przypływu	
Cybinka 1	+	_	-	-
Cybinka 2	+ *	-	erupcja gazu	_
Graminon 1		2114,5-2135,0	brak przypływu	
Orziniąca i	+	2120,9-2155,0	brak przypływu	—
Grzmiąca 3	+	2276,0-2304,1	brak przypływu	—
Kosobudz 1	+	2655,0–2655,0	przypływ solanki	Cl: 176,5908 SiO ₃ : 0,2481 HCO ₃ : 0,2440 SO ₄ ³⁻ : 2,4651 Fe ⁺⁺⁺ : 1,6477 Ca ⁺⁺ : 55,9688 Mg ⁺⁺ : 13,1882 Na ⁺⁺ : 24,7416
Koziczyn-1	+	—	—	Ι
Rybaki 14	+	1980,0–2021,5	przypływ 100 l/h solanki	Cl: 252,4752 SiO ₃ : 0,8357 HCO ₃ : 2,1472 SO ₄ ³ : 3,2101 Fe ⁺⁺⁺ : 2,2493 Ca ⁺⁺ : 18,8476 Mg ⁺⁺ : 21,0672 Na ⁺⁺ : 102,3366
Rybaki 5	+	1961,0–1988,0	po kwasowaniu samoczyn- nie i za pomocą łyżki ścią- gnięto łącznie 49,4 tys. 1 solanki i 10 l ropy naftowej	
Swiebodzin 3	+	_	_	_

*objawy stwierdzone na rdzeniach anhydrytu głównego. **ze względu na duże ucieczki płuczki nie opróbowano dolomitu głównego próbnikiem złoża. Wyniki pochodzą z wykonanego testu produkcyjnego. ***średnia zawartość gazu z testu produkcyjnego (MIDAS, 2022).

Tab. 3.6. Udokumentowane podczas poszukiwań naftowych objawy węglowodorów z otworów wiertniczych obszaru przetargowego Cybinka-Torzym (z pominięciem danych niebędących własnością Skarbu Państwa) – zestawione dane pochodzą z dokumentacji otworowych.

3.4. SKAŁY USZCZELNIAJĄCE I NADKŁADU

Cechsztyński system naftowy jest uszczelniony od spągu i stropu sukcesją ewaporatową cyklotemów, odpowiednio PZ1 oraz PZ2 (Fig. 3.1). Efektywne uszczelnienie stropowe stanowią horyzonty A2 i Na2, które na obszarze przetargowym Cybinka-Torzym osiągają miąższość od 50 do 519 m (odpowiednio otwory Grzmiąca 1 i Świebodzin 3). Pozostałe, zalegające nad nimi skały, stanowią nadkład, który składa się z utworów cyklotemów PZ3 i PZ4 oraz utworów triasu, jury, kredy i kenozoiku (Fig. 3.1). Ich miąższość wynosi 1787,0–2357,0 m (Bytomiec 1 i Cybinka 1).

3.6. GENERACJA, MIGRACJA, AKUMULACJA I PUŁAPKI WĘGLOWODORÓW

Cechsztyński system naftowy

Skały macierzyste: madstony, bandstony, pakstony i greinstony.

Skały zbiornikowe: zdolomityzowane greinstony i pakstony.

Skały uszczelniające: skały zbiorniowe dolomitu głównego stanowią zamknięty system hydrodynamiczny. Od spągu i stropu są izolowane przez utwory ewaporatowe cechsztynu, należące odpowiednio do cyklotemów PZ1 i PZ2.

Skały nadkładu: nadkład stanowią skały osadowe wyższego górnego permu (cyklotem PZ3 i PZ4) oraz mezozoiku (trias, jura i kreda). Mają one łączną miąższość wynoszącą od około 1650 do około 2100 m.

Kształt i wielkość pułapek: pułapki małej i średniej wielkości typu strukturalnego lub strukturalno-tektonicznego.

Wiek i mechanizm utworzenia pułapek: pierwotne pułapki synsedymentacyjne (Kotarba i in., 2000) związane z strefą krawędzi platformy oraz jej podnóża, jak również basenowymi podniesieniami Ca2 (płytkowodne, węglanowe facje ziarniste). Drugi typ jest związany z późniejszymi procesami halotektonicznymi (spiętrzanie soli i wypiętrzanie kompleksu A1g, Ca2 i A2).

Wiek i mechanizm generacji, ekspulsji, akumulacji migracji i weglowodorów: pierwszy generacji węglowodorów etap z utworów dolomitu głównego rozpoczął się jeszcze w trakcie późnego permu (Fig. 3.1). Na tym etapie został wygenerowany autochtoniczny gaz, którego skład zdominowany jest przez metan. Powstanie autochtonicznego gazu wiąże się z działalnością mikrobialną bakterii przeobrażającą substancję organiczną (Kotarba i in., 2000).

Główne stadium generowania węglowodorów na obszarze przetargowym Cybinka-Torzym należy wiązać z wejściem skał dolomitu głównego w tzw. "okno ropne". Oprócz korzystnych własności skał macierzystych i zbiornikowych oraz bardzo dobrego uszczelnienia, bardzo ważnymi czynnikami wpływającymi na generację węglowodorów były wzmożona subsydencja oraz wysoki strumień cieplny. Przyjęto za Dadlezem i in. (1995), że wielkość strumienia cieplnego była najwyższa w późnym permie i wczesnym triasie. Przez resztę mezozoiku ulegał on ochłodzeniu, aż do osiągnięcia pod koniec kredy temperatury zbliżonej do współczesnej.

Wzmożona subsydencja, rozpoczęta w permie, kontynuowała się zaś we wczesnym, środkowym i późnym triasie (Fig. 3.1; Fig. 3.5). W jej wyniku utwory dolomitu głównego, które zostały pogrzebane na głębokość powyżej 1500 m, uległy podgrzaniu temperaturą przekraczającą 80°C, wchodząc w początkowe stadium "okna ropnego" (Kosakowski i Wróbel, 2010). Należy jednakże mieć na uwadze, że ze względu na układ paleogeograficzny dolomitu głównego, determinowany przez zróżnicowany paleorelief podłoża (m.in. platforma anhydrytowa A1g), wejście w okresie triasowym skał macierzystych w etap "okna ropnego" dotyczy głównie utworów facji basenowych (Pletsch i in., 2010). Największe pogrzebanie skał dolomitu głównego (m.in. z obszaru przetargowego Cybinka-Torzym) nastąpiło w późnej jurze (Fig. 3.5). Na ten okres również przypada główne stadium generacji węglowodorów (Fig. 3.1). Ze względu na wysoki strumień cieplny, jaki występował w tej części basenu, skały równi basenowej wyczerpały już w późnym triasie swój potencjał generacyjny, a w przypadku facji platformy węglanowej – w środkowej jurze (Pletsch i in., 2010). Ekspulsja węglowodorów rozpoczęła się we wczesnym triasie w rejonie obejmującym m.in. obszar przetargowy Cybinka-Torzym i trwała do końca późnej jury oraz początku wczesnej kredy, kiedy to została przerwana przez kimeryjskie ruchy orogeniczne (Fig. 3.1). Wyliczony na podstawie modelowań 1D współczynnik transformacji kerogenu dla obszaru m.in. platformy śląsko-sudeckiej wynosi powyżej 98% (Kosakowski i Wróbel, 2010).

Modelowanie 2D wykonane za pomocą oprogramowania Platte River Associates (Kosakowski i Wróbel, 2010) pokazało, że proces migracji rozpoczął się i trwał w podobnym czasie co proces generacji. Na obszarze przetargowym Cybinka-Torzym już we wczesnym triasie zachodziła migracja węglowodorów, która była kontynuowana do późnej jury oraz jeszcze zachodziła w późnej kredzie (Fig. 3.1).

Według Kotarby i Wagnera (2007) proces generacji węglowodorów następował w dwóch ścieżkach. W przypadku pierwszej, proces generacji był jednoetapowy. Wiązał się on z ciągłą i postępującą fazą transformacji materii organicznej, której potencjał węglowodorowy został wyczerpany pod koniec triasu. Druga ścieżka charakteryzuje się dwoma etapami generacji węglowodorów. Pierwszy z nich, podczas której od 80 do 90% masy węglowodorowej zostało wygenerowanych z kerogenu, trwał do końca późnej jury. Dla pozostałej części masy węglowodorowej generacja odbywała się już w okresie pokredowym. W konsekwencji, akumulowanie ropy naftowej w pułapkach nastąpiło na przełomie okresu triasu i jury, nasycenie gazem złóż ropy miało miejsce pod koniec późnej jury, a ostateczna generacja gazu nastąpiła w paleogenie i neogenie.

Badania geologiczne i geochemiczne wskazują, że migracja węglowodorów ze skały macierzystej do skały zbiornikowej odbywała się w zasięgu zaledwie kilkunastu kilometrów (Kotarba i Wagner, 2007).

Fig. 3.5. Krzywe subsydencji spągu dolomitu głównego dla południowo-zachodniej części basenu permskiego (Kosakowski i Wróbel, 2010). Za pomocą czerwonej, przerywanej linii zaznaczono przybliżony zakres pogrążenia dolomitu głównego na obszarze przetargowym Cybinka-Torzym.

4. CHARAKTERYSTYKA ZŁÓŻ WĘGLOWODORÓW 4.1. ZŁOŻA WĘGLOWODORÓW W SĄSIEDZTWIE OBSZARU PRZETARGOWEGO

W granicach obszaru przetargowego Cybinka-Torzym znajduje się:

• złoże ropy naftowej Kosarzyn N (NR 7110; Fig. 4.1, 4.2–4.4).

Ponadto, w bliskim sąsiedztwie obszaru przetargowego udokumentowano siedem złóż węglowodorów (Fig. 4.1). Są to:

- złoże ropy naftowej Radoszyn (NR 7112; Fig. 4.5–4.7),
- złoże ropy naftowej Ołobok (NR 11991; Fig. 4.8–4.10),
- złoże ropy naftowej Gryżyna (NR 7408; Fig. 4.11),
- złoże ropy naftowej Rybaki (NR 4806; Fig. 4.12–4.14),
- złoże ropy naftowej Breslack-Kosarzyn (NR 5498),
- złoże ropy naftowej Kosarzyn E (NR 5987),
- złoże ropy naftowej Kosarzyn-S (NR 5508),

W nieco większej odległości od granic obszaru są położone (Fig. 4.1):

- złoże ropy naftowej Połęcko (NR 19512),
- złoże ropy naftowej Retno (NR 6920),
- złoże ropy naftowej Chałupczyn (NR 20693).

Wszystkie z wymienionych są udokumentowane w horyzoncie dolomitu głównego. Do charakterystyki obszaru przetargowego wybrano pierwszych pięć spośród wymienionych, jako położonych najbliżej i przez to stanowiących potencjalne analogi przyszłych poszukiwań naftowych. Informacje o pozostałych złożach zostaną udostępnione do wglądu na życzenie Zainteresowanych w ramach "DATA ROOMu" w Czytelni NAG w trakcie trwania szóstej rundy przetargów na koncesje węglowodorowe w Polsce.

CYBINKA-TORZYM

4.2. ZŁOŻE ROPY NAFTOWEJ KOSARZYN N

Położenie administracyjne:

vojewództwo – lubuskie powiat – krośnieński, słubicki gmina – Gubin, Cybinka
Powierzchnia całkowita złoża: 77,0 ha
Głębokość zalegania: od -1745,00 do -1783,00 m
Stratygrafia: perm – dolomit główny
Koncesja na wydobywanie: brak
Użytkownik złoża: brak
Data rozpoczęcia eksploatacji: marzec 1995 roku
Nadzór górniczy: Okręgowy Urząd Górniczy – Poznań

Nr MIDAS: 7110

Dokumentacje w NAG PIG-PIB:

- Leszczyński M. 1996. Dokumentacja geologiczna w kat. C złoża ropy naftowej Kosarzyn-N. Inw. 1643/96, CAG PIG, Warszawa. Zatwierdzona decyzją Ministra Środowiska, Zasobów Naturalnych i Leśnictwa z dnia 30.04.1996 r., znak: KZK/2/6593/96.
- Pawłowski A., Jankowski K., Zoła K. 1998. Dokumentacja geologiczna złoża ropy naftowej Kosarzyn-N. Dodatek nr 1. Inw. 593/99, CAG PIG, Warszawa. Zatwierdzony decyzją Ministra Ochrony Środowiska, Zasobów Naturalnych i Leśnictwa z dnia 18.02.1999 r., znak: DG/kzk/ZW/6977/98/99.
- Pawłowski A., Zoła K. 2000. Dokumentacja geologiczna złoża ropy naftowej Kosarzyn-N. Dodatek nr 2. Inw. 1290/2000, CAG PIG, Warszawa. Zatwierdzony decyzją Ministra Środowiska z dnia 26.06.2000 r., znak: DG/kzk/ZW/7161/2000.
- Chruścińska J. 2014. Dodatek nr 3 do dokumentacji geologicznej złoża ropy naftowej Kosarzyn N. Inw. 115/2015, CAG PIG, Warszawa. Zatwierdzony decyzją Ministra Środowiska z dnia 24.12.2014 r., znak: DGK-VIII-4741-8225/94/52358/ 14/MW.

Zasoby:

• Pierwotne wydobywalne zasoby bilansowe (stan na rok 2012): 34,50 tys. t ropy naftowej w kat. B 5,59 mln m^3 gazu ziemnego w kat. B

- Wydobywalne zasoby bilansowe wg stanu na 31.12.2022 roku: brak
- Zasoby przemysłowe wg stanu na 31.12.2022 roku: brak
- Wydobycie w 2022 roku: brak

Budowa złoża: złoże ropy naftowej Kosarzyn N (Fig. 4.4A) zostało odkryte odwiertem Kosarzyn-8 w 1995 roku. Struktura złożowa jest niewielka, wydłużona w kierunku W-E. Ropa naftowa jest zakumulowana w utworach dolomitu głównego (Fig. 4.4B). Kosarzyn N jest złożem typu masywowego. Jego górna granica pokrywa się ze stropem dolomitu głównego, jako dolną granicę przyjęto spąg dolomitu głównego w otworze Kosarzyn-8 (nie stwierdzono występowania wody złożowej). Od strony północnej i południowej złoże ograniczają uskoki. Kopalinę towarzyszącą stanowi gaz ziemny rozpuszczony w ropie.

Otwory zlokalizowane na złożu (Fig. 4.4A; stan na 2022 r.):

Nazwa otworu	Głębokość spągu [m p.p.t.]	Stratygrafia na dnie
KOSARZYN-8	1828,0	perm górny

Parametry złoża i parametry jakościowe kopalin: dane zestawiono w Tab. 4.1.

Historia produkcji: dane zestawiono w Tab. 4.2–4.3 i na Fig. 4.3–4.4. Według informacji zawartych w dodatku nr 3 do dokumentacji geologicznej złoża (Chruścińska, 2014) od marca 1995 roku do listopada 2012 roku ze złoża wydobyto łącznie 34,503 tys. ton ropy naftowej oraz 5,5901 mln m³ gazu ziemnego.

Nazwa parametru	Wartość min.	Wartość max.	Wartość średnia	Jednostka	Uwagi
ciśnienie aktualne			2,530	MPa	
ciśnienie złożowe pierwotne			11,240	MPa	na głębokości -1775 m
głębokość położenia wody pod- ścielającej				m	nie stwierdzono
miąższość efektywna złoża			6,800	m	
nasycenie ropą			84,000	%	
porowatość			3,500	%	
przepuszczalność			1,920	mD	
stopień mineralizacji wody zło- żowej			306,800	g/l	
temperatura złoża			343,150	°K	
temperatura złoża			70,000	°C	
typ chemiczny wody złożowej				-	solanka Cl-Mg-Na-Ca
warunki produkowania				-	pompowanie
współczynnik wydobycia			0,310	-	
wydajność dozwolona V _{dozw}			4,000	t/d	okresowo, stan na 2012 r.
wydajność odwiertów			12,000	t/d	
wydajność początkowa			450,000	t/miesiąc	stan na 1998 r.
wykładnik gazowy			162,000	m ³ /t	
wykładnik wodny			1,914	m ³ /t	
par	ametry jako	ściowe ropy	naftowej (k	opalina głów	vna)
Nazwa parametru	Wartość min.	Wartość max.	Wartość średnia	Jednostka	Uwagi
ciężar właściwy ropy	0,850	0,850	0,850	g/cm ³	
rtęć Hg				%	nie badano
zawartość parafiny			6,890	% wag.	
zawartość siarki			1,170	% wag.	
paramo	etry jakościo	we gazu zie	mnego (kop	alina towarz	ysząca)
Nazwa parametru	Wartość min.	Wartość max.	Wartość średnia	Jednostka	Uwagi
ciepło spalania	33,640	36,710	35,050	MJ/m ³	
wartość opałowa	30,540	33,370	31,850	MJ/m ³	
zawartość C ₂ H ₆	11,883	13,370	12,429	% obj.	
zawartość CH ₄	41,380	42,969	41,961	% obj.	
zawartość dwutlenku węgla	0,020	0,149	0,110	% obj.	
zawartość He	0,000	0,136	0,134	% obj.	
zawartość N ₂	35,774	37,508	36,881	% obj.	
zawartość siarkowodoru	0,000	0,153	0,141	% obj.	
zawartość węglowodorów cięż- kich C ₃₊	6,988	9,179	8,322	% obj.	

Tab. 4.1. Parametry złoża ropy naftowej Kosarzyn N i parametry jakościowe kopalin (MIDAS, 2022 wg Chruścińskiej, 2014).

Stan na dzień	Wydobycie ropy naftowej z wydobywalnych zasobów bilansowych w tys. t					
(rok/miesiąc/dzien)	kat. B	kat. C				
2012/12/31	0,33	_				
2011/12/31	0,69	_				
2010/12/31	1,20	_				
2009/12/31	0,45	_				
2008/12/31	0,09	_				
2007/12/31	_	_				
2006/12/31	0,06	_				
2005/12/31	0,14	_				
2004/12/31	0,90	_				
2003/12/31	0,48	_				
2002/12/31	0,83	_				
2001/12/31	3,90	_				
2000/12/31	4,35	_				
1999/12/31	_	4,20				
1998/12/31	_	4,83				
1997/12/31	_	5,18				
1996/12/31	-	3,56				
1995/12/31	_	3.33				

Tab. 4.2. Historia wydobycia ropy naftowej (kopalina główna) w złożu Kosarzyn N (wg dodatku nr 3 do dokumentacji geologicznej złoża – Chruścińska, 2014).

Stan na dzień	Wydobycie gazu ziemnego bilansowyc	Wydobycie gazu ziemnego z wydobywalnych zasobów bilansowych w mln m ³					
(Fok/miesiąc/uzien)	kat. B	kat. C					
2012/12/31	0,03	_					
2011/12/31	0,04	_					
2010/12/31	0,04	_					
2009/12/31	0,01	_					
2008/12/31	0,00	_					
2007/12/31	_	_					
2006/12/31	0,01	_					
2005/12/31	0,02	_					
2004/12/31	0,09	_					
2003/12/31	0,07	_					
2002/12/31	0,13	_					
2001/12/31	0,48	_					
2000/12/31	0,42	_					
1999/12/31	_	0,39					
1998/12/31	-	0,42					
1997/12/31	-	1,00					
1996/12/31	-	0,38					
1995/12/31	-	2,07					

Tab. 4.3. Historia wydobycia gazu ziemnego (kopalina towarzysząca) w złożu Kosarzyn N (wg dodatku nr 3 do dokumentacji geologicznej złoża – Chruścińska, 2014).

Fig. 4.2. Wykres wydobycia ropy naftowej (kopalina główna) w złożu Kosarzyn N (wg dodatku nr 3 do dokumentacji geologicznej złoża – Chruścińska, 2014).

Fig. 4.3. Wykres wydobycia gazu ziemnego (kopalina towarzysząca) w złożu Kosarzyn N (wg dodatku nr 3 do dokumentacji geologicznej złoża – Chruścińska, 2014).

Fig. 4.4. A. Lokalizacja otworów wiertniczych na złożu ropy naftowej Kosarzyn N i w jego sąsiedztwie (na podstawie CBDG, 2022). **B.** Przekrój przez złoże ropy naftowej Kosarzyn N (na podstawie Chruścińskiej, 2014).

4.3. ZŁOŻE ROPY NAFTOWEJ RADOSZYN

Położenie administracyjne: województwo - lubuskie powiat - świebodziński gmina – Skape, Świebodzin Powierzchnia całkowita złoża: 540,0 ha Głebokość zalegania: od -2285,0 m do -2328,5 m Stratygrafia: cechsztyn – dolomit główny Koncesja na wydobywanie: 4/97 z dnia 4 kwietnia 1997 roku wydana przez Ministra Ohrony Środowiska, Zasobów Naturalnych i Leśnictwa Użytkownik złoża: ORLEN S.A. Data rozpoczęcia eksploatacji: listopad995 roku (eksploatacja próbna) Nadzór górniczy: Okręgowy Urząd Górniczy-Poznań Nr MIDAS: 7112

Dokumentacje w NAG PIG-PIB:

- Piątkowska-Kudła S., Liberska H. 1996. Dokumentacja geologiczna w kat. C wraz z uzupełnieniem złoża ropy naftowej Radoszyn. Inw. 1756/96, CAG PIG, Warszawa. Zatwierdzona decyzją Ministra Ochrony Środowiska, Zasobów Naturalnych i Leśnictwa z dnia 28.05.1996 r., znak KZK/2/6595/96.
- Chmielowiec-Stawska A. 2008. Dodatek nr 1 do dokumentacji geologicznej złoża ropy naftowej Radoszyn w kat. B i C. Inw. 41/2009, CAG PIG, Warszawa. Zatwierdzony decyzją Ministra Środowiska z dnia 19.12.2008 r., znak DGiKGkzk-4791-69/7840/7193/08/AW.

Zasoby:

- Pierwotne wydobywalne zasoby bilansowe (stan na rok 2007): 665,00 tys. t ropy naftowej w kat. B 27,00 tys. t ropy naftowej w kat. C 129,00 mln m³ gazu ziemnego w kat. B 5,00 mln m³ gazu ziemnego w kat. C
- Wydobywalne zasoby bilansowe wg stanu na 31.12.2022 roku: 480,23 tys. t ropy naftowej w kat. B 27,00 tys. t ropy naftowej w kat. C 95,37 mln m³ gazu ziemnego w kat. B 5,00 mln m³ gazu ziemnego w kat. C

Zasoby przemysłowe wg stanu na 31.12.2020 roku: 90,82 tys. t zasobów przemysłowych ropy naftowej w kat. B 3049,41 tys. t zasobów nieprzemysłowych ropy naftowej w kat. B 275,00 tys. t zasobów nieprzemysłowych ropy naftowej w kat. C 23,15 mln m³ zasobów przemysłowych gazu ziemnego w kat. B 591,20 mln m³ zasobów nieprzemysłowych gazu ziemnego w kat. B 53,00 mln m³ zasobów nieprzemysłowych gazu ziemnego w kat. C Wydobycie w 2022 roku:

• Wydobycie w 2022 roku: 11,72 tys. t ropy naftowej 2,97 mln m³ gazu ziemnego

Budowa złoża:

Złoże ropy naftowej Radoszyn (Fig. 4.7A) jest zlokalizowane w północnej części niecki zielonogórskiej. Akumulacja ropy naftowej występuje w najwyższych partiach utworów dolomitu głównego (Fig. 4.7B). Złoże ma nieregularny kształt, w jego północnej i południowej części rozpoznano dwie kulminacje. Górna granica złoża pokrywa się ze stropem utworów dolomitu głównego, dolną granicę w części północnej, zachodniej i wschodniej wyznacza głębokość występowania wody podścielającej stwierdzona w otworze Radoszyn 1, a w części południowej – krawędź platformy anhydrytowo-węglanowej.

Otwory zlokalizowane na złożu (Fig. 4.7A; stan na 2022 r.):

Nazwa otworu	Głębokość spągu [m p.p.t.]	Stratygrafia na dnie
RADOSZYN 1	2898,0	perm
RADOSZYN 2	2395,0	perm górny
RADOSZYN 3	2396,0	perm górny
RADOSZYN 4K	2480,0	perm górny
RADOSZYN 5K	3147,0	perm górny

Parametry złoża i parametry jakościowe kopalin: dane zestawiono w Tab. 4.4.

Historia produkcji: dane zestawiono w Tab. 4.5–4.6 i na Fig. 4.5–4.6.
Nazwa parametru	Wartość min.	Wartość max.	Wartość średnia	Jednostka	Uwagi
ciśnienie aktualne			25,960	MPa	na dzień 18.06.2008 r.
ciśnienie złożowe pierwotne			29,510	MPa	na głębokości -2297 m
głębokość położenia wody pod- ścielającej			-2328,500	m	
miąższość efektywna złoża			14,850	m	dla złoża, na podstawie mapy miąższości efektywnych
miąższość efektywna złoża			15,700	m	w kat. B
miąższość efektywna złoża			14,000	m	w kat. C
miąższość złoża			15,100	m	w kat. C
miąższość złoża			18,300	m	w kat. B
nasycenie ropą			69,000	%	
porowatość efektywna			14,460	%	wartość obliczona, z danych otworowych
porowatość efektywna			11,200	%	w kat. B
porowatość efektywna			6,050	%	w kat. C
przepuszczalność			8,500	mD	
stopień mineralizacji wody zło- żowej			340,210	g/l	
temperatura złoża			361,950	°K	
typ chemiczny wody złożowej				_	solanka chlorkowo-sodowo- -wapniowa
warunki produkowania				_	ekspansja gazu rozpuszczonego w ropie
współczynnik nasycenia węglo- wodorami			0,708	_	w kat. B
współczynnik nasycenia węglo- wodorami			0,732	_	wartość obliczona, z danych otworowych
współczynnik nasycenia węglo- wodorami			0,601	_	w kat. C
współczynnik wydobycia			0,100	_	w kat. C
współczynnik wydobycia			0,200	-	w kat. B
wydajność dozwolona V _{dozw}			16,000	t/d	
wykładnik gazowy			163,000	m ³ /m ³	początkowy dla złoża, z badań PVT dla odwiertu Radoszyn 2
wykładnik gazowy			195,000	m ³ /t	początkowy dla złoża, z badań PVT dla odwiertu Radoszyn 2
par	ametry jako	ściowe ropy	naftowej (k	opalina głów	zna)
Nazwa parametru	Wartość min.	Wartość max.	Wartość średnia	Jednostka	Uwagi
gęstość	0,825	0,848	0,835	g/cm ³	w 20°C
lepkość	4,800	12,260	9,120	cSt	w 20°C
zawartość chlorków	1,700	148,400	19,620	mg/dm ³	
zawartość frakcji benzynowej	22,500	26,000	24,250	% obj.	
zawartość frakcji naftowej	19,500			% obj.	
zawartość parafiny	2,600	9,340	5,070	% wag.	
zawartość siarki	0,470	1,270	0,880	% wag.	

zawartość siarkowodoru	183,000	617,000	351,250	mg/dm ³			
paramo	parametry jakościowe gazu ziemnego (kopalina towarzysząca)						
Nazwa parametru	Wartość min,	Wartość max,	Wartość średnia	Jednostka	Uwagi		
ciepło spalania	46,332	62,410	52,848	MJ/m ³			
gęstość	0,921	1,084	0,986	_	względem powietrza (wartość obliczona)		
liczba Wobbego	48,260	59,960	53,156	MJ/m ³			
siarkowodór H ₂ S			54 655,30	mg/m ³			
wartość opałowa	42,150	57,150	48,270	MJ/m ³			
zawartość C ₂ H ₆	12,972	18,970	15,081	% obj.			
zawartość CH ₄	41,480	48,928	45,263	% obj.			
zawartość dwutlenku węgla	0,150	1,654	1,214	% obj.			
zawartość He	0,006	0,031	0,019	% obj.			
zawartość Hg	0,164	9,367	5,710	µg/Nm ³			
zawartość N ₂	10,770	18,994	15,488	% obj.			
zawartość siarkowodoru	1,253	3,872	2,640	% obj.			
zawartość węglowodorów	76,589	87,621	81,236	% obj.			
zawartość węglowodorów cięż- kich			423,249	g/m ³			
zawartość węglowodorów cięż- kich C ₃₊	14,690	27,171	20,892	% obj.			

Tab. 4.4. Parametry złoża ropy naftowej Radoszyn i parametry jakościowe kopalin (MIDAS, 2022 wg Chmielowiec-Stawskiej, 2008).

Stan na dzień	Wydobycie ropy naftowej z wydobywalnych zasobów bilan- sowych w tys. t				
(rok/miesiąc/uzien)	kat. B	kat. C			
2022/12/31	11,72	_			
2021/12/31	12,54	_			
2020/12/31	12,75	_			
2019/12/31	14,38	_			
2018/12/31	_	_			
2017/12/31	5,70	_			
2016/12/31	_	_			
2015/12/31	4,43	_			
2014/12/31	4,99	_			
2013/12/31	4,90	_			
2012/12/31	4,86	_			
2011/12/31	5,02	_			
2010/12/31	_	_			
2009/12/31	5,40	_			
2008/12/31	5,12	_			
2007/12/31	_	4,90			
2006/12/31	_	4,71			
2005/12/31	_	4,80			
2004/12/31	_	4,92			
2003/12/31	_	4,58			
2002/12/31	_	4,96			
2001/12/31	_	5,27			
2000/12/31	_	7,06			
1999/12/31	_	6,34			

1998/12/31	_	7,10
1997/12/31	_	7,37
1996/12/31	_	7,63
1995/12/31	_	0,45

Tab. 4.5. Historia wydobycia ropy naftowej (kopalina główna) w złożu Radoszyn (lata 2008–2020 na podstawie co-rocznych zestawień zmian zasobów złóż przysyłanych przez przedsiębiorcę wg bazy MIDAS, 2022; lata 1995–2007 wg dodatku nr 1 do dokumentacji geologicznej złoża – Chmielowiec-Stawska, 2008).

Stan na dzień (rok/missioa/dzień)	Wydobycie gazu ziemnego z wydobywalnych zasobów bilanso-	Wydobycie gazu ziemnego z wydobywalnych zasobów pozabilan-
(TOK/Intestąc/uzien)	kat B	kat C
2022/12/31	2.97	
2021/12/31	2.58	_
2020/12/31	2.34	_
2019/12/31	3.00	_
2018/12/31	3.08	_
2017/12/31	0,92	_
2016/12/31	_	_
2015/12/31	0,72	_
2014/12/31	0,78	_
2013/12/31	0,89	_
2012/12/31	0,96	_
2011/12/31	1,01	_
2010/12/31	1,14	_
2009/12/31	1,16	_
2008/12/31	1,06	_
2007/12/31	_	0,96
2006/12/31	_	0,65
2005/12/31	_	0,74
2004/12/31	—	0,73
2003/12/31	Ι	0,65
2002/12/31	Ι	0,64
2001/12/31	Ι	0,76
2000/12/31	-	1,11
1999/12/31	-	1,06
1998/12/31	—	1,22
1997/12/31	—	1,10
1996/12/31	-	1,33
1995/12/31	—	0,08

Tab. 4.6. Historia wydobycia gazu ziemnego (kopalina towarzysząca) w złożu Radoszyn (lata 2008–2020 na podstawie corocznych zestawień zmian zasobów złóż przysyłanych przez przedsiębiorcę wg bazy MIDAS, 2022; lata 1995–2007 wg dodatku nr 1 do dokumentacji geologicznej złoża – Chmielowiec-Stawska, 2008).

Fig. 4.5. Wykres wydobycia ropy naftowej (kopalina główna) w złożu Radoszyn (lata 2008–2020 na podstawie corocznych zestawień zmian zasobów złóż przysyłanych przez przedsiębiorcę wg bazy MIDAS, 2022; lata 1995–2007 wg dodatku nr 1 do dokumentacji geologicznej złoża – Chmielowiec-Stawska, 2008).

Fig. 4.6. Wykres wydobycia gazu ziemnego (kopalina towarzysząca) w złożu Radoszyn (lata 2008–2020 na podstawie corocznych zestawień zmian zasobów złóż przysyłanych przez przedsiębiorcę wg bazy MIDAS, 2022; lata 1995–2007 wg dodatku nr 1 do dokumentacji geologicznej złoża – Chmielowiec-Stawska, 2008).

Fig. 4.7. A. Lokalizacja otworów wiertniczych na złożu ropy naftowej Radoszyn i w jego sąsiedztwie (na podstawie CBDG, 2022). **B.** Przekrój przez złoże ropy naftowej Radoszyn (na podstawie Chmielowiec-Stawskiej, 2008).

4.4. ZŁOŻE ROPY NAFTOWEJ OŁOBOK

Położenie administracyjne:

województwo - lubuskie powiat - świebodziński gmina – Skape Powierzchnia całkowita złoża: 216,0 ha Głębokość zalegania: od -2394,20 m do -2410,50 m TVDSS Stratygrafia: perm – dolomit główny Koncesja na wydobywanie: 2/2011 z dnia 4 marca 2011 roku wydana przez Ministra Środowiska Użytkownik złoża: ORLEN S.A. Data rozpoczęcia eksploatacji: styczeń 2007 roku (test produkcyjny) Nadzór górniczy: Okręgowy Urząd Górniczy-Poznań Nr MIDAS: 11991

Dokumentacje w NAG PIG-PIB:

 Kuczak M. 2008. Dokumentacja geologiczna złoża ropy naftowej Ołobok. Inw. 5894/2008, CAG PIG, Warszawa. Zatwierdzona decyzją Ministra Środowiska z dnia 19.12.2008 roku, znak DGiKGkzk-4791-68/7839/7194/08/AW.

Zasoby:

- Pierwotne wydobywalne zasoby bilansowe (stan na rok 2007): 32,00 tys. t ropy naftowej w kat. C 6,00 mln m³ gazu ziemnego w kat. C
 Wydobywalne zasoby bilansowe wg sta-
- Wydobywalne zasoby bilansowe wg stanu na 31.12.2022 roku: 19,54 tys. t ropy naftowej w kat. C 4,19 mln m³ gazu ziemnego w kat. C
- Zasoby przemysłowe wg stanu na 31.12.2022 roku:

14,86 tys. t zasobów przemysłowych ropy naftowej w kat. C

295,67 tys. t zasobów nieprzemysłowych ropy naftowej w kat. C

brak zasobów przemysłowych gazu ziemnego

62,18 mln m³ zasobów nieprzemysłowych gazu ziemnego w kat. C

 Wydobycie w 2022 roku: 1,32 tys. t ropy naftowej 0,13 mln m³ gazu ziemnego

Budowa złoża:

Złoże ropy naftowej Ołobok (Fig. 4.10A) po raz pierwszy przewiercono odwiertem Ołobok 1 (2006 rok), znajduje się ono w południowo-zachodniej części monokliny przedsudeckiej. Struktura Ołobok jest wydłużona w kierunku SW-NE, akumulację ropy naftowej stwierdzono w najwyższej partii utworów dolomitu głównego (Fig. 4.10B). Od góry złoże uszczelniają ewaporaty cechsztynu, jako dolna granice przyjeto izolinie -2410,5 m, czyli głębokość końcową otworu Ołobok-1K. Poziome granice złoża w większości pokrywają się z zasięgiem platformy weglanowoanhydrytowej, jedynie w części północnej granicę złoża wyznacza linia przecięcia się dolomitu głównego stropu Ζ izolinią -2410,5 m. Jako kopalina towarzyszaca w złożu występuje gaz ziemny rozpuszczony w ropie naftowej.

Otwory zlokalizowane na złożu (Fig. 4.10A; stan na 2022 r.):

Nazwa otworu	Głębokość spągu [m p.p.t.]	Stratygrafia na dnie
OŁOBOK 1	2624,0	perm górny
OŁOBOK-1K	2496,0	perm górny

Parametry złoża i parametry jakościowe kopalin: dane zestawiono w Tab. 4.7.

Historia produkcji: dane zestawiono w Tab. 4.8-4.9 i na Fig. 4.8-4.9. Według informacji zawartych w dokumentacji geologicznej złoża (Kuczak, 2008) do dnia 31 grudnia 2007 roku ze złoża wydobyto łącznie 1144 t ropy naftowej oraz 0,1956 mln m³ gazu ziemnego. W ramach przeprowadzonego testu produkcyjnego i oczyszczania otworu Ołobok 1K od 23 stycznia 2007 roku do 6 lutego 2007 roku ze z łoża wydobyto 248,8 m³ ropy naftowej i 30,2 tys. m³ gazu ziemnego. W trakcie długotrwałego testu pro-05.10.2007 dukcyjnego (od roku do 12.02.2008 roku) ze złoża wydobyto 1105,528 m³ ropy naftowej, 165,339 tys. m³ gazu ziemnego oraz 5,9 m³ wody złożowej.

Nazwa parametru	Wartość min.	Wartość max.	Wartość średnia	Jednostka	Uwagi
ciśnienie aktualne			30,270	MPa	stan na 11.03.2008 r.
ciśnienie złożowe pierwotne			31,000	MPa	na głębokości -2392,3 m
głębokość położenia wody pod- ścielającej				m	nie ustalono
miąższość efektywna złoża			7,800	m	na podstawie mapy miąższości efektywnej
miąższość złoża			14,600	m	całkowita
porowatość efektywna			6,480	%	
przepuszczalność			0,418	mD	
stopień mineralizacji wody zło- żowej			423,780	g/l	
temperatura złoża			88,000	°C	na głębokości -2392,3 m
temperatura złoża			361,150	°K	na głębokości -2392,3 m
typ chemiczny wody złożowej				_	solanka chlorkowo-wapniowo- sodowa (typ genetyczny wg Sulina – Cl-Ca, stopień me- tamorfizmu wg Sulina 0,37)
warunki produkowania				_	ekspansja gazu rozpuszczonego w ropie
współczynnik nasycenia węglo- wodorami			54,900	%	
współczynnik wydobycia			0,100	—	
wydajność dozwolona V _{dozw}	9,000	10,000		t/d	odwiert Ołobok-1K
wykładnik gazowy	167,000	167,000	167,000	m^3/m^3	
par	ametry jako	ściowe ropy	naftowej (k	opalina głów	zna)
Nazwa parametru	Wartość min.	Wartość max.	Wartość średnia	Jednostka	Uwagi
gęstość	0,844	0,846	0,845	g/cm ³	w 15°C
lepkość	9,140	9,610	9,375	cSt	w 20°C
lepkość	36,000	36,000	36,000	API	
zawartość chlorków	0,161	0,431	0,296	mg/dm ³	
zawartość parafiny	2,000	2,900	2,350	% wag.	
zawartość siarki	0,980	0,980	0,980	% wag.	
zawartość siarkowodoru	0,143	0,197	0,170	mg/dm ³	
paramo	etry jakościo	we gazu zie	mnego (kop	alina towarz	ysząca)
Nazwa parametru	Wartość min.	Wartość max.	Wartość średnia	Jednostka	Uwagi
ciepło spalania	49,580	55,790	52,070	MJ/m ³	
gęstość	0,956	1,041	0,996	_	względem powietrza, wartość obliczona
liczba Wobbego	50,130	54,690	52,160	MJ/m3	
wartość opałowa	45,290	51,050	47,590	MJ/m ³	
zawartość C ₂ H ₆	13,220	15,210	14,390	% obj.	
zawartość CH ₄	42,480	46,840	44,790	% obj.	
zawartość dwutlenku węgla	2,473	2,904	2,807	% obj.	

zawartość H ₂	0,002	0,016	0,005	% obj.	
zawartość He	0,014	0,025	0,018	% obj.	
zawartość Hg	1,744	3,944	2,887	$\mu g/m^3$	
zawartość N ₂	13,760	18,360	16,070	% obj.	
zawartość siarkowodoru	2,377	3,366	2,953	% obj.	
zawartość węglowodorów			78,150	% obj.	
zawartość węglowodorów cięż- kich C ₃₊	7,410	11,062	9,164	% obj.	

Tab. 4.7. Parametry złoża ropy naftowej Ołobok i parametry jakościowe kopalin (MIDAS, 2022 wg Kuczak, 2008).

Stan na dzień	Wydobycie ropy naftowej z wydobywalnych zasobów bilansowych w tys. t
(rok/miesiąc/dzien)	kat. C
2022/12/31	1,32
2021/12/31	1,47
2020/12/31	0,81
2019/12/31	0,96
2018/12/31	1,29
2017/12/31	1,40
2016/12/31	1,44
2015/12/31	2,14
2014/12/31	0,20
2013/12/31	_
2012/12/31	_
2011/12/31	_
2010/12/31	_
2009/12/31	_
2008/12/31	0,29
2007/12/31	1,14

Tab. 4.8. Historia wydobycia ropy naftowej w złożu Ołobok (na podstawie corocznych zestawień zmian zasobów złóż przysyłanych przez przedsiębiorcę; lata 2007–2020 wg bazy MIDAS, 2022).

Stan na dzień	Wydobycie gazu ziemnego z wydobywalnych zasobów bilansowych w mln m ³			
(rok/miesiąc/dzien)	kat. C			
2022/12/31	0,13			
2021/12/31	0,16			
2020/12/31	0,09			
2019/12/31	0,11			
2018/12/31	0,14			
2017/12/31	0,15			
2016/12/31	0,24			
2015/12/31	0,50			
2014/12/31	0,03			
2013/12/31	_			
2012/12/31	_			
2011/12/31	_			
2010/12/31	_			
2009/12/31	_			
2008/12/31	0,06			
2007/12/31	0.20			

Tab. 4.9. Historia wydobycia gazu ziemnego w złożu Ołobok (na podstawie corocznych zestawień zmian zasobów złóż przysyłanych przez przedsiębiorcę; lata 2007–2020 wg bazy MIDAS, 2022).

Fig. 4.8. Wykres wydobycia ropy naftowej w złożu Ołobok (na podstawie corocznych zestawień zmian zasobów złóż przysyłanych przez przedsiębiorcę; lata 2007–2020 wg bazy MIDAS, 2022).

Fig. 4.9. Wykres wydobycia gazu ziemnego w złożu Ołobok (na podstawie corocznych zestawień zmian zasobów złóż przysyłanych przez przedsiębiorcę; lata 2007–2020 wg bazy MIDAS, 2022).

Fig. 4.10. A. Lokalizacja otworów wiertniczych na złożu ropy naftowej Ołobok i w jego sąsiedztwie (na podstawie CBDG, 2022). **B.** Przekrój przez złoże ropy naftowej Ołobok (na podstawie Kuczak, 2008).

4.5. ZŁOŻE ROPY NAFTOWEJ GRYŻYNA

Położenie administracyjne:

województwo – lubuskie powiat – krośnieński, świebodziński gmina – Bytnica, Skape

Powierzchnia całkowita złoża: 239,07 ha Głębokość zalegania: strefa roponośna od -2376,30 do -2411,10 m TVDSS, strefa gazonośna od -2316,00 do -2376,30 m TVDSS Stratygrafia: perm – dolomit główny Koncesja na wydobywanie: 23/95/Ł z dnia 14 czerwca 2017 roku wydana przez Ministra Środowiska, decyzja inwestycyjna DGK-IV.4771.3.2020.7.KA z dnia 9 czerwca 2021 roku wydana przez Ministra Klimatu i Środowiska Użytkownik złoża: ORLEN S.A.

Data rozpoczęcia eksploatacji: grudzień 1997 roku (eksploatacja próbna) Nadzór górniczy: Okręgowy Urząd Górniczy-Poznań

Nr MIDAS: 7408

Dokumentacje w NAG PIG-PIB:

- Leszczyński M., Strzelecka D., Strzelecki C., Bednarczyk K. 2000. Dokumentacja geologiczna złoża ropy naftowej i gazu ziemnego Gryżyna. Inw. 388/2001, CAG PIG, Warszawa. Zatwierdzona decyzją Ministra Środowiska z dn. 5.02.2001 r. znak: DG/kzk/EZD/7205/2000/2001.
- Sowa D. 2018. Dokumentacja geologiczno-inwestycyjna złoża ropy naftowej Gryżyna. Inw. 7351/2019, CAG PIG, Warszawa. Zatwierdzona decyzją Ministra Środowiska z dnia 5.09.2019 r., znak: DGK-IV.4742.6.2019.GJ.

Zasoby:

- Pierwotne wydobywalne zasoby bilansowe (stan na rok 2017): 82,00 tys. t ropy naftowej w kat. B 410,00 mln m³ gazu ziemnego (czapa gazowa) w kat. B 13,00 mln m³ gazu ziemnego (rozpuszczony w ropie naftowej) w kat. B
- Wydobywalne zasoby bilansowe wg stanu na 31.12.2022 roku: 72,31 tys. t ropy naftowej w kat. B

21,70 mln m³ gazu ziemnego (czapa gazowa) w kat. B

820,00 mln m³ gazu ziemnego (rozpuszczony w ropie naftowej) w kat. B

• Zasoby przemysłowe wg stanu na 31.12.2020 roku:

55,39 tys. t zasobów przemysłowych ropy naftowej w kat. B

444,92 tys. t zasobów nieprzemysłowych ropy naftowej w kat. B

21,26 mln m³ zasobów przemysłowych gazu ziemnego (czapa gazowa) w kat. B

133,44 mln m³ zasobów nieprzemysłowych gazu ziemnego (czapa gazowa) w kat. B

1260,00 mln m³ zasobów nieprzemysłowych gazu ziemnego (rozpuszczony w ropie naftowej) w kat. B

• Wydobycie w 2022 roku: brak

Budowa złoża:

Złoże ropy naftowej Gryżyna (Fig. 4.11A) zostało odkryte w 1994 roku odwiertem Gryżyna 1 i jest zlokalizowane w północnozachodniej części niecki zielonogórskiej. Struktura złożowa to izolowana mikroplatforma węglanowa, która tworzy niewielką kopułę (amplituda struktury do granicy nasycenia ropa wynosi około 95 m) o stosunkowo regularnym kształcie, wypłaszczonym szczycie i stromych skrzydłach. Na złoże składają się trzy poziomy ropo- i gazonośne w utworach dolomitu głównego (Fig. 4.11B): najniżej, w spągu struktury, występuje poziom roponośny w strefie ropnej, w górnej części struktury znajduje się czapa gazowa, w której wyznaczono strefę przejściową - występowania ropy naftowej w strefie czapy gazowej. Górna granice złoża stanowi strop dolomitu głównego izolowanego nadległymi utworami nieprzepuszczalnymi. Poziome granice poczęści wyznaczono szczególnych złoża umownie; głębokości występowania wody podścielającej nie ustalono. Złoże Gryżyna jest złożem typu masywowo-warstwowego w odniesieniu do zakumulowanego gazu i typu warstwowo-litologicznego (z nieprzepuszczalną barierą od strony południowej) w odniesieniu do ropy.

Otwory zlokalizowane na złożu (Fig. 4.11A; stan na 2022 r.):

Nazwa otworu	Głębokość spągu [m p.p.t.]	Stratygrafia na dnie
GRYŻYNA 1	2485,0	perm górny
GRYŻYNA 2	2531,0	perm górny
GRYŻYNA 3	2492,0	perm górny
GRYŻYNA 4	2525,0	perm górny

Parametry złoża i parametry jakościowe kopaliny: dane zestawiono w Tab. 4.10.

Historia produkcji: według informacji zawartych w dokumentacji geologicznoinwestycyjnej złoża (Sowa, 2018) w ramach testów produkcyjnych (otwory Gryżyna 1, Gryżyna 2, Gryżyna 3 i Gryżyna 4) oraz próbnej eksploatacji (Gryżyna 4) do końca 1998 roku ze złoża wydobyto łącznie 9,67 tys. ton ropy naftowej, 2,1496 mln m³ gazu oraz 0,72 m³ wody. Niewielkie ilości ropy naftowej (20 t) w ramach testów wydobyto również w połowie 2019 roku.

Nazwa parametru	Wartość min.	Wartość max.	Wartość średnia	Jednostka	Uwagi
ciśnienie aktualne			30,270	MPa	strefa roponośna, na dzień 30.09.2013 r.
ciśnienie aktualne			30,680	MPa	strefa gazonośna, na dzień 30.09.2013 r.
ciśnienie złożowe pierwotne			30,660	MPa	strefa roponośna
ciśnienie złożowe pierwotne			30,680	MPa	strefa gazonośna
miąższość efektywna złoża			4,800	m	strefa roponośna
miąższość efektywna złoża			17,000	m	strefa gazonośna
porowatość			9,930	%	strefa roponośna
porowatość			13,560	%	strefa gazonośna
przepuszczalność			4,120	mD	strefa roponośna
przepuszczalność			11,410	mD	strefa gazonośna
temperatura złoża			83,850	°C	strefa roponośna
temperatura złoża			99,850	°C	strefa gazonośna
warunki produkowania				_	strefa roponośna i gazonośna, wolumetryczne
współczynnik nasycenia węglo- wodorami			81,080	%	strefa roponośna
współczynnik nasycenia węglo- wodorami			96,000	%	strefa gazonośna
współczynnik wydobycia			0,160	-	strefa roponośna
współczynnik wydobycia			0,160	—	strefa gazonośna
współczynnik wydobycia			0,650	—	strefa gazonośna
wydajność absolutna V_{abs}	17,530	27,830	23,690	m ³ /d	strefa roponośna
wydajność absolutna V_{abs}	122,078	149,095	135,587	m ³ /min	strefa gazonośna
wykładnik gazowy			137,500	m ³ /m ³	strefa roponośna
par	rametry jako	ościowe ropy	naftowej (k	opalina głów	na)
Nazwa parametru	Wartość min.	Wartość max.	Wartość średnia	Jednostka	Uwagi
ciężar właściwy ropy	0,828	0,845	0,838	g/cm ³	
lepkość			1,660	°E	

temperatura krzepnięcia			5,000	°C	
zawartość chlorków			567,400	mg/dm ³	
zawartość frakcji benzynowej			25,700	% obj.	
zawartość frakcji naftowej			17,900	% obj.	
zawartość Hg			0,813	µg/Nm ³	
zawartość parafiny			11,190	% wag.	
zawartość siarkowodoru	2,704	3,695	3,128	% obj.	
zawartość wody			8,150	% wag.	
parametry jakościowe ga	zu ziemnego) (kopalina t	owarzysząca	, gaz rozpusz	zczony w ropie naftowej)
Nazwa parametru	Wartość min.	Wartość max.	Wartość średnia	Jednostka	Uwagi
ciepło spalania	41,970	59,050	51,820	MJ/m ³	
wartość opałowa	38,170	54,000	47,280	MJ/m ³	
zawartość C ₂ H ₆	12,369	13,367	12,811	% obj.	
zawartość CH ₄	37,743	46,204	40,582	% obj.	
zawartość dwutlenku węgla	2,345	3,220	3,034	% obj.	
zawartość He	0,049	3,220	2,731	% obj.	
zawartość N ₂	18,265	23,913	20,350	% obj.	
zawartość siarkowodoru	2,704	3,695	3,128	% obj.	
zawartość węglowodorów ciężkich C_{3+}	12,465	25,009	20,086	% obj.	
parametry jakośc	ciowe gazu zi	iemnego (koj	palina towar	zysząca, gaz	z czapy gazowej)
Nazwa parametru	Wartość min.	Wartość max.	Wartość średnia	Jednostka	Uwagi
ciepło spalania	27,360	28,930	27,840	MJ/m ³	
wartość opałowa	24,840	26,280	25,280	MJ/m ³	
zawartość C ₂ H ₆	8,223	10,341	9,054	% obj.	
zawartość CH ₄	35,465	36,415	36,171	% obj.	
zawartość dwutlenku węgla	1,078	1,207	1,099	% obj.	
zawartość He	0,000	0,000	0,000	% obj.	
zawartość N ₂	45,308	46,940	46,392	% obj.	
zawartość siarkowodoru	0,994	1,730	1,199	% obj.	
zawartość węglowodorów			51,249	% obj.	
zawartość węglowodorów ciężkich C ₃₊	5,551	6,503	6,024	% obj.	

Tab. 4.10. Parametry złoża ropy naftowej Gryżyna i parametry jakościowe kopalin (MIDAS, 2022 według Sowy, 2018).

Fig. 4.11. A. Lokalizacja otworów wiertniczych na złożu ropy naftowej Gryżyna i w jego sąsiedztwie (na podstawie CBDG, 2022). **B.** Przekrój przez złoże ropy naftowej Gryżyna (na podstawie Sowy, 2018).

4.6. ZŁOŻE ROPY NAFTOWEJ RYBAKI

Położenie administracyjne:

województwo – lubuskie powiat – krośnieński

gmina – Maszewo

Powierzchnia całkowita złoża: 171,68 ha

Głębokość zalegania: od -1628,00 m do -1695,00 m TVDSS

Stratygrafia: perm – dolomit główny

Koncesja na wydobywanie: brak

Użytkownik złoża: brak

Data rozpoczęcia eksploatacji: sierpień 1963 roku

Nadzór górniczy: Okręgowy Urząd Górniczy – Poznań

Nr MIDAS: 4806

Dokumentacje w NAG PIG-PIB:

- Cimaszewski L., Korab Z. 1962. Dokumentacja geologiczna złoża ropy naftowej Rybaki. Inw. Dok/sł/AII/60 CUG, CAG PIG, Warszawa. Zatwierdzona decyzją Prezesa Centralnego Urzędu Geologii z dnia 27.03.1963 r., znak GP4/KZK/M/652/63.
- Cimaszewski L., Korab Z. 1964. Druga dokumentacja wraz z uzupełnieniem złoża ropy naftowej struktury Rybaki. Inw. 5244 CUG, CAG PIG, Warszawa. Zatwierdzona decyzją Prezesa Centralnego Urzędu Geologii z dnia 15.04.1965 r., znak KZK/012/M/1580/65.
- Zoła K., Pyzik M. 1994. Dodatek nr 3 do dokumentacji geologicznej złoża ropy naftowej Rybaki. Inw. 1353/94, CAG PIG, Warszawa. Zatwierdzony decyzją Ministra Ochrony Środowiska, Zasobów Naturalnych i Leśnictwa z dnia 25.10.1994 r., zn. KZK/012/W/6384/94.
- Zoła K. 1999. Dokumentacja geologiczna złoża ropy naftowej Rybaki. Dodatek nr 4 (przeliczenie zasobów). Inw. 1288/2000, CAG PIG, Warszawa. Zatwierdzony decyzją Ministra Środowiska z dnia 26.06.2000 r., z. DG/kzk/ZW/7159/2000.
- Czyż E. 2018. Dokumentacja geologiczno-inwestycyjna złoża ropy naftowej Rybaki. Inw. 1680/2020, CAG PIG, Warszawa. Zatwierdzona decyzją Ministra Klimatu z dnia 28.02.2020 r., znak DGK-IV.4741.164.2018.AK(11).

Zasoby:

• Pierwotne wydobywalne zasoby bilansowe:

138,45 tys. t ropy naftowej w kat. B (stan na rok 2017)

- Wydobywalne zasoby bilansowe wg stanu na 31.12.2022 roku: brak
- Zasoby przemysłowe wg stanu na 31.12.2022 roku: brak
- Wydobycie w 2022 roku: brak

Z końcem roku 1998 zasoby gazu ziemnego zostały skreślone z ewidencji.

Budowa złoża:

Złoże ropy naftowej Rybaki (Fig. 4.14A) zostało odkryte w 1961 roku odwiertem Rybaki 1. Znajduje się ono w północno-zachodniej części monokliny przedsudeckiej. Jest to złoże typu strukturalno-litologicznego o charakterze masywowym. Ropa naftowa jest zakumulowana w utworach dolomitu głównego (Fig. 4.14B) stanowiącymi kolektor porowoszczelinowy. Obecnie złoże Rybaki składa się z jednego pola (pierwotnie były dwa pola, jednak w 1994 roku pole północne wybilansowano). Od góry i od dołu złoże ekranuja nieprzepuszczalne anhydryty i sole kamienne, dolną granicę częściowo stanowi też głębokość występowania wody złożowej. Złoże jest ograniczone dwiema strefami dyslokacyjnymi - od strony południowo-zachodniej i od strony południowej (w obu przypadkach są to uskoki odwrócone).

Otwory zlokalizowane na złożu (Fig. 4.14A; stan na 2022 r.):

Nazwa otworu	Głębokość spągu [m p.p.t.]	Stratygrafia na dnie
RYBAKI 6	2219,7	perm
RYBAKI 15	1784,6	perm górny
RYBAKI 18	1726,0	perm górny
RYBAKI 19	1690,0	perm górny
RYBAKI 20	1752,9	perm górny

Parametry złoża i parametry jakościowe kopalin: dane zestawiono w Tab. 4.11.

Historia produkcji: dane zestawiono w Tab. 4.12–4.13 i na Fig. 4.12–4.13. Według informacji zawartych w dokumentacji geologicznej-inwestycyjnej złoża (Czyż, 2018) od początku eksploatacji, tj. od 18.08.1963 roku do 04.04.2017 roku, ze złoża wydobyto łącznie 138,45 tys. ton ropy naftowej, 21,71 mln m³ gazu ziemnego i 7134 m³ wody złożowej.

Nazwa parametru	Wartość min.	Wartość max.	Wartość średnia	Jednostka	Uwagi
ciśnienie aktualne			6,310	MPa	na głębokości -1670 m TVD, stan na dzień 27.09.2000 r.
ciśnienie złożowe pierwotne			21,020	MPa	na głębokości -1670 m TVD
głębokość położenia wody pod- ścielającej			-1695,000	m	TVDSS
miąższość efektywna złoża			36,000	m	wartość średnia z mapy miąższo- ści efektywnej
porowatość			2,230	%	
przepuszczalność			2,870	mD	
stopień mineralizacji wody zło- żowej			330,000	g/l	
temperatura złoża			68,000	°C	
typ chemiczny wody złożowej				-	chlorkowo-sodowa
warunki produkowania				_	mieszane: napór wody złożowej, sprężystość skał i płynów złożo- wych
współczynnik nasycenia węglo- wodorami			85,000	%	
współczynnik wydobycia			0,230	-	
wykładnik wodny	341,138	3379,712	1303,470	kg/m ³	
par	ametry jako	ościowe ropy	y naftowej (l	kopalina głó	wna)
Nazwa parametruWartość min.Wartość max.Wartość średniaJednostkaUwagi				Uwagi	
gęstość	0,854	0,866	0,862	g/cm ³	
temperatura krzepnięcia			18,330	°C	
zawartość chlorków			7,700	mg/dm ³	
zawartość frakcji benzynowej			20,900	% obj.	
zawartość frakcji naftowej			16,930	% obj.	
zawartość parafiny	1,900	7,770	4,220	% wag.	
zawartość siarkowodoru		65,600	19,500	mg/dm ³	
zawartość wody			0,150	% wag.	
param	etry jakości	owe gazu zie	emnego (kop	oalina towarz	zysząca)
Nazwa parametru	Wartość min.	Wartość max.	Wartość średnia	Jednostka	Uwagi
gęstość			1,437	_	względem powietrza
wartość opałowa			55,300	MJ	
zawartość C ₂ H ₆			20,052	% obj.	
zawartość CH ₄			41,506	% obj.	
zawartość dwutlenku węgla			0,055	% obj.	
zawartość gazoliny			495,308	g/m ³	

zawartość H ₂	 	0,473	% obj.	
zawartość He	 	0,025	% obj.	
zawartość N ₂	 	15,878	% obj.	
zawartość siarkowodoru	 	0,000	% obj.	

Tab. 4.11. Parametry złoża ropy naftowej Rybaki i parametry jakościowe kopalin (MIDAS, 2022 wg Zoły, 1999 oraz Czyż, 2018).

	Wydobycie ropy naftowej
Ston no drioń	z wydobywalnych zasobów
Stan na uzien (nolymiosico/dzień)	bilansowych
(FOK/Intestąc/uzien)	w tys. t
	kat. B
2017/12/31	_
2016/12/31	_
2015/12/31	_
2014/12/31	0,06
2013/12/31	0,19
2012/12/31	0,37
2011/12/31	0,61
2010/12/31	1,32
2009/12/31	0,81
2008/12/31	0,38
2007/12/31	0,55
2006/12/31	0,77
2005/12/31	1,06
2004/12/31	1,07
2003/12/31	0,75
2002/12/31	2,56
2001/12/31	1,99
2000/12/31	1,83
1999/12/31	1,81
1998/12/31	1,82
1997/12/31	0,39
1996/12/31	0,68
1995/12/31	1,00
1994/12/31	1,06
1993/12/31	0,83
1992/12/31	0,93
1991/12/31	0,59
1990/12/31	1,00
1989/12/31	0,99
1988/12/31	1,01
1987/12/31	0,45
1986/12/31	_
1985/12/31	0,01
1984/12/31	0,26
1983/12/31	0,09
1982/12/31	_
1981/12/31	_
1980/12/31	_
1979/12/31	_
1978/12/31	_
1977/12/31	0,24

1976/12/31	0,19
1976/01/01	0,50
1975/01/01	0,28
1974/01/01	0,77
1973/01/01	5,95
1972/01/01	7,99
1971/01/01	4,69
1970/01/01	0,49
1969/01/01	0,19
1968/01/01	14,28
1967/01/01	16,99
1966/01/01	19,28
1965/01/01	28,01
1964/01/01	11,36

Tab. 4.12. Historia wydobycia ropy naftowej (kopalina główna) w złożu Rybaki (na podstawie corocznych zestawień zmian zasobów złóż przysyłanych przez przedsiębiorcę; lata 1992–2017 wg bazy MIDAS, 2022; wcześniejsze lata wg dokumentacji geologiczno-inwestycyjne złoża – Czyż, 2018).

Stan na dzień (rok/miesiąc/dzień)	Wydobycie gazu ziemnego z wydobywalnych zasobów bilansowych w mln m ³		
1077/10/21			
1977/12/31	0,10		
1976/12/31	0,08		
1976/01/01	0,15		
1975/01/01	0,05		
1974/01/01	0,32		
1973/01/01	2,08		
1972/01/01	3,18		
1971/01/01	3,03		
1970/01/01	4,76		
1969/01/01	0,02		
1968/01/01	1,05		
1967/01/01	1,50		
1966/01/01	1,64		
1965/01/01	2,75		
1964/01/01	1,01		

Tab. 4.13. Historia wydobycia gazu ziemnego (kopalina towarzysząca) w złożu Rybaki (wg dokumentacji geologiczno-inwestycyjne złoża – Czyż, 2018).

Fig. 4.12. Wykres wydobycia ropy naftowej (kopalina główna) w złożu Rybaki (na podstawie corocznych zestawień zmian zasobów złóż przysyłanych przez przedsiębiorcę; lata 1992–2017 wg bazy MIDAS, 2022; wcześniejsze lata wg dokumentacji geologiczno-inwestycyjne złoża – Czyż, 2018).

Fig. 4.13. Wykres wydobycia gazu ziemnego (kopalina towarzysząca) w złożu Rybaki (wg dokumentacji geologicznoinwestycyjne złoża – Czyż, 2018).

Fig. 4.14. A. Lokalizacja otworów wiertniczych na złożu ropy naftowej Rybaki i w jego sąsiedztwie (na podstawie CBDG, 2022). **B.** Przekrój przez złoże ropy naftowej Rybaki (na podstawie Czyż, 2018).

5. OTWORY WIERTNICZE 5.1. INFORMACJE OGÓLNE

Na obszarze przetargowym Cybinka-Torzym znajdują się następujące otwory wiertnicze o głębokości >500 m MD osiągające interwały perspektywiczne:

Nazwa otworu	Rok wykonania	Koncesje geologiczne (dla otworów wykonanych po 1994 r.)	Właściciel informacji geologicznej	Głębokość [m]	Stratygrafia na dnie
Bytomiec-1	1971		Skarb Państwa	2240,0	czerwony spągowiec
Chlebów 1	1971		Skarb Państwa	2135,0	cechsztyn
Cybinka 1	1963		Skarb Państwa	2586,0	cechsztyn
Cybinka 2	1970		Skarb Państwa	2617,0	cechsztyn
Grzmiąca 1	1971		Skarb Państwa	2155,0	cechsztyn
Grzmiąca 2	1994	Grzmiąca-Cybinka 79/92/p	Inwestor	2129,0	cechsztyn
Grzmiąca 3	1970		Skarb Państwa	2634,0	czerwony spągowiec
Grzmiąca 5	1996	Grzmiąca-Cybinka	Inwestor	2020,0	cechsztyn
Grzmiąca 7	1997	33/95/p	Inwestor	2120,0	cechsztyn
Kłopot 1	1995	Grzmiąca-Cybinka	Inwestor	2125,0	cechsztyn
Kosarzyn-8	1995	79/92/p	Inwestor	1828,0	cechsztyn
Kosobudz 1	1965		Skarb Państwa	2974,0	czerwony spągowiec
Koziczyn-1	1971		Skarb Państwa	3208,0	czerwony spągowiec
Miłów 1	1989		Skarb Państwa	2401,0	czerwony spągowiec
Radomicko 1	1994	Radomicko-Czarnowo 80/92/p	Inwestor	2138,0	cechsztyn
Rąpice 1A	1995	Grzmiąca-Cybinka 79/92/p	Inwestor	2402,0	perm
Rybaki 5	1963		Skarb Państwa	1988,0	cechsztyn
Rybaki 14	1964		Skarb Państwa	2022,6	cechsztyn
Sosna-1	2012	Torzym 8/2008/p	Skarb Państwa	2455,0	cechsztyn
Świebodzin-1	1962		Skarb Państwa	1503,0	trias dolny
Świebodzin 2	1964		Skarb Państwa	1998,0	cechsztyn
Świebodzin 3	1966		Skarb Państwa	2804,0	czerwony spągowiec

W następnych podrozdziałach przedstawiono ich ogólną charakterystykę. Ponadto, w bliskim sąsiedztwie obszaru znajdują się otwory: Dęby 1, Dachów, Łagów 1, Staropole 1 i Ośno IG-2, które warto uwzględnić w analizie budowy geologicznej obszaru i funkcjonowania systemów naftowych. Lokalizację wymienionych otworów można znaleźć na Fig. 5.1. Przykładowe profile otworów reperowych – Bytomiec-1 i Koziczyn-1 zilustrowano na Fig. 5.2–5.3.

Informacje źródłowe niniejszego rozdziału – dane geologiczne będące własnością Skarbu Państwa, które są niezbędne dla prawidłowej analizy perspektywiczności naftowej obszaru Cybinka-Torzym, zostały zebrane i wycenione w osobnym miejscu – "Projekcie cyfrowychdanych geologicznych". Będzie on dostępny do wglądu w ramach "DATA ROO-Mu" w Czytelni NAG w trakcie trwania szóstej rundy przetargów na koncesje węglowodorowe w Polsce.

Fig. 5.1. Otwory wiertniczne wykonane na obszarze przetargowym Cybinka-Torzym i jego sąsiedztwie.

5.2. BYTOMIEC-1

Głębokość otworu wg miary wiertniczej: 2240,0 m Głębokość otworu wg miary geofizycznej: 2240,0 m Rok zakończenia wiercenia: 1971 Rdzenie: brak

Stratygrafia (CBDG, 2022):

Głębokość [m]		Stratygrafia		
od	do	Stratygrana		
0,0	208,0	kenozoik		
208,0	1597,0	trias		
1597,0	2240,0	perm		
1597,0	1610,0	terygeniczna stropowa seria PZt		
1610,0	1642,0	sól kam. najmłodsza Na4a		
1642,0	1645,5	ił solny czerwony dolny T4a		
1645,5	1747,5	sól kam. młodsza Na3		
1747,5	1784,5	anhydryt główny A3		
1784,5	1787,0	szary ił solny T3		
1787,0	1791,5	anhydryt kryjący A2r		
1791,5	1870,0	sól kamienna starsza Na2		
1870,0	1888,5	anhydryt podstawowy A2		
1888,5	1928,0	dolomit główny Ca2		
1928,0	1987,5	anhydryt górny A1g		
1987,5	2045,9	sól kamienna najstarsza Na1		
2045,9	2192,5	anhydryt dolny A1d		
2102 5	2203.0	wapień cechsztyński Cal		
2192,3	2205,0	łupek miedzionośny T1		
2203,0	2208,5	czerwony spągowiec górny		
2208,5	2240,0	czerwony spągowiec dolny		

Wyniki badań skał:

W dokumentacji wynikowej otworu wiertniczego Bytomiec-1 (Krzyżanowski i Łysik, 1972) znajdują się wyniki analiz fizycznochemicznych 38 próbek z dolomitu głównego z interwału 1890,0-1898,3 m wraz z oznaczeniem porowatości, przepuszczalności, zasoleniem i zawartości bituminów. Ponadto wykonano 7 analiz wody złożowej - z utworów pstrego piaskowca środkowego, spagu cechsztynu i czerwonego spągowca - oraz 5 analiz gazu – z utworów czerwonego spągowca. Wykonano również analizy petrograficzne 3 próbek z czerwonego spagowca serii wylewnej z interwału 2223–2234,3 m (Tab. 5.1–5.3).

Wyniki geofizyki otworowej:

Dokumentacja wynikowa otworu Bytomiec-1 (Krzyżanowski i Łysik, 1972) zawiera wyniki badań geofizyki wiertniczej wykonanej w następującym zakresie (dla podkreślonych profilowań w CBDG znajdują się pliki LAS):

- mikroprofilowania oporności (mPO): 260–1602 m,
- mikroprofilowanie średnicy otworu (mPSr) 900–2231 m,
- profilowanie akustyczne (PA): 260–2235 m,
- profilowanie akustyczne czasu interwałowego (PAdt): 260–2 235 m,
- profilowanie naturalnego promieniowania gamma (PG): 30–2235 m,
- profilowanie krzywizny odwiertu (PK): 200–2225 m,
- profilowanie neutron-gamma (PNG): 30–2235 m,
- profilowania oporności standardowe (PO): 3,5–2233 m,
- profilowanie oporności EL09 (PO): 4–2233 m,
- prof. oporności sondą 3-elektr. ster. LL3 (POst): 258–2234 m,
- profilowanie oporności sterowane (POst): 258–2234 m,
- profilowanie potencjałów naturalnych (PS): 15–1602 m,
- profilowanie średnicy otworu (PSr): <u>3,5–2235 m,</u>
- profilowanie temperatury (PT): 10–225 m.

Pomiarów średnich prędkości i pomiarów pionowego profilowania sejsmicznego w otworze Bytomiec-1 <u>nie wykonano</u>.

Objawy węglowodorów w trakcie wiercenia i próby złożowe: obserwacje zaniku płuczki, obecności węglowodorów w rdzeniu oraz wyniki przeprowadzonych prób złożowych zestawiono w Tab. 5.4–5.6.

Dokumentacje NAG PIG-PIB:

- Krzyżanowski S., Łysik H. 1972. Dokumentacja wynikowa otworu poszukiwawczego Bytomiec-1 [zawiera kartę otworu]. Inw. 113712, CAG PIG, Warszawa.
- Blus R., Szczypa Z. 1973. Dokumentacja pomiarów ciężarów objętościowych i porowatości skał, rok 1972. Inw. 44269,ObO/1438, CAG PIG, Warszawa.

Stratygrafia	Liczba pomiarów	Porowatość min-max (średnia)	Przepuszczalność min-max (średnia)	Bituminy min-max (średnia)
		[%]	[mD]	[%]
dolomit główny	5	0,24–0,9	0,0328-0,0557	0,0168-0,0263
		(0,38)	(0,0474)	(0,0211)
dolomit główny	22	0,08–2,91	0,0189–0,1599	0,0118-0,1185
	55	(0,79)	(0,059)	(0,0338)

Tab. 5.1. Podsumowanie wyników badań fizyczno-chemicznych próbek pobranych z interwału 1890–1894,9 m oraz 1894,9–1898,3 m w otworze Bytomiec-1 na podstawie dokumentacji wynikowej (Krzyżanowski i Łysik, 1972).

Stratygrafia	Głębokość [m]	Metoda	Składniki	g/l
			Cl	146,095
			Br	
			HCO ₃ ⁻	0,122
			SO_4^{2}	4,3921
			NH_4^+	
pstry piaskowiec dolny	1053,4–1082,2	pr. rurowy złoża	Ca ²⁺	0,8729
			Mg^{2+}	0,1445
			Na/K ⁺	90,588
			Al/Fe ³⁺	4,0789
			pН	6,4
			mineralizacja	267,5
			Cl	182,2644
			Br	-
			HCO ₃ ⁻	nie oznaczono
			SO_4^{2}	-
			$\mathrm{NH_4}^+$	-
czerwony spągowiec	2207,0	pr. rurowy złoża	Ca ²⁺	3,6703
		1 2	Mg^{2+}	0,1806
			Na/K ⁺	-
			Al/Fe ³⁺	-
			pН	5,9
			mineralizacja	-
		pr. rurowy złoża	Cl	198,576
			Br	-
			HCO ₃ ⁻	nie oznaczono
			SO42-	-
			NH ₄ ⁺	-
czerwony spagowiec	2205,0		Ca ²⁺	2,5768
	,		Mg^{2+}	0,6019
			Na/K ⁺	-
			Al/Fe ³⁺	-
			pН	6,3
			mineralizacja	-
			Cl	192,1932
			Br	-
			HCO ₃ ⁻	nie oznaczono
			SO42-	-
			NH_4^+	-
czerwony spągowiec	2208,5	pr. rurowy złoża	Ca ²⁺	3,1743
	,	1 2	Mg^{2+}	0,6019
			Na/K ⁺	-
			Al/Fe ³⁺	-
			pН	6,3
			mineralizacja	-
			Cl	197,1576
	2207 5		Br	-
czerwony spągowiec	2207,5	pr. rurowy złoża	HCO ₃ -	nie oznaczono
	1		SO42-	-

			XXX +	
			NH4	-
			Ca ²⁺	2,7775
			Mg ²⁺	0,4815
			Na/K ⁺	-
			Al/Fe ³⁺	-
			pН	6,4
			mineralizacja	-
			Cl	192,9024
			Br	-
			HCO ₃ ⁻	nie oznaczono
czerwony spągowiec			SO_4^{2}	-
	2217,0	pr. rurowy złoża	$\mathrm{NH_4}^+$	-
			Ca ²⁺	2,7775
			Mg^{2+}	0,3011
			Na/K ⁺	-
			Al/Fe ³⁺	-
			pН	6,5
			mineralizacja	-
			Cl	187,2288
			Br	-
			HCO ₃ -	nie oznaczono
			SO_4^{2-}	-
			$\mathrm{NH_4}^+$	-
czerwony spągowiec	2227,0	pr. rurowy złoża	Ca ²⁺	2,7775
			Mg^{2+}	0,1203
			Na/K ⁺	-
			Al/Fe ³⁺	-
			pH	6,4
			mineralizacja	-

Tab. 5.2. Wyniki analiz wody i filtratu w otworze Bytomiec-1 (Krzyżanowski i Łysik, 1972).

Stratygrafia	Interwał [m]	Metoda	Składniki	% obj.
			CH _n	0,055
czerwony spągowiec	2205,0	próbnik kablowy	N_2	98,783
			H_2	1,162
			CH _n	0,038
czerwony snagowiec	2207,0	próbnik kablowy	N_2	98,983
ezer wony spągowiec			H_2	0,979
			CH _n	0,037
czerwony snagowiec	2217,0	próbnik kablowy	N_2	98,976
czerwony spągowiec			H_2	0,967
			CH_n	0,046
azarwany spagowieg	2208,0	próbnik kablowy	N_2	98,985
czei wolty spągowiec			H_2	0,969
			CH _n	0,029
czerwony snagowiec	2240,0	próbnik kablowy	N_2	99,391
czer wony spągowiec			H_2	0,58

Tab. 5.3. Wyniki analiz gazu (w czystym gazie) w otworze Bytomiec-1 (Krzyżanowski i Łysik, 1972).

Stratygrafia	Głębokość [m]	Zanik płuczki [m ³ /24h]
kenozoik	120,0-126,0	60
wapień muszlowy dolny	794,0	30
formacja pomorska	1152,5	12
pstry piaskowiec dolny	1274,5	6
	1333,7	5
	1370,7	4
	1405,4	4

sól kamienna najstarsza Na1	1989,7	5
czerwony spągowiec	2234,3	2

Tab. 5.4. Objawy w trakcie wiercenia (zaniki płuczki) w otworze Bytomiec-1 (Krzyżanowski i Łysik, 1972).

Strotygrofic	Głębokość [m]		Objerry	
Stratygrana	od	do	Objawy	
	1909,1	1914,8	silny zapach bitumiczny, punktowe objawy ropy	
dolomit główny	1914,8	1919,4	silny zapach bitumiczny, wycieki ropy ze szczelin rdzenia	
	1919,4	1923,9	silny zapach bitumiczny, punktowe objawy ropy	

Tab. 5.5. Objawy węglowodorów w rdzeniach w otworze Bytomiec-1 (Krzyżanowski i Łysik, 1972).

Stratygrafia	Głębokość [m]	Metoda	Przypływ	Tempo prz. [m ³ /h]
ret	1053,4–1082,5	pr. rurowy złoża	solanka	2,9/0,5h
dolomit główny	1888,5–1909,0	pr. rurowy złoża	brak przypływu	-
dolomit główny, anhydryt górny	1903,0–1937,4	pr. rurowy złoża	brak przypływu	-
czerwony spągowiec	2207,5-2240	pr. rurowy złoża	śladowy przypływ gazu nie- palnego i płuczki	-

Tab. 5.6. Rezultaty prób złożowych w otworze Bytomiec-1 (Krzyżanowski i Łysik, 1972).

5.3. CHLEBÓW 1

Głębokość otworu wg miary wiertniczej: 2135,0 m Głębokość otworu wg miary geofizycznej: 2135,0 m Rok zakończenia wiercenia: 1971 Rdzenie: brak

Stratygrafia (CBDG, 2022):

Głębokość [m]		Stratygnofia
od	do	Stratygrana
0,0	198,5	kenozoik
198,5	318,0	jura
318,0	1776,5	trias
1776,5	2135,0	perm
1776,5	1788,0	terygeniczna stropowa seria PZt
1788,0	1820,0	sól kam. najmł. ilasta Na4
1820,0	1825,0	ił solny czerwony dolny T4a
1825,0	1953,0	sól kam. młodsza Na3
1953,0	1968,0	anhydryt główny A3
1968,0	1973,0	szary ił solny T3
1973,0	1977,5	anhydryt kryjący A2r
1977,5	2078,0	sól kamienna starsza Na2
2078,0	2089,0	anhydryt podstawowy A2
2089,0	2132,0	dolomit główny Ca2
2132,0	2135,0	anhydryt górny Alg

Wyniki badań skał:

W dokumentacji wynikowej otworu wiertniczego Chlebów 1 (Marciński i in., 1971) znajdują się wyniki analiz fizycznochemicznych 1 próbki z triasu z interwału 320-326 m, 11 próbek z triasu z interwału 628,8-1674,7 m, 2 próbek z szarego iłu solnego z interwału 1972,7-1973,0 m, 11 próbek z anhydrytu podstawowego z interwału 2081,0-2089,0 m oraz 30 próbek z dolomitu głównego z interwału 2092,5-2132,0 m wraz z oznaczeniem porowatości, przepuszczalności, zasoleniem i zawartości bituminów. Wykonano również analizy petrograficzne 9 próbek z dolomitu głównego z interwału 2094,0-2131,5 m (Tab. 5.7).

Wyniki geofizyki otworowej:

Dokumentacja wynikowa otworu Chlebów 1 (Marciński i in., 1971) zawiera wyniki badań geofizyki wiertniczej wykonanych w następującym zakresie (w CBDG znajdują się dla nich pliki LAS):

 azymut skrzywienia otworu (HDA): 450–2125 m;

- kąt skrzywienia otworu (HDEV, DEVI): 0–2125 m;
- pomiar akustyczny stanu zacementowania rur okładzinowych (PAc): 50–2123 m;
- profilowanie naturalnego promieniowania gamma (PG): 13–2135 m;
- profilowanie krzywizny odwiertu (PK): 31,50–2125 m;
- profilowanie neutron–gamma (PNG): 13–2135 m;
- profilowania oporności standardowe (PO): 31,5–2131,5 m;
- profilowanie oporności EL02 (PO): 31–422 m;
- profilowanie oporności EL03 (PO): 30–1390 m;
- profilowanie oporności EL09 (PO): 32–2131 m;
- profilowanie oporności EL14 (PO): 30–2132 m;
- profilowanie oporności EL28 (PO): 35–2132 m;
- prof. oporności sondą 3–elektr. ster. (LL3): 415–2134 m;

- profilowanie oporności sterowane (POst): 419–2131,50 m;
- profilowanie potencjałów naturalnych (SP): 33–1815 m;
- profilowanie średnicy otworu (CALI): 30–2135,0 m.

Pomiarów średnich prędkości i pomiarów pionowego profilowania sejsmicznego w otworze Chlebów 1 <u>nie wykonano</u>.

Objawy węglowodorów w trakcie wiercenia i próby złożowe: obserwacje zaniku płuczki, obecności węglowodorów w rdzeniu oraz wyniki przeprowadzonych prób złożowych zestawiono w Tab. 5.8–5.10.

Dokumentacje NAG PIG-PIB:

- Marciński J., Żurawik J., Łysik H. 1971. Dokumentacja wynikowa otworu poszukiwawczego Chlebów 1 [zawiera kartę otworu] Inw. 111071,CAG PIG, Warszawa.
- Szostak I., Blus R. 1971. Dokumentacja pomiarów ciężarów objętościowych i porowatości skał, rok 1971. Inw. 43960,ObO/1269,CAG PIG, Warszawa.

Stratygrafia	Liczba pomiarów	Porowatość Min-Max (średnia)	Przepuszczalność Min-Max (średnia)	Bituminy Min-Max (średnia)
		[%]	[mD]	[%]
trias	1	22,4	0 (brak)	0,0363
4	11	1,79–21,7	0,06-8,19	0,0118-0,0435
ulas		(8,12)	(1,26)	(0,39)
szary ił solny	2	0–0,2	0-0,1307	0,0333-0,0615
		(0,1)	(0,0654)	(0,0474)
anhydryt podstawowy	11	0,17–0,58	0,0448-0,2091	0,013-0,0263
		(0,32)	(0,1159)	(0,0196)
dolomit główny	20	0,18-5,72	0,0434-0,4676	0,0133-0,147
	50	(1,11)	(0,1688)	(0,0379)

Tab. 5.7. Podsumowanie wyników badań fizyczno-chemicznych próbek pobranych z interwału 320,0–326,0 m (jura dolna), z interwału 628,8–1674,7 m (trias), z interwału 1972,7–1973,0 m (szary ił solny), z interwału 2081,0–2089,0 m (anhydryt podstawowy) oraz z interwału 2092,5–2132,0 m (dolomit główny) w otworze Chlebów 1 na podstawie do-kumentacji wynikowej (Marciński i in., 1971).

Stratygrafia	Głębokość [m]	Zanik płuczki [m³/24h]
dolomit główny	2093,0	10
dolomit główny	2095,5	5
anhydryt górny	2135,0	17

Tab. 5.8. Objawy węglowodorów w trakcie wiercenia (zaniki płuczki) w otworze Chlebów 1 (Marciński i in., 1971).

Class for a class	Głębokość [m]		01
Stratygrana	od	do	Objawy
anhydryt podstawowy	2081,0	2087,6	słaba luminescencja
anhydryt podstawowy, dolo- mit główny	2087,6	2092,5	zapach H ₂ S
	2092,5	2094,3	ślady ropy w szczelinach
	2094,3	2097,7	zapach bitumiczny i H ₂ S, ślady ropy
	2097,7	2100,8	zapach bitumiczny i H ₂ S
	2100,8	2103,0	zapach bitumiczny i ślady j. żółtej ropy
dolomit główny	2103,0	2106,5	zapach bitumiczny i luminescencja
	2106,5	2110,1	zapach bitumiczny i ślady ropy
	2110,1	2113,1	zapach bitumiczny i luminescencja
	2113,1	2128,5	zapach bitumiczny i słaba luminescencja
	2128,5	2131,5	zapach bitumiczny i H ₂ S

Tab. 5.9. Objawy węglowodorów w rdzeniach w otworze Chlebów 1 (Marciński i in., 1971).

Stratygrafia	Głębokość [m]	Metoda	Przypływ	Tempo prz. [m ³ /h]
anhydryt podstawowy, dolomit główny	2087,1–2118,5	pr. rurowy złoża	brak przypływu	-
dolomit główny, anhydryt górny	2095,6–2135,0	pr. rurowy złoża	brak przypływu	-
anhydryt podstawowy, dolomit główny	2084,0–2098,0	hydroperforacja/ kwasowanie/rurki syfonowe	brak przypływu	-

Tab. 5.10. Rezultaty prób złożowych w otworze Chlebów 1 (Marciński i in., 1971).

5.4. CYBINKA 1

Głębokość otworu wg miary wiertniczej: 2586,0 m Głębokość otworu wg miary geofizycznej: 2586,0 m Rok zakończenia wiercenia: 1963 Rdzenie: brak

Stratygrafia (CBDG, 2022):

Głębokość [m]		Stratuonofio
od	do	Stratygrana
0,0	273,0	kenozoik
273,0	356,0	kreda
356,0	541,0	jura
541,0	2126,0	trias
2126,0	2586,0	perm
2126,0	2137,5	terygeniczna stropowa seria PZt
2137,5	2184,0	sól kam. najmł. Na4
2184,0	2187,5	anhydryt pegmatytowy dolny A4a1
2187,5	2193,0	ił solny czerwony T4
2193,0	2334,0	sól kam. młodsza Na3
2334,0	2353,9	anhydryt główny A3
2353,9	2357,0	szary ił solny T3
2357,0	2361,5	anhydryt kryjący A2r
2361,5	2522,0	sól kamienna starsza Na2
2522,0	2538,0	anhydryt podstawowy A2
2538,0	2570,0	dolomit główny Ca2
2570,0	2586,0	anhvdrvt górnv Alg

Wyniki badań skał:

W dokumentacji wynikowej otworu wiertniczego Cybinka 1 (Kienig, 1964a) znajdują się wyniki analiz fizyczno-chemicznych 15 próbek z triasu i dolomitu głównego z interwału wraz z oznaczeniem porowatości, przepuszczalności, zasoleniem i zawartości bituminów. (Tab. 5.11). Ponadto wykonano analizy mikorpaleontologiczne.

Wyniki geofizyki otworowej:

Dokumentacja wynikowa otworu Cybinka 1 (Kienig, 1964a) zawiera wyniki badań geofizyki wiertniczej wykonanych w następującym zakresie (w CBDG brak plików LAS):

- profilowanie naturalnego promieniowania gamma (PG): 3–2186 m,
- profilowanie neutron-gamma (PNG): 3–2186 m,
- profilowania oporności standardowe (PO): 8–2529 m,
- profilowanie średnicy otworu (PSr): 8–2529 m.

 profilowanie krzywizny otworu (PK): 1000–2175 m,

o pomiar temp. po cement. rur: 10–1785 m. Pomiarów średnich prędkości i pomiarów pionowego profilowania sejsmicznego w otworze Cybinka 1 <u>nie wykonano</u>.

Objawy węglowodorów w trakcie wiercenia i próby złożowe: obecność węglowodorów w rdzeniu zestawiono w Tab. 5.12. Prób złożowych nie przeprowadzono.

Dokumentacje NAG PIG-PIB:

• Kienig E. 1964a. Sprawozdanie wynikowe z otworu Cybinka 1. Inw. 7236/2021, CAG PIG, Warszawa.

Stratygrafia	Liczba pomiarów	Porowatość Min-Max	Przepuszczalność Min-Max	Bituminy Min-Max
		[%]	[mD]	[%]
trias i dolomit główny	15	0,11–12,9	0,073	0-0,046

Tab. 5.11. Podsumowanie wyników badań fizyczno-chemicznych próbek triasu i dolomitu głównego otworze Cybinka 1 na podstawie dokumentacji wynikowej (Kienig, 1964a).

Stratygrafia	Głębokość [m]		Objern
	od	do	Objawy
dolomit główny	2538,0	2570,0	zapach bitumiczny

Tab. 5.12. Objawy węglowodorów w rdzeniach w otworze Cybinka 1 (Kienig, 1964a).

5.5. CYBINKA 2

Głębokość otworu wg miary wiertniczej: 2617,0 m Głębokość otworu wg miary geofizycznej: 2617,0 m Rok zakończenia wiercenia: 1970 Rdzenie: brak

Stratygrafia (Marciński i Łysik, 1971):

Głębokość [m]		Stuatyonafia
od	do	Stratygrana
0,0	200,0	kenozoik
200,0	265,0	kreda
265,0	465,0	jura
465,0	2000,0	trias
2000,0	2617,0	perm
2000,0	2017,0	terygeniczna stropowa seria PZt
2017,0	2056,0	sól kam. najmł. Na4
2056,0	2059,0	ił solny czerwony T4
2059,0	2186,0	sól kam. młodsza Na3
2186,0	2214,0	anhydryt główny A3
2214,0	2217,0	szary ił solny T3
2217,0	2224,0	anhydryt kryjący A2r
2224,0	2601,0	sól kamienna starsza Na2
2601,0	2616,0	anhydryt podstawowy A2
2616,0	2617,0	dolomit główny Ca2

Wyniki badań skał:

W dokumentacji wynikowej otworu wiertniczego Cybinka 2 (Marciński i Łysik, 1971) znajdują się wyniki analiz fizycznochemicznych 2 próbek z jury z interwału 423,0–428,0 m, 18 próbek z triasu z interwału 680,0–1835,6 m, oraz 12 próbek z anhydrytu podstawowego z interwału 2602,0–2615,6 m wraz z oznaczeniem porowatości, przepuszczalności, zasoleniem i zawartości bituminów. Ponadto wykonano 1 analizę gazu – z utworów dolomitu głównego (Tab. 5.13– 5.14).

Wyniki geofizyki otworowej:

Dokumentacja wynikowa otworu Cybinka 2 (Marciński i Łysik, 1971) zawiera wyniki badań geofizyki wiertniczej wykonanych w następującym zakresie (w CBDG dostępne są dla nich pliki LAS):

- azymut skrzywienia otworu (HDA): 350–1950 m;
- kąt skrzywienia otworu (HDEV, DEVI): 0–1950 m;
- PG: profilowanie naturalnego promieniowania gamma (PG): 2–1963 m;

- profilowanie krzywizny odwiertu (PK): 25–1980 m;
- profilowanie neutron–gamma (PNG): 3–1964 m;
- profilowania oporności standardowe (PO): 40,5–1960 m;
- profilowanie oporności EL02 (PO): 40–1963 m;
- profilowanie oporności EL03 (PO): 40–1963 m;
- profilowanie oporności EL09 (PO): 42–1964 m;
- profilowanie oporności EL14 (PO): 534–1965 m;
- profilowanie oporności EL19 (PO): 45–522 m;
- profilowanie oporności EL28 (PO): 47–1966 m;
- profilowanie oporności EN16 (PO): 40–520 m;
- profilowanie potencjałów naturalnych (SP): 41–2047,50 m;
- profilowanie średnicy otworu (CALI): 35–1950 m.

Pomiarów średnich prędkości i pomiarów pionowego profilowania sejsmicznego w otworze Cybinka 2 <u>nie wykonano</u>.

Objawy węglowodorów w trakcie wiercenia i próby złożowe: obserwacje zaniku płuczki, zgazowania płuczki, obecności węglowodorów w rdzeniu zestawiono w Tab. 5.15–5.16. W trakcie rdzeniowania stropu dolomitu głównego "walczono" z <u>erupcją</u> <u>gazu</u> przez zatłaczanie otworu płuczką barytową, <u>prób złożowych nie wykonano</u> z powodu przechwycenia przewodu wiertniczego przez czerwony ił solny.

Dokumentacje NAG PIG-PIB:

 Marciński J., Łysik H. 1971. Dokumentacja wynikowa otworu poszukiwawczego Cybinka 2 [zawiera kartę otworu] Inw. 110572, CAG PIG, Warszawa.

Stratygrafia	Liczba pomiarów	Porowatość Min-Max (średnia)	Przepuszczalność Min-Max (średnia)	Bituminy Min-Max (średnia)
		[%]	[mD]	[%]
jura dolna	2	18,01–32,85	0–1,9122	0,0333–0,1735
Jura dollia	2	(25,43)	(0,9561)	(0,1034)
anhudrut na datawayay	10	0,18–0,53	0,0714-1,1969	0,012-0,1005
annyuryt podstawowy	12	(0,293)	(0,2060)	(0,0518)

Tab. 5.13. Podsumowanie wyników badań fizyczno-chemicznych próbek pobranych z interwału 423,0–428,0 m (jura dolna) oraz z interwału 2602,0–2615,6 m (anhydryt podstawowy) w otworze Cybinka 2 na podstawie dokumentacji wynikowej (Marciński i Łysik, 1971).

Stratygrafia	Interwał [m]	Metoda	Składniki	% obj.
			CH_4	7,2758
			C_2H_6	1,5328
			C_3H_8	0,9299
			i-C ₄ H ₁₀	0,0644
			$n-C_4H_{10}$	0,266
			i-C ₅ H ₁₂	0,0685
dolomit główny	2616.0 2617.0		n-C ₅ H ₁₂	0,1083
dolollin glowily	2010,0-2017,0	pr. rurowy 2102a	C ₆ H ₁₄	0,0133
			C ₇ H ₁₆	0,0037
			C ₈ H ₁₈	0,0017
			CO_2	0,613
			N ₂	89,1219
			He	0,0007
			H_2	śladowy

Tab. 5.14. Wyniki analiz gazu (w czystym gazie) w otworze Cybinka 2 (Marciński i Łysik, 1971).

Stratygrafia	Głębokość [m]	Zanik płuczki [m ³ /24h]
pstry piaskowiec środkowy	1622,8–1653,5	9
pstry piaskowiec dolny	1681,0	5
pstry piaskowiec dolny	1687,5	5
anhydryt podstawowy	2615,6	12
Stratygrafia	Głębokość [m]	Zgazowanie płuczki
anhydryt podstawowy	2615,6	wyrzut płuczki 1,3–1 m ³
anhydryt podstawowy/dolomit	2615 6 2617	wyrzuty płuczki 10 m ³ /3-5 min. Pgł. z 70 do 150 atm./8h, zatło-
główny	2013,0-2017	czenie otworu płuczką barytową

Tab. 5.15. Objawy w trakcie wiercenia (zaniki płuczki/zgazowania) w otworze Cybinka 2 na podstawie dokumentacji wynikowej (Marciński i Łysik, 1971).

Stratygrafia	Głębokość [m]		Objawy
anhydryt podstawowy	2604,2	2606,4	słaby zapach bitumiczny

Tab. 5.16. Objawy węglowodorów w rdzeniach w otworze Cybinka 2 (Marciński i Łysik, 1971).

5.6. GRZMIĄCA 1

Głębokość otworu wg miary wiertniczej: 2155,0 m

Glębokość otworu wg miary geofizycznej: 2155,0 m

Rok zakończenia wiercenia: 1971

Rdzenie: 2064,3–2069,7 m, 2 skrzynki, Magazyn rdzeni wiertniczych w Michałowie

Stratygrafia (CBDG, 2022):

Głębokość [m]		Stuatyonofia
od	do	Stratygrana
0,0	193,0	kenozoik
193,0	211,5	kreda
211,5	465,0	jura
465,0	1866,0	trias
1866,0	2155,0	perm
1866,0	1876,0	terygeniczna stropowa seria PZt
1876,0	1879,0	sól kam. najmł. stropowa Na4b2
1879,0	1881,0	ił solny czerwony górny T4b
1881,0	1916,0	sól kam. najmłodsza Na4a
1916,0	1925,0	ił solny czerwony dolny T4a
1925,0	2032,5	sól kam. młodsza Na3
2032,5	2057,5	anhydryt główny A3
2057,5	2061,0	szary ił solny T3
2061,0	2067,0	anhydryt kryjący A2r
2067,0	2107,0	sól kamienna starsza Na2
2107,0	2117,0	anhydryt podstawowy A2
2117,0	2148,0	dolomit główny Ca2
2148,0	2155,0	anhydryt górny A1g

Wyniki badań skał:

W dokumentacji wynikowej otworu wiertniczego Grzmiąca 1 (Marciński i Łysik, 1972) znajdują się wyniki analiz fizyczno-chemicznych 24 próbek z dolomitu głównego i anhydrytu górnego z interwału 2117,8– 2152,0 m wraz z oznaczeniem porowatości, przepuszczalności, zasoleniem i zawartości bituminów (Tab. 5.17).

Wyniki geofizyki otworowej:

Dokumentacja wynikowa otworu Grzmiąca 1 (Marciński i Łysik, 1972) zawiera wyniki badań geofizyki wiertniczej wykonanych w następującym zakresie (w CBDG brak plików LAS):

- mikroprofilowania oporności (mPO): 335–1219 m,
- profilowanie akustyczne (PA): 336–2150 m,
- profilowanie naturalnego promieniowania gamma (PG): 4–2148m,
- profilowanie krzywizny odwiertu (PK): 25–2145 m,
- profilowanie neutron-gamma (PNG): 4–2148 m,
- profilowania oporności standardowe (PO): 36–2148 m,
- profilowanie średnicy otworu (PSr): 36–2133 m.

Pomiarów średnich prędkości i pomiarów pionowego profilowania sejsmicznego w otworze Grzmiąca 1 <u>nie wykonano</u>.

Objawy węglowodorów w trakcie wiercenia i próby złożowe: obserwacje zaniku płuczki, obecności węglowodorów w rdzeniu oraz wyniki przeprowadzonych prób złożowych zestawiono w Tab. 5.18–5.20.

Dokumentacje NAG PIG-PIB:

• Marciński J., Łysik H. 1972. Dokumentacja wynikowa otworu poszukiwawczego Grzmiąca 1 [zawiera kartę otworu] Inw. 114792, CAG PIG, Warszawa.

 Blus, R., Szczypa Z. 1973. Dokumentacja pomiarów ciężarów objętościowych i porowatości skał, rok 1972 [97 otworów wiertniczych] Inw. 44269,ObO/1438, CAG PIG, Warszawa.

Stratygrafia	Liczba pomiarów	Porowatość Min-Max (średnia)	Przepuszczalność Min-Max (średnia)	Bituminy Min-Max (średnia)
		[%]	[mD]	[%]
dolomit główny,	24	0,23–3,3	0,0–0,2356	0,018-0,1975
anhydryt górny	24	(1,17)	(0,0921)	(0,0486)

Tab. 5.17. Podsumowanie wyników badań fizyczno-chemicznych próbek pobranych z interwału 2117,8–2152,0 m w otworze Grzmiąca 1 (Marciński i Łysik, 1972).

Stratygrafia	Głębokość [m]	Zanik płuczki [m³/24h]
jura dolna/trias górny	383,6-601,4	20
wapień muszlowy środkowy	974,8–1007,8	8–15
pstry piaskowiec środkowy i dolny	1359,5–1866,0	0–193

Tab. 5.18. Objawy w trakcie wiercenia (zaniki płuczki) w otworze Grzmiąca 1 (Marciński i Łysik, 1972).

Stratygrafia	Głębokość [m]		Objawy	
	od	do	Objawy	
dolomit główny	2122,0	2126,0	wycieki i punktowe objawy ropy naftowej	
	2126,0	2130,8	wycieki i punktowe objawy ropy naftowej	
dolomit główny, anhydryt górny	2145,0	2149,8	wycieki i punktowe objawy ropy naftowej	

Tab. 5.19. Objawy węglowodorów w rdzeniach w otworze Grzmiąca 1 (Marciński i Łysik, 1972).

Stratygrafia	Głębokość [m]	Metoda	Przypływ	Tempo prz. [m ³ /h]
anhydryt podstawowy, dolomit główny	2114,5–2135,0	pr. rurowy złoża	brak przypływu	-
dolomit główny, anhydryt górny	2120,0–2155,0	pr. rurowy złoża	brak przypływu	-

Tab. 5.20. Rezultaty prób złożowych w otworze Grzmiąca 1 (Marciński i Łysik, 1972).

5.7. GRZMIĄCA 2

Głębokość otworu wg miary wiertniczej: 2129,0 m **Głębokość otworu wg miary geofizycznej:** 2129,0 m **Rok zakończenia wiercenia:** 1994 **Rdzenie:** 2090,0–2103,0 m, 12 skrzynek, Magazyn rdzeni w Chmielniku.

Wyniki badań skał:

W dokumentacji wynikowej otworu wiertniczego Grzmiąca 2 (Piątkowska-Kudła, 1995) znajdują się wyniki analiz fizycznochemicznych 18 próbek z dolomitu głównego wraz z oznaczeniem porowatości, przepuszczalności i gęstości objętościowej (dla 12 z nich). Ponadto wykonano 4 analizy wody złożowej – z utworów dolomitu głównego oraz 1 analizę gazu – z utworów dolomitu głównego. Wykonano również analizy petrograficzne 7 próbek z dolomitu głównego. Dane te są własnością inwestora i nie mogą zostać ujawnione w niniejszym opracowaniu.

Wyniki geofizyki otworowej:

Dokumentacja wynikowa otworu Grzmiąca 2 (Piątkowska-Kudła, 1995) zawiera wyniki badań geofizyki wiertniczej wykonanych w następującym zakresie (<u>w CBDG brak plików LAS</u>):

- o poprawka gęstości (dRoB): 429-2126 m,
- mikroprofilowanie oporności sterowane (mPOst): 1948–2096 m,
- mikrolaterolog sferycznie ogniskowany (MSFL): 1940–2126 m,
- profilowanie porowatości neutronowej w skali wapienia (NPHI): 1927–2126 m,
- profilowanie akustyczne czasu interwałowego (PAdt): 29–2126 m,
- profilowanie czasu akustycznego (PAt2): 29–2126 m,
- profilowanie czasu akustycznego PAt3: 1940–2126 m,
- profilowanie czasu akustycznego PAt4: 1940–2126 m,
- profilowanie naturalnego promieniowania gamma (PG): 0–2096 m,
- profilowanie gazowe (PGaz): 1945–2126 m,
- profilowanie gamma-gamma gęstościowe (PGG): 429–2126 m,
- profilowanie krzywizny odwiertu (PK): 375–1925 m,
- profilowanie neutron-gamma (PNG): 1910–2096 m,
- profilowanie neutron-neutron (PNN): 1910–2096 m,
- Profilowanie neutron-neutron długie (PNNd): 0–1948 m,
- prof. neutron–neutron termiczny na krótkim rozstawie (PNNtk): 0–1948 m,
- profilowania oporności standardowe (PO): 29–2096 m,

- prof. oporności sondą 3–elektr. ster. LL3 (POst): 429–1941 m,
- profilowanie oporności sterowane (POst): 1948–2096 m,
- profilowanie oporności sterowane LLD o dużym zasięgu 1940–2126 m,
- profilowanie oporności sterowane LLS o małym zasięgu (POst): 1940–2126 m,
- profilowanie potencjałów naturalnych (PS): 29–2096 m,
- profilowanie średnicy otworu (PSr): 29–2126 m,
- profilowanie temperatury (PT): 1910–2096 m,
- gęstość objętościowa (elektronowa) w stanie nasyconym (RHOB): 1927–2126 m,
- spektrometr. prof. gamma (sPG): 1927–2126 m.

Sprawozdanie z pomiarów średnich prędkości i pomiarów pionowego profilowania sejsmicznego w otworze Grzmiąca 2 (Leszczyńska i Balcerowicz, 1994) zawiera wyniki pomiarów wykonanych w następującym zakresie (dla podkreślonych profilowań w CBDG dostępne są pliki LAS):

- profilowanie prędk. śr., czas interpolowany podwojony Tx2: 20–2080 m,
- profilowanie prędk. śr., czas interpolowany TW: 20–2080 m,
- profilowanie prędk. śr., czas pomierzony <u>Tr_PW1: 15–2085 m</u>,
- profilowanie prędk. śr., czas pomierzony <u>Tr_PW2: 15–2085 m,</u>
- profilowanie prędk. śr., czas pomierzony <u>Tr_PW3: 15–2085 m.</u>
- profilowanie prędk. śr., czas uśredniony <u>Tr_PO: 15–2085 m,</u>
- profilowanie prędk. śr., gradient czasu interpol. DT_VSP: 20–2080 m.

Dokumentacje NAG PIG-PIB:

- Piątkowska-Kudła S. 1995. Dokumentacja wynikowa otworu poszukiwawczego Grzmiąca-2 Inw. 133695, CAG PIG, Warszawa.
- Leszczyńska D., Balcerowicz H. 1994. Opracowanie pomiarów średnich prędkości w otworze Grzmiąca 2 Opracowanie pionowego profilowania sejsmicznego w otworze Grzmiąca 2 Inw. G151 VS, CAG PIG, Warszawa.

5.8. GRZMIĄCA 3

Głębokość otworu wg miary wiertniczej: 2634,0 m Głębokość otworu wg miary geofizycznej: 2634,0 m Rok zakończenia wiercenia: 1970

Rdzenie: brak.

Stratygrafia (CBDG, 2022):

Głębokość [m]		Stratuarafia	
od	do	Stratygrana	
0,0	201,0	kenozoik	
201,0	234,0	kreda	
234,0	480,0	jura	
480,0	1989,0	trias	
1989,0	2634,0	perm	
1989,0	2003,0	terygeniczna stropowa seria PZt	
2003,0	2007,0	sól kam. najmł. stropowa Na4b2	
2007,0	2010,0	ił solny czerwony górny T4b	
2010,0	2053,0	sól kam. najmłodsza Na4a	
2053,0	2057,0	ił solny czerwony dolny T4a	
2057,0	2160,0	sól kam. młodsza Na3	
2160,0	2175,0	anhydryt główny A3	
2175,0	2185,0	szary ił solny T3	
2185,0	2266,0	sól kamienna starsza Na2	
2266,0	2273,0	anhydryt podstawowy A2	
2273,0	2317,0	dolomit główny Ca2	
2317,0	2420,0	anhydryt górny Alg	
2420,0	2453,0	sól kamienna najstarsza Na1	
2453,0	2611,0	anhydryt dolny A1d	
2611,0	2616,0	wapień cechsztyński Cal	
2616,0	2634,0	czerwony spągowiec	

Wyniki badań skał:

W dokumentacji wynikowej otworu wiertniczego Grzmiąca 3 (Marciński, 1971) znajdują się wyniki analiz fizyczno-chemicznych 5 próbek z jury z interwału 407,4–418,0 m, 46 próbek z triasu z interwału 762,1– 1917,8 m, 44 próbek z dolomitu głównego z interwału 2274,8–2316,3 m, 2 próbek z anhydrytu górnego z interwału 2317,0– 2319,4 m, 3 próbek z czerwonego spągowca z interwału 2627,7–2634,0 m wraz z oznaczeniem porowatości, przepuszczalności, zasolenia i zawartości bituminów. (Tab. 5.21).

Wyniki geofizyki otworowej:

Dokumentacja wynikowa otworu Grzmiąca 3 (Marciński, 1971) zawiera wyniki badań geofizyki wiertniczej wykonanych w następującym zakresie (dla podkreślonych profilowań w CBDG znajdują się pliki LAS):

- <u>średnica nominalna wiercenia (BS): 36–</u>
 <u>2614 m</u>,
- mikroprofilowania oporności (mPO): 370–1063 m,
- profilowanie akustyczne (PA): 897–2624 m,
- profilowanie naturalnego promieniowania gamma (PG): 0–2617 m,
- profilowanie krzywizny odwiertu (PK): 25–2625 m,
- profilowanie neutron-gamma (PNG): 0–2617 m,
- profilowania oporności standardowe (PO): 38–2623 m,
- profilowanie oporności EL09 (PO): 38–2622 m,
- profilowanie oporności sterowane (POst): 370–2633,5 m,
- profilowanie średnicy otworu (PSr): 36–2614 m.

Pomiarów średnich prędkości i pomiarów pionowego profilowania sejsmicznego w otworze Grzmiąca 3 <u>nie wykonano</u>.

Objawy węglowodorów w trakcie wiercenia i próby złożowe: obserwacje zaniku płuczki, obecności węglowodorów w rdzeniu oraz wyniki przeprowadzonych prób złożowych zestawiono w Tab. 5.22–5.24.

Dokumentacje NAG PIG-PIB:

- Marciński J. 1971. Dokumentacja wynikowa otworu poszukiwawczego Grzmiąca 3. Inw. 110478, CAG PIG, Warszawa.
- Szostak I., Blus R. 1971. Dokumentacja pomiarów ciężarów objętościowych i porowatości skał, rok 1971 [88 otworów wiertniczych] Inw. 43960, ObO/1269, CAG PIG, Warszawa.

Stratygrafia	rafia Liczba pomiarów Porowatość (średnia)		Przepuszczalność Min-Max (średnia)	Bituminy Min-Max (średnia)
		[70]	נוווגי	[70]
jura dolna	5	nie oznaczono	1,6782	(0,0387)
trias	46	0,21-20,03	0,03-51,95	
		(5,78)	(3,03)	
dolomit główny	44	0,15–2,57	0,0255-0,3364	0,015–0,2113
		(0,6723)	(0,1021)	(0,0696)
anhydryt górny	2	0,68–0,23	0,1715–0,2082	0,0255-0,024
		(0,46)	(0,1898)	(0,0247)
czerwony spągowiec	3	1,51–18,38	0	0,0215–0, 0255
		(11,88)	0	(0,0228)

Tab. 5.21. Podsumowanie wyników badań fizyczno-chemicznych próbek pobranych z interwału 407,4-418 m (jura), z interwału 762,0–1917,8 m (trias), z interwału 2274,8–2316,3 m (dolomit główny), z interwału 2317,0–2319,4 m (anhydryt górny), z interwału 2627,7–2634 m (czerwony spągowiec) w otworze Grzmiąca 3 na podstawie dokumentacji wynikowej (Marciński, 1971).

Stratygrafia	Głębokość [m]	Stratygrafia	Zanik płuczki [m ³ /24h]
pstry piaskowiec środkowy	1500,0–1600,0	pstry piaskowiec środkowy	44

Tab. 5.22. Objawy w trakcie wiercenia (zaniki płuczki) w otworze Grzmiąca 3 (Marciński, 1971).

Stratygrafia	Głębokość [m]		Obiowy	
	od	do	Objawy	
dolomit główny	2274,8	2276,8	zapach bitumiczny i H ₂ S	
	2285,6	2290	zapach bitumiczny i H ₂ S	
	2292,4	2297,2	objawy ropy i gazu ziemnego	
	2297,2	2302,0	objawy ropy	
	2302,0	2304,2	objawy ropy	
	2304,2	2308,7	objawy ropy	
	2308,7	2313,3	punktowe objawy ropy	
dolomit główny, anhydryt górny	2313,3	2319,4	punktowe objawy ropy	
czerwony spągowiec	2627,3	2634	zapach bitumiczny	

Tab. 5.23. Objawy węglowodorów w rdzeniach w otworze Grzmiąca 3 (Marciński, 1971).

Stratygrafia	Głębokość [m]	Metoda	Przypływ	Tempo prz. [m ³ /h]
dolomit główny	2276,0–2034,1	pr. rurowy złoża	brak przypływu	-

Tab. 5.24. Rezultaty prób złożowych w otworze Grzmiąca 3 (Marciński, 1971).

5.9. GRZMIĄCA 5

Głębokość otworu wg miary wiertniczej: 2020,0 m

Głębokość otworu wg miary geofizycznej: 2020,0 m

Rok zakończenia wiercenia: 1996

Rdzenie: 1960,0–2014,0 m, 54 skrzynki, Magazyn rdzeni w Chmielniku.

Wyniki badań skał:

W dokumentacji wynikowej otworu wiertniczego Grzmiąca 5 (Piątkowska-Kudła i Strzelecka, 1997) znajdują się wyniki analiz fizyczno-chemicznych 67 próbek z dolomitu głównego wraz z oznaczeniem porowatości, przepuszczalności i gęstości objętościowej, wyniki analiz zawartości i składu grupowego bitumin 18 próbek dolomitu głównego oraz opracowanie sedymentologiczne 18 płytek cienkich z tego samego interwału. Dane te, podobnie jak wyniki prób złożowych i objawów węglowodorów w trakcie wiercenia są własnością inwestora i nie mogą zostać ujawnione w niniejszym opracowaniu.

Wyniki geofizyki otworowej:

Dokumentacja wynikowa otworu Grzmiąca 5 (Piątkowska-Kudła i Strzelecka, 1997) zawiera wyniki badań geofizyki wiertniczej wykonanych w następującym zakresie (w CBDG są dostępne dla nich pliki LAS):

- o poprawka gęstości (dRoB): 23-2022 m,
- mikroprofilowanie oporności sterowane (mPOst): 1948–2096 m,
- mikrolaterolog sferycznie ogniskowany (MSFL): 1885–2020 m,
- profilowanie porowatości neutronowej w skali wapienia (NPHI): 1885–2020 m,
- pomiar akustyczny stanu zacementowania rur okładzinowych (Pac): 0,4–1922 m,
- profilowanie akustyczne czasu interwałowego (PAdt): 23–2020 m,
- profilowanie czasu akustycznego (PAt1): 23–2020 m,
- profilowanie czasu akustycznego (PAt2): 23–2020 m,
- profilowanie czasu akustycznego (PAt3): 1885–2020 m,
- profilowanie czasu akustycznego (PAt4): 1885–2020 m,

- profilowanie naturalnego promieniowania gamma (PG): 0–2020 m,
- profilowanie gamma-gamma gęstościowe (PGG): 23–2020 m,
- profilowanie neutron-neutron długie (PNNd): 0–1918,5 m,
- prof. neutron-neutron termiczny na krótkim rozstawie (PNNtk): 0–1918,5 m,
- profilowania oporności standardowe (PO): 23–1120 m,
- profilowanie oporności EL07 (PO): 25–1905 m,
- profilowanie oporności EL28 (PO): 31,5–1905 m,
- profilowanie opoprności sondą gradientową (POg): 1050–1905 m,
- prof. oporności sondą 3–elektr. ster. LL3 (POst): 1050–2020 m,
- profilowanie oporności sterowane LLD o dużym zasięgu 1885–2020 m,
- profilowanie oporności sterowane LLS o małym zasięgu (POst): 1885–2020 m,
- profilowanie potencjałów naturalnych (PS): 23–1120 m,
- profilowanie średnicy otworu (PSr): 22–2022 m,
- gęstość objętościowa (elektronowa) w stanie nasyconym (RHOB): 1897–2022 m,
- spektrometr. prof. gamma (sPG): 1897–2022 m.

Sprawozdanie z pomiarów średnich prędkości i pomiarów pionowego profilowania sejsmicznego w otworze Grzmiąca 5 (Leszczyńska i in., 1996a) zawiera wyniki pomiarów wykonanych w następującym zakresie (w CBDG dostępne są dla nich pliki LAS):

- profilowanie prędk. śr., czas interpolowany podwojony Tx2: 20–1960 m,
- profilowanie prędk. śr., czas interpolowany TW: 20–1960 m,
- profilowanie prędk. śr., czas pomierzony <u>Tr_PW1: 14–1979 m.</u>
- profilowanie prędk. śr., czas pomierzony <u>Tr_PW2: 14–1979 m.</u>
- profilowanie prędk. śr., czas pomierzony <u>Tr_PW3: 59–1979 m,</u>
- <u>profilowanie prędk. śr., czas uśredniony</u> <u>Tr_PO: 14–1979 m,</u>

 profilowanie prędk. śr., gradient czasu interpol. DT_VSP: 20–1960 m.

Dokumentacje NAG PIG-PIB:

- Piątkowska-Kudła S., Strzelecka D. 1997. Dokumentacja wynikowa otworu poszukiwawczego Grzmiąca 5 Inw. 134047, CAG PIG, Warszawa.
 - Leszczyńska D., Balcerowicz H., Czaja E. 1996a. Sprawozdanie z opracowania pomiarów średnich prędkości w otworze Grzmiąca 5. Sprawozdanie z

5.10. GRZMIĄCA 7

Głębokość otworu wg miary wiertniczej: 2120,0 m

Głębokość otworu wg miary geofizycznej: 2120,0 m

Rok zakończenia wiercenia: 1997

Rdzenie: 1962,0–1979,0 m, 18 skrzynek, Magazyn rdzeni w Chmielniku.

Wyniki badań skał:

W dokumentacji wynikowej otworu wiertniczego Grzmiąca 7 (Strzelecka, 1998) znajdują się wyniki analiz fizyczno-chemicznych 67 próbek z dolomitu głównego wraz z oznaczeniem porowatości, przepuszczalności i gęstości objętościowej oraz 9 próbek na zawartość i skład bitumin. Ponadto wykonano analizy petrograficzne 16 próbek z dolomitu głównego. Dane te, podobnie jak wyniki prób złożowych i objawów węglowodorów w trakcie wiercenia są własnością inwestora i nie mogą zostać ujawnione w niniejszym opracowaniu.

Wyniki geofizyki otworowej:

Dokumentacja wynikowa otworu Grzmiąca 7 (Strzelecka, 1998) zawiera wyniki badań geofizyki wiertniczej wykonanych w następującym zakresie (<u>w CBDG brak plików LAS</u>):

- poprawka gęstości (dRoB):
 2027,5–2121,5 m,
- mikrolaterolog sferycznie ogniskowany (MSFL): 2045–2122 m,
- profilowanie porowatości neutronowej w skali wapienia (NPHI): 2027,5–2121,5 m,

opracowania pionowego profilowania sejsmicznego w otworze Grzmiąca-5. Inw. G152 VS, CAG PIG, Warszawa.

 Wolańska A., Leszczyński M. 2006. Dokumentacja prac geologicznych wykonanych na obszarze koncesji na poszukiwanie i rozpoznawanie złóż ropy naftowej i gazu ziemnego Grzmiąca–Cybinka. Inw. 916/2006, CAG PIG, Warszawa.

- profilowanie akustyczne amplitudy rur po cement. (PAc): 0–2044 m,
- profilowanie akustyczne amplitudy skały po cement (PAc): 0–2044 m,
- profilowanie czasu skały po cement (PAc): 0–2044 m,
- profilowanie akustyczne czasu interwałowego (PAdt): 0–2122 m,
- profilowanie czasu akustycznego T1 (PAt1): 74,5–2122 m,
- profilowanie czasu akustycznego T2 (PAt2): 74,5–2046 m,
- profilowanie naturalnego promieniowania gamma (PG): 0–2122 m,
- profilowanie gamma-gamma gęstościowe (PGG): 2027,5–2 121,5 m,
- profilowanie krzywizny odwiertu (PK): 25–2025 m,
- Profilowanie neutron-neutron długie (PNNd): 0–2046 m,
- Profilowanie neutron-neutron krótkie (PNNk): 0–2046 m,
- prof. oporności sondą gradientową (POg): 74,5–2046 m,
- prof. oporności sondą 3–elektr. ster. LL3 (POst): 1250–2025 m,
- profilowanie oporności sterowane (LLD) o dużym zasięgu (POst): 2045–2122 m,
- profilowanie oporności sterowane (LLS)
 o małym zasięgu POst: 2045–2122 m,
- profilowanie potencjałów naturalnych PS: 74,5–1310 m,
- profilowanie średnicy otworu CALI (PSr): 0–2122 m,
- profilowanie średnicy otworu w płaszcz. X (PSrX):794–2046 m,
- profilowanie średnicy otworu w płaszcz. Y (PSrY): 794–2046 m,
- gęstość objętościowa (elektronowa) w stanie nasyconym (RHOB): 2027,5–2121,5 m,
- spektrometr. prof. gamma (sPG): 2027,5–2121,5 m,
- o uśredniony czas przejścia pierwszego wystapienia fali podłużnej (TT2): 2045–2122 m.

Sprawozdanie z pomiarów średnich prędkości i pomiarów pionowego profilowania sejsmicznego w otworze Grzmiąca 7 (Leszczyńska i in., 1998) zawiera wyniki pomiarów wykonanych w następującym zakresie (w CBDG dostępne są dla nich pliki LAS):

- profilowanie prędk. śr., czas interpolowany podwojony Tx2: 20–2060 m,
- profilowanie prędk. śr., czas interpolowany TW: 20–2060 m,
- profilowanie prędk. śr., czas pomierzony <u>Tr_PW1: 16–2071 m,</u>
- profilowanie prędk. śr., czas pomierzony <u>Tr_PW2: 16–2071 m,</u>

- profilowanie prędk. śr., czas pomierzony Tr_PW3: 16–2071 m,
- profilowanie prędk. śr., czas uśredniony Tr_PO: 16–2071 m,
- profilowanie prędk. śr., gradient czasu interpol. DT_VSP: 20–2060 m.

Dokumentacje NAG PIG-PIB:

- Strzelecka D. 1998. Dokumentacja wynikowa otworu poszukiwawczego Grzmiąca 7. Inw. 134213, CAG PIG, Warszawa.
- Wolańska A., Leszczyński M. 2006. Dokumentacja prac geologicznych wykonanych na obszarze koncesji na poszukiwanie i rozpoznawanie złóż ropy naftowej i gazu ziemnego Grzmiąca – Cybinka. Inw. 916/2006, CAG PIG, Warszawa.
- Leszczyńska D., Balcerowicz H., Czaja E. 1998. Opracowanie pomiarów średnich prędkości w otworze Grzmiąca-7 Sprawozdanie z opracowania pionowego profilowania sejsmicznego w otworze Grzmiąca 7. Inw. G153 VS, CAG PIG, Warszawa.

5.11. KŁOPOT 1

Głębokość otworu wg miary wiertniczej: 2125,0 m

Glębokość otworu wg miary geofizycznej: 2125,0 m

Rok zakończenia wiercenia: 1995

Rdzenie: 2053,0–2103,0 m, 50 skrzynek, Magazyn rdzeni w Chmielniku.

Wyniki badań skał:

W dokumentacji wynikowej otworu wiertniczego Kłopot 1 (Piątkowska-Kudła, 1996a) znajduja się wyniki analiz fizycznochemicznych na porozymetrze rtęciowym 8 próbek oraz na porozymetrze helowym 81 dolomitu głównego wraz z oznaczeniem porowatości oraz pomiarem przepuszczalności. Ponadto wykonano 1 analizę wody złożowej i 1 analizę gazu. Wykonano również analizy petrograficzne 20 próbek z dolomitu głównego. Dane te, podobnie jak wyniki prób złożowych i objawów weglowodorów w trakcie wiercenia są własnością inwestora i nie mogą zostać ujawnione w niniejszym opracowaniu.

Wyniki geofizyki otworowej:

Dokumentacja wynikowa otworu Kłopot 1 (Piątkowska-Kudła, 1996a) zawiera wyniki badań geofizyki wiertniczej wykonanych w następującym zakresie (dla podkreślonych profilowań w CBDG znajdują się pliki LAS):

- porowatość akustyczna (APHI): 1889– 2125 m,
- srednica nominalna wiercenia (BS): 1856–2126 m,
- porowatość gęstościowa w skali wapienia (DPHI): 1889–2125 m,
- poprawka gęstości (dRoB): 1889–2125 m,
- Interwałowy czas akustyczny: 1856–2126 m,

- mikrolaterolog sferycznie ogniskowany (MSFL): 1856–2126 m,
- profilowanie porowatości neutronowej w skali wapienia (NPHI): 1889–2125 m,
- profilowanie akustyczne (pełny obraz falowy) (PA): 2050–2100 m,
- pomiar akustyczny stanu zacementowania rur okładzinowych (Pac): 0–1921 m,
- profilowanie akustyczne czasu interwałowego (PAdt): 28–2126 m,
- Tsum (PAP): 28–1922 m,
- profilowanie czasu akustycznego T1 (PAt1): 28–2126 m,
- profilowanie czasu akustycznego T2 (PAt2): 28–2126 m,
- profilowanie czasu akustycznego T3 (PAt3): 1856–2126 m,
- profilowanie czasu akustycznego T4 (PAt4): 1856–2126 m,
- profilowanie naturalnego promieniowania gamma (PG): 1–2119 m,
- profilowanie gazowe (PGaz): 1931–2124 m,
- profilowanie gamma–gamma gęstościowe (PGG): 28–2125 m,
- o porowatość (PHI): 0-1922 m,
- profilowanie krzywizny odwiertu (PK): 25–2120 m,
- Profilowanie neutron-neutron długie (PNNd): 0–1922 m,
- prof. neutron–neutron termiczny na krótkim rozstawie (PNNtk): 0–1922 m,
- profilowanie oporności EL07 (PO): <u>30–1915 m,</u>
- profilowanie oporności EL28 (PO): 36–1915 m,
- prof. oporności sondą gradientową (POg): 28–1915 m,
- prof. oporności sondą 3–elektr. ster. LL3 (POst): 456–2125 m,
- profilowanie oporności sterowane (LLD) o dużym zasięgu (POst): 1856–2126 m,
- profilowanie oporności sterowane (LLS)
 małym zasięgu (POst): 1856–2126 m,
- profilowanie zawartości potasu (POTA): 1889–2125 m,
- profilowanie potencjałów naturalnych PS: 28–446 m,

- profilowanie średnicy otworu CALI (PSr): 28–2125 m,
- Profilowanie upadu warstw (PUW): 1918–2124 m,
- gęstość objętościowa (elektronowa) w stanie nasyconym (RHOB): 1889–2125 m,
- prof. spektrometr. naturalnego prom. gamma bez uranu (sPGbezU): 1889–2125 m,
- profilowanie zawartości toru THOR: 1889–2125 m,
- profilowanie zawartości uranu URAN: 1889–2125 m.

Sprawozdanie z pomiarów średnich prędkości i pomiarów pionowego profilowania sejsmicznego w otworze Kłopot 1 (Leszczyńska i in., 1995a) zawiera wyniki pomiarów wykonanych w następującym zakresie (w CBDG dostępne są dla nich pliki LAS):

- profilowania prędkości średnich: 20–2080 m,
- profilowanie prędk. śr., czas interpolowany podwojony Tx2: 20–2080 m,
- profilowanie prędk. śr., czas interpolowany TW: 20–2080 m,
- profilowanie prędk. śr., czas pomierzony <u>Tr_PW1: 16–2086 m</u>,
- profilowanie prędk. śr., czas pomierzony Tr_PW2: 16–2086 m,
- profilowanie prędk. śr., czas pomierzony Tr_PW3: 16–2086 m,
- profilowanie prędk. śr., czas uśredniony <u>Tr_PO: 16–2086 m</u>,
- profilowanie prędk. śr., gradient czasu interpol. (DT_VSP) 20–2080 m.

- Piątkowska-Kudła S. 1996a. Dokumentacja wynikowa otworu Kłopot 1. Inw. 133758, CAG PIG, Warszawa.
- Leszczyńska D., Balcerowicz H., Czaja E. 1995a. Opracowanie pomiarów średnich prędkości w otworze Kłopot-1. Opracowanie pionowego profilowania sejsmicznego w otworze Kłopot 1. Inw. K87 VS, CAG PIG, Warszawa.

5.12. KOSARZYN-8

Głębokość otworu wg miary wiertniczej: 1828,0 m

Glębokość otworu wg miary geofizycznej: 1828,0 m

Rok zakończenia wiercenia: 1995

Rdzenie: 1773,0–1781,0 m, 8 skrzynek, Magazyn rdzeni w Chmielniku.

Wyniki badań skał:

W dokumentacji wynikowej otworu wiertniczego Kosarzyn-8 (Wojtysiak i Leszczyński, 1995) znajdują się wyniki analiz fizycznochemicznych 5 próbek z dolomitu głównego wraz z oznaczeniem porowatości i przepuszczalności. Ponadto wykonano 2 analizy ropy naftowej i 4 analizy gazu. Dane te, podobnie jak wyniki prób złożowych i objawów węglowodorów w trakcie wiercenia są własnością inwestora i nie mogą zostać ujawnione w niniejszym opracowaniu.

Wyniki geofizyki otworowej:

Dokumentacja wynikowa otworu Kosarzyn-8 (Wojtysiak i Leszczyński, 1995) zawiera wyniki badań geofizyki wiertniczej wykonanych w następującym zakresie (dla podkreślonych profilowań w CBDG znajdują się pliki LAS):

- pomiar akustyczny stanu zacementowania rur okładzinowych (Pac): 0–1771 m,
- profilowanie akustyczne czasu interwałowego (PAdt): 34–1828 m,
- Tsum (PAP): 34–1825 m,
- profilowanie czasu akustycznego T1 (PAt1): 34–1825 m,
- profilowanie czasu akustycznego T2 (PAt2): 34–1825 m,
- profilowanie naturalnego promieniowania gamma (PG): 2–1825,75 m,
- profilowanie gazowe (PGaz): 637–1830 m,
- profilowanie gamma–gamma gęstościowe (PGG): 321–1775 m,
- ∘ porowatość (PHI): 0–1775 m,
- profilowanie krzywizny odwiertu (PK): 25–1775 m,
- Profilowanie neutron-neutron długie (PNNd): 0–1775 m,
- prof. neutron–neutron termiczny na krótkim rozstawie (PNNtk): 0–1775 m,
- o profilowanie oporności EL07 (PO):

<u>36–1817,25 m,</u>

- profilowanie oporności EL28 (PO): 42–1820 m,
- prof. oporności sondą gradientową (POg): 33,5–1 820 m,
- prof. oporności sondą 3–elektr. ster. LL3 (POst): 321–1775 m,
- profilowanie średnicy otworu CALI (PSr): 33–1828 m.

Sprawozdanie z pomiarów średnich prędkości i pomiarów pionowego profilowania sejsmicznego w otworze Kosarzyn-8 (Leszczyńska i in., 1995b) zawiera wyniki pomiarów wykonanych w następującym zakresie (w CBDG dostępne są dla nich pliki LAS):

- profilowanie prędk. śr., czas interpolowany podwojony Tx2: 20–1740 m,
- profilowanie prędk. śr., czas interpolowany TW: 20–1740 m,
- profilowanie prędk. śr., czas pomierzony <u>Tr_PW1: 30–1740 m</u>,
- profilowanie prędk. śr., czas pomierzony <u>Tr_PW2: 30–1740 m</u>,
- profilowanie prędk. śr., czas pomierzony Tr_PW3: 15–1740 m,
- profilowanie prędk. śr., czas uśredniony Tr_PO: 15–1740 m,
- profilowanie prędk. śr., gradient czasu interpol. DT_VSP 20–1740 m.

- Wojtysiak B., Leszczyński M. 1995. Dokumentacja wynikowa otworu Kosarzyn-8. Inw. 133719, CAG PIG, Warszawa.
- Olszewska K., Filipiak M. 2015. Dokumentacja geologiczna zlikwidowanego odwiertu Kosarzyn-8. Inw. 4921/2015, CAG PIG, Warszawa.
- Leszczyński M. 1996. Dokumentacja geologiczna w kat. C złoża ropy naftowej Kosarzyn-N w miejsc. Kosarzyn, gm. Gubin, woj. zielonogórskie. Inw. 1643/96, CAG PIG, Warszawa.
- Leszczyńska D., Balcerowicz H., Czaja E. 1995b. Opracowanie pomiarów średnich prędkości w otworze Kosarzyn-8, Opracowanie pionowego profilowania sejsmicznego w otworze Kosarzyn-8. Inw. K115 VS, CAG PIG, Warszawa.

5.13. KOSOBUDZ 1

Głębokość otworu wg miary wiertniczej: 2974,0 m **Głębokość otworu wg miary geofizycznej:** 2974,0 m **Rok zakończenia wiercenia:** 1965

Rdzenie: brak

Stratygrafia (CBDG, 2022):

Głębokość [m]		Stratygrafia	
od	do	Stratygrana	
0,0	230,0	kenozoik	
230,0	1930,0	jura+trias	
1930,0	2974,0	perm	
1930,0	1941,0	terygeniczna stropowa seria PZt	
1941,0	1979,5	sól kam. najmłodsza Na4a	
1979,5	1981,0	anhydryt pegmatytowy dolny A4a1	
1981,0	1985,0	ił solny czerwony dolny T4a	
1985,0	2106,5	sól kam. młodsza Na3	
2106,5	2133,0	anhydryt główny A3	
2133,0	2134,5	szary ił solny T3	
2134,5	2136,5	anhydryt kryjący A2r	
2136,5	2620,0	sól kamienna starsza Na2	
2620,0	2628,0	anhydryt podstawowy A2	
2628,0	2652,5	dolomit główny Ca2	
2652,5	2676,0	anhydryt górny A1g	
2676,0	2732,5	sól kamienna najstarsza Na1	
2732,5	2761,5	anhydryt dolny A1d	
2761,5	2765,5	wapień cechsztyński Cal	
2765,5	2952,0	czerwony spągowiec górny	
2952,0	2974,0	czerwony spągowiec dolny	

Wyniki badań skał:

W dokumentacji wynikowej otworu wiertniczego Kosobudz 1 (Binder, 1966a) znajdują się wyniki analiz fizyczno-chemicznych 11 próbek z triasu z interwału 817,5– 1481,9 m, 4 próbki z dolomitu głównego i anhydrytu górnego z interwału 2631,9– 2653,2 m, 14 próbek z czerwonego spągowca górnego z interwału 2765,5–2908,6 m wraz z oznaczeniem porowatości, przepuszczalności, zasoleniem i zawartości bituminów. Ponadto wykonano 1 analizę gazu – z utworów dolomitu głównego – i 4 analizy wody – z utworów triasu i permu (Tab. 5.25–5.27).

Wyniki geofizyki otworowej:

Dokumentacja wynikowa otworu Kosobudz 1 (Binder, 1966a) zawiera wyniki badań geofizyki wiertniczej wykonanych w następującym zakresie (w CBDG brak plików LAS):

- profilowanie naturalnego promieniowania gamma (PG): 3–2960 m,
- profilowanie krzywizny odwiertu (PK): 0–2968 m,
- profilowanie neutron-gamma (PNG): 3–2960 m,
- profilowania oporności standardowe (PO): 7–2961 m,
- profilowania laterologiem (PO): 2000–2920 m,
- profilowanie potencjałów naturalnych (PS): 7–2964 m,
- profilowanie średnicy otworu (PSr): 7–2964 m.
- profilowanie temperaturowe (PT): 7–2964 m.
- profilowanie temperaturowe po cementowaniu: 15–1783 m.
- profilowanie temperaturowe po cementowaniu: 2–2333 m.

Pomiarów średnich prędkości i pomiarów pionowego profilowania sejsmicznego w otworze Kosobudz 1 <u>nie wykonano</u>.

Objawy węglowodorów w trakcie wiercenia i próby złożowe: obserwacje obecności węglowodorów w rdzeniu oraz wyniki przeprowadzonych prób złożowych zestawiono w Tab. 5.28–5.29.

- Binder I. 1966a. Geologiczna metryka otworu poszukiwawczego Kosobudz 1 Inw. 7237/2021, CAG PIG, Warszawa.
- Olczak D. 1966. omiary geofizyczne otworu Kosobudz 1 + karta otworu. Inw. 83873, CAG PIG, Warszawa.

Stratygrafia	Liczba pomiarów	Porowatość Min-Max	Przepuszczalność Min-Max	Bituminy Min-Max
		[%]	[mD]	[%]
trias	11	1,24-15,72	0,387-145,41	0,0022-0,0083
dolomit główny	4	0,41-1,04	0,72-18,034	0,0205-0,1625
czerwony spągowiec	10	2,99-10,72	2,459-50,919	ślady
czerwony spagowiec	4	2.17-17.137	3.22-12.9399	ślady

Tab. 5.25. Podsumowanie wyników badań fizyczno-chemicznych próbek pobranych z interwału 817,5–1481,9 m (trias), z interwału 2631,9–2653,2 m (dolomit główny i anhydryt górny), z interwału 2765,5–2804 m (czerwony spągowiec górny) oraz z interwału 2811,0–2908,6 m (czerwony spągowiec górny) w otworze Kosobudz 1 na podstawie dokumentacji wynikowej (Binder, 1966a).

Stratygrafia	Głębokość [m]	Metoda	Składniki	g/l
			Cl	159,57
		-	Br⁻	-
			HCO ₃ ⁻	0,1552
			SO_4^{2}	4,3665
			$\mathrm{NH_4}^+$	-
trias	1402,0-1410,0	przypływ solanki	Ca ²⁺	37,6517
		po perioracji rur	Mg^{2+}	19,7823
			Na/K ⁺	24,9632
			Al/Fe ³⁺	0,9945
			pН	7
			mineralizacja	262,64
			Cl	182,619
			Br⁻	-
			HCO ₃ ⁻	0,305
			SO_4^{2}	0,8475
		1 1 1	$\mathrm{NH_4}^+$	-
czerwony spągowiec	2770,0-2785,0	przypływ solanki	Ca ²⁺	68,1794
		po perforacji rur	Mg^{2+}	11,9898
			Na/K ⁺	17,4894
		-	Al/Fe ³⁺	0,7931
			pН	7,5
			mineralizacja	283,46
		-	Cl	176,5908
			Br⁻	-
			HCO ₃ ⁻	0,244
			SO_4^{2-}	2,4651
dalamit alémmy			$\mathrm{NH_4}^+$	-
dolomit główny,	2635,0-2655,0	przypływ solanki	Ca ²⁺	55,9688
annydryt gorny		po perioracji rur	Mg^{2+}	13,1882
			Na/K ⁺	24,7416
			Al/Fe ³⁺	1,6477
			рН	7
			mineralizacja	280,6
			Cl	46,098
			Br⁻	-
			HCO ₃ ⁻	0,122
			SO_4^{2-}	1,2716
		hużkowanie niemu	NH_4^+	-
trias	785,0–795,0	no perforacij	Ca ²⁺	3,0528
		po perioracji	Mg^{2+}	0,6594
			Na/K ⁺	23,172
			Al/Fe ³⁺	-
			pН	7
			mineralizacja	79

Tab. 5.26. Wyniki analiz wody i filtratu w otworze Kosobudz 1 (Binder, 1966a).

Stratygrafia	Głębokość [m]	Metoda	Składniki	% obj.
	, , , , , , , , , , , , , , , , , , ,		CH_4	96,64
			C_2H_6	2,3
			C_3H_8	0,74
			$i-C_4H_{10}$	0,22
	2790,0	degazacja rdzenia	$n-C_4H_{10}$	0,1
			i-C ₅ H ₁₂	-
ozerwony snagowieg			$n-C_5H_{12}$	-
czerwony spągowiec			$C_{6}H_{14}$	-
			$C_7 H_{16}$	-
			C_8H_{18}	-
			CO_2	-
			N_2	-
			He	-
			H_2	1,3

Tab. 5.27. Wyniki analiz gazu (w czystym gazie) w otworze Kosobudz 1 (Binder, 1966a).

Stratygrafia	Głębokość [m]		Obiowy	
Stratygrana	od	do	Objawy	
dolomit główny	2631,0	2646,0	zapach węglowodorów	
dolomit główny, anhydryt górny	2646,0	2653,2	słaby zapach węglowodorów	

Tab. 5.28. Objawy węglowodorów w rdzeniach w otworze Kosobudz 1 (Binder, 1966a).

Stratygrafia	Głębokość MD [m]	Metoda	Przypływ	Tempo prz. [m ³ /h]
pstry piaskowiec	1570,0–1660,0	łyżkowanie	ściągnięto 29,9 m ³	180 l/h
czerwony spągowiec	2774,0-2810,0	perforacja i łyżkowanie	ściągnięto łącznie 76 380 l	130 l/h
dolomit główny, anhydryt górny	2635,0–2655,0	perforacja i łyżkowanie	ściągnięto łącznie 73 400 l	-
pstry piaskowiec	1402,0–1410,0	perforacja i łyżkowanie	ściągnięto łącznie 34 000 l	250 l/h
kajper	795,0–785,0	perforacja i łyżkowanie	ściągnięto łącznie 22 500 l	-

Tab. 5.29. Rezultaty prób złożowych w otworze Kosobudz 1 (Binder, 1966a).

5.14. KOZICZYN-1

Głębokość otworu wg miary wiertniczej: 3208,0 m Rok zakończenia wiercenia: 1971 Rdzenie: 2848,0–2855,0 m, 2 skrzynki, Magazyn rdzeni w Michałowie.

Stratygrafia (CBDG, 2022):

Głębokość [m]		Stratygnafia	
od	do	Stratygrana	
0,0	194,0	kenozoik	
194,0	232,0	kreda	
232,0	482,0	jura	
482,0	1 948,0	trias	
1 948,0	3 208,0	perm	

1 948,0	1 957,5	terygeniczna stropowa seria PZt
1 957,5	1 999,5	sól kam. najmłodsza Na4a
1 999,5	2 003,0	ił solny czerwony dolny T4a
2 003,0	2 127,0	sól kam. młodsza Na3
2 127,0	2 152,0	anhydryt główny A3
2 152,0	2 154,0	szary ił solny T3
2 154,0	2 157,0	anhydryt kryjący A2r
2 157,0	2 756,5	sól kamienna starsza Na2
2 756,5	2 774,5	anhydryt górny A1g
2 774,5	2 807,0	sól kamienna najstarsza Na1
2 807,0	2 848,0	anhydryt dolny A1d
2 848,0	2 853,5	wapień cechsztyński Cal
2 853,5	3 208,0	czerwony spągowiec górny

Wyniki badań skał:

W dokumentacji wynikowej otworu wiertniczego Koziczyn-1 (Żurawik i Tubielewicz, 1972) znajdują się wyniki analiz fizycznochemicznych 12 próbek z triasu z interwału 800,0–1437,5 m, 1 próbki z wapienia podstawowego oraz 15 próbek z wapienia cechsztyńskiego i czerwonego spągowca górnego z interwału 2848,0–3208,0 m wraz z oznaczeniem porowatości, przepuszczalności, zasoleniem i zawartości bituminów. Ponadto wykonano 4 analizy wody złożowej oraz 4 analizy gazu (Tab. 5.30–5.32).

Wyniki geofizyki otworowej:

Dokumentacja wynikowa otworu Koziczyn-1 (Żurawik i Tubielewicz, 1972) zawiera wyniki badań geofizyki wiertniczej wykonanych w następującym zakresie (dla podkreślonych profilowań w CBDG znajdują się pliki LAS):

- mikroprofilowanie średnicy otworu (mPSr): 1000–2858 m,
- profilowanie akustyczne (PA): 263–3215 m,
- profilowanie naturalnego promieniowania gamma (PG): 14–3208 m,
- profilowanie krzywizny odwiertu (PK): 250–3200 m,
- profilowanie neutron-gamma (PNG): <u>14–3208 m</u>,

- profilowania oporności standardowe (PO): 44–3205 m,
- profilowanie oporności EL28 (PO): 40–3205 m,
- profilowanie oporności sterowane POst: 268–3205 m,
- profilowanie potencjałów naturalnych (PS): 44–3205 m,
- profilowanie średnicy otworu CALI (PSr): 40–3205 m,
- profilowanie temperatury (PT): 10–1913 m.

Pomiarów średnich prędkości i pomiarów pionowego profilowania sejsmicznego w otworze Koziczyn-1 <u>nie wykonano</u>.

Objawy węglowodorów w trakcie wiercenia i próby złożowe: obserwacje zaniku płuczki oraz jej zgazowań, obecności węglowodorów w rdzeniu oraz wyniki przeprowadzonych prób złożowych zestawiono w Tab. 5.33–5.35.

Dokumentacje NAG PIG-PIB:

- Żurawik E., Tubielewicz D. 1972. Dokumentacja wynikowa otworu Koziczyn-1 [zawiera kartę otworu] Inw. 114147, CAG PIG, Warszawa.
- Blus R., Szczypa Z. 1973. Dokumentacja pomiarów ciężarów objętościowych i porowatości skał, rok 1972. Inw. 44269,ObO/1438, CAG PIG, Warszawa.

Stratygrafia	Liczba pomiarów	Porowatość Min-Max (średnia)	Przepuszczalność Min-Max (średnia)	Bituminy Min-Max (średnia)
		[%]	[mD]	[%]
trias	12	0,89–23,36 (11,378)	4,31–73,3 (43,1225)	0,0065–0,0233 (0,015)
wapień podstawowy, czerwony spągowiec górny	1	brak por.	brak przep.	0,0058
czerwony spągowiec	15	2,3–24,82 (13,93)	0,2725–66,8930 (32,2849)	0,0068–0,0228 (0,01)

Tab. 5.30. Podsumowanie wyników badań fizyczno-chemicznych próbek pobranych z interwału: 800,0–1437,5 m (trias), 2848,0–2853,0 m (wapień podstawowy), 2848,0–3208,0 m (wapień podstawowy, czerwony spągowiec górny) w otworze Koziczyn-1 na podstawie dokumentacji wynikowej (Żurawik i Tubielewicz, 1972).

Stratygrafia	Głębokość [m]	Metoda	Składniki	g/l
anhydryt dolny, wapień cechsztyński, czerwony spągowiec	2840,0–2866,0	pr. rurowy złoża	Cl	168,74
			Br	
			HCO ₃ ⁻	0,122
			SiO ₃ ²⁻	1,794
			SO_4^{2-}	1,2791
	ļ		NH_4^+	

			Ca ²⁺	52,4276
			Mg^{2+}	5,2327
			Na/K ⁺	37,0711
			Al/Fe ³⁺	2,3975
			pH	5,5
			mineralizacja	300
			Cl	163,116
			Br	-
			HCO ₃ -	0,1088
			SiO ₃ ²⁻	114,3153
			SO_4^{2}	3,5904
	1450 0 1475 0	1 .	$\mathrm{NH_4}^+$	-
pstry plaskowiec srodkowy	1450,0–1475,0	pr. rurowy złoża	Ca ²⁺	11,2695
			Mg^{2+}	2,0812
			Na/K ⁺	83,4607
			Al/Fe ³⁺	5,8470
			pH	5,2
			mineralizacja	415
			Cl	10,9926
	1100.0-1135.0	pr. rurowy złoża	Br	-
			HCO ₃ -	0,2074
			SO42-	-
1.1			$\mathrm{NH_4}^+$	-
doiny wapten muszlowy			Ca ²⁺	0,7839
(wapien plankowy)			Mg^{2+}	0,0595
			Na/K ⁺	-
			Al/Fe ³⁺	-
			pH	5,8
			mineralizacja	-
			Cl	26,2404
			Br	-
			HCO ₃ ⁻	0,4514
			SiO ₃ ²⁻	0,8663
			SO4 ²⁻	7,8194
kajper	765 0 797 0		$\mathrm{NH_4}^+$	-
(piaskowiec trzcinowy)	/05,0-/8/,0	pr. rurowy złoża	Ca ²⁺	2,1559
			Mg^{2+}	0,2973
			Na/K ⁺	16,7459
			Al/Fe ³⁺	0,9316
			pH	5,7
			mineralizacja	65

Tab. 5.31. Wyniki analiz wody i filtratu w otworze Koziczyn-1 (Żurawik i Tubielewicz, 1972).

Stratygrafia	Głębokość [m]	Metoda	Składniki	% obj.
			CH_4	0,3956
			C_2H_6	0,0073
			C_3H_8	0,0034
			C_3H_6	0,0018
			$n-C_4H_{10}$	
strop środkowego pstrego	1431,0–1437,5	z degazacji rdzenia	i-C ₅ H ₁₂	
			$n-C_5H_{12}$	
piaskowca			$C_{6}H_{14}$	
			C ₇ H ₁₆	
			C ₈ H ₁₈	
			CO ₂	3,4424
			N ₂	91,688
			He	śladowy
			H ₂	4,4618
czerwony sna cowiec	2855 0 2862 0	z degazacji rdzenia	CH_4	0,1232
czerwony spągowiec	2833,0-2802,0		C_2H_6	0,6193

			СН	1 /110
			i-C.H.o	1,411
			$n-C_4H_{10}$	1,6570
			i-C ₄ H ₁₀	1,0025
			n-C ₅ H ₁₂	
			C ₄ H ₁₄	
			$C_{6}H_{14}$	
			$C_{0}H_{10}$	
			CO_2	
			N ₂	34.6365
			He	,
			H ₂	60,5072
			CH_4	0,5039
			C ₂ H ₆	0,0032
			C_3H_8	0,0275
		pr. rurowy złoża	i-C ₄ H ₁₀	0,0177
			$n-C_4H_{10}$	0,023
	najprawdopodobniej z głębokości 1126,0–1135,0 i 1100,0–1117,0		i-C ₅ H ₁₂	0,0193
dolny wapień muszlowy			$n-C_5H_{12}$	0,008
(wapień piankowy)			$C_{6}H_{14}$	
			C ₇ H ₁₆	
			C ₈ H ₁₈	
			CO ₂	
			N ₂	98,4455
			He	0,0583
			H ₂	0,8936
			CH_4	1,2271
			C_2H_6	0,0205
			C ₃ H ₈	0,0101
			i-C ₄ H ₁₀	0,0098
			$n-C_4H_{10}$	0,0109
	najprawdopodobniej		i-C ₅ H ₁₂	0,0096
pstry pisskowieg	z głębokości	pr rurowy złoża	n-C ₅ H ₁₂	0,002
pstry plaskowiec	1467,0-1475,0	pr. rurowy złoża	C ₆ H ₁₄	
	i 1450,0–1459,0		C ₇ H ₁₆	
			C ₈ H ₁₈	
			CO ₂	
			N ₂	96,943
			He	0,3085
			H ₂	1,4585

Tab. 5.32. Wyniki analiz gazu (w czystym gazie) w otworze Koziczyn-1 (Żurawik i Tubielewicz, 1972).

Stratygrafia	Głębokość [m]	Zanik płuczki [m³/24h]
jura dolna	301,0	30/?
pstry piaskowiec górny (ret)	1364,0-1410,0	5m ³ /h
pstry piaskowiec środkowy	1437,5–1454,0	15m ³ /18h
pstry piaskowiec środkowy	1502,5–1628,0	10-13
pstry piaskowiec dolny	1628,0–1652,5	50
pstry piaskowiec dolny	1652,5–1654,8	25
pstry piaskowiec dolny	1654,8–1701,1	16
pstry piaskowiec dolny	1701,1–1733,0	5
pstry piaskowiec dolny	1768,0–1833,2	8-9
pstry piaskowiec dolny	1848,5–1892,6	7-8
Stratygrafia	Głębokość [m]	Zgazowanie płuczki
strop wapienia piankowego	1102,0	Metanomierz wskazał 3,5% CH ₄ w płuczce

Tab. 5.33. Objawy w trakcie wiercenia (zaniki płuczki) w otworze Koziczyn-1 (Żurawik i Tubielewicz, 1972).

Stratygrafia	Głębokość [m]		Obiowy	
Stratygrana	od	do	Objawy	
anhydryt dolny	2809,6	2815,7	zapach H ₂ S na świeżym przełamie i słaba luminescencja przewarstwień dolomitu	
	2822,0	2823,0	słaba luminescencja przewarstwień ilasto-dolomitycznych	
	2823,0	2828,0	słaba luminescencja przewarstwień ilasto-dolomitycznych	
	2831,0	2837,0	przewarstwienia ilasto-dolomityczne ze śladami brunatnej ropy oraz punktowa i powierzchniowa lumienscencia	
	2837,0	2843,0	przewarstwienia ilasto-dolomityczne ze śladami brunatnej ropy oraz punktowa i powierzchniowa lumienscencja	
	2843,0	2846,0	wkładki ilasto-dolomityczne z słabą luminescencją	

Tab. 5.34. Objawy węglowodorów w rdzeniach w otworze Koziczyn-1 (Żurawik i Tubielewicz, 1972).

Stratygrafia	Głębokość [m]	Metoda	Przypływ	Tempo prz. [m ³ /h]
dolny wapień muszlowy	1140,0–1152,0	pr. rurowy złoża	filtrat	50 1./50 min
anhydryt dolny, wapień cechsztyński, czerwony spągowiec	2837,0–2866,0	pr. rurowy złoża	solanka	11,5/55 min
pstry piaskowiec środkowy	1467,0–1475,0 i 1450,0–1459,0	pr. rurowy złoża	solanka	9,5
dolny wapień muszlowy (wapień piankowy)	1126,0–1135,0 i 1100,0–1117,0	pr. rurowy złoża	filtrat z płuczką	0,23/90 min
kajper (piaskowiec trzcinowy)	780,0–787,0 i 765,0–773,0	pr. rurowy złoża	płyn złożowy	2,56

Tab. 5.35. Rezultaty prób złożowych w otworze Koziczyn-1 (Żurawik i Tubielewicz, 1972).

5.15. MIŁÓW 1

Głębokość otworu wg miary wiertniczej: 2401,0 m Głębokość otworu wg miary geofizycznej: 2401,0 m Rok zakończenia wiercenia: 1989 Rdzenie: brak

Stratygrafia (Potera, 1989):

Głębokość [m]		Stuatyonofia	
od	do	Stratygrana	
0,0	245,0	kenozoik	
245,0	1606,5	trias	
1606,5	2401,0	perm	
1606,5	1623,5	terygeniczna stropowa seria PZt	
1623,5	1855,0	sól kam. najm. i młod. Na4+Na3	
1855,0	1879,0	anhydryt główny A3	
1879,0	1881,5	szary ił solny T3	
1881,5	1885,0	anhydryt kryjący A2r	
1885,0	1974,0	sól kamienna starsza Na2	
1974,0	1985,0	anhydryt podstawowy A2	
1985,0	2029,5	dolomit główny Ca2	
2029,5	2092,5	anhydryt górny A1g	
2092,5	2125,0	sól kamienna najst. górna Na1b	
2125,0	2132,5	anhydryt środkowy A1s	
2132,5	2235,0	sól kamienna najst. dolna Nala	

2235,0	2303,0	anhydryt dolny A1d
2303,0	2337,0	wapień cechsztyński Cal
2337,0	2391,0	czerwony spągowiec górny
2391,0	2401,0	czerwony spągowiec dolny

Wyniki badań skał:

W dokumentacji wynikowej otworu wiertniczego Miłów 1 (Potera, 1989) znajdują się wyniki analiz fizycznoo-chemicznych 90 próbek z dolomitu głównego i anhydrytu górnego z interwału 1988,0-2033,0 m, 7 próbek z wapienia podstawowego z interwału 2311,0-2314,5 m oraz 38 próbek z wapienia cechsztyńskiego i czerwonego spągowca z interwału 2314,5-2338,0 m wraz z oznaczeniem porowatości, przepuszczalności i ciężaru objetościowego. Ponadto wykonano 4 analizy wody złożowej oraz 2 analizy gazu (Tab. 5.36-5.38). Wykonano również analizy petrograficzne 40 próbek z dolomitu głównego, 3 próbek z wapienia podstawowego, 17 próbek z czerwonego spągowca.

Wyniki geofizyki otworowej:

Dokumentacja wynikowa otworu Miłów 1 (Potera, 1989) zawiera wyniki badań geofizyki wiertniczej wykonanych w następującym zakresie (dla podkreślonych profilowań w CBDG znajdują się pliki LAS):

- mikroprofilowanie oporności sterowane (mPOst): 1975–2398 m,
- profilowanie akustyczne (PA): 1985–2029,5 m,
- profilowanie akustyczne czasu interwałowego (PAdt): 517–2398 m,
- profilowanie czasu akustycznego T1 (PAt1): 516–2398 m,
- profilowanie czasu akustycznego T2 (PAt2): 516–2398 m,
- profilowanie naturalnego promieniowania gamma (PG): 0–2398 m,
- profilowanie krzywizny odwiertu (PK): 25–2375 m,
- profilowanie neutron–gamma (PNG): 0–2398 m,
- profilowanie neutron–neutron (PNN): 0–2398 m,
- profilowania oporności standardowe (PO): 1985–2029,5 m,
- profilowanie oporności EL07 (PO): 31–2392 m,
- prof. oporności sondą gradientową (POg): 31–2393 m,
- profilowanie oporności płuczki (POpl): 1985–2030 m,
- o dwr.: prof. oporności ster. odwrócone (POst) 1975–2384 m,
- profilowanie oporności sterowane (POst): 515–2394 m,
- profilowanie potencjałów naturalnych (PS): 516–933 m,

 profilowanie średnicy otworu CALI (PSr): 28–2398 m.

Sprawozdanie z pomiarów średnich prędkości i pomiarów pionowego profilowania sejsmicznego w otworze Miłów 1 (Klecan, 1989) zawiera wyniki pomiarów wykonanych w następującym zakresie (dla podkreślonych profilowań w CBDG znajdują się pliki LAS):

- profilowanie prędk. śr., czas interpolowany podwojony Tx2: 20–2340 m,
- profilowanie prędk. śr., czas interpolowany TW: 20–2340 m,
- profilowanie prędk. śr., czas pomierzony Tr_PW1: 102–2352 m,
- profilowanie prędk. śr., czas pomierzony <u>Tr_PW2: 102–2352 m.</u>
- profilowanie prędk. śr., czas pomierzony Tr_PW3: 102–2352 m,
- profilowanie prędk. śr., czas uśredniony Tr_PO: 102–2352 m,
- profilowanie prędk. śr., gradient czasu interpol. DT_VSP: 20–2340 m.

Objawy węglowodorów w trakcie wiercenia i próby złożowe: obecności węglowodorów w rdzeniu oraz wyniki przeprowadzonych prób złożowych zestawiono w Tab. 5.39–5.40), nie obserwowano zaników płuczki oraz jej zgazowań.

Dokumentacje NAG PIG-PIB:

- Potera J. 1989. Dokumentacja wynikowa otworu poszukiwawczego Miłów 1. Inw. 131878, CAG PIG, Warszawa.
- Klecan A. 1989. Opracowanie pomiarów średnich prędkości w odwiercie Miłów 1 Inw. M70 VS, CAG PIG, Warszawa.

Stratygrafia	Liczba pomiarów	Porowatość Min-Max (średnia)	Przepuszczalność Min-Max (średnia)	Ciężar objęto- ściowy Min-Max (średnia)
		[%]	[mD]	[%]
dolomit główny,	00	0,3–9,96	0,01–0,22	2,6–2,84
anhydryt górny	90	(2,097)	(0,07)	(2,77)
wapień podstawowy	7	0,16–1,31	0,1–0,17	2 70
		(0,48)	(0,11)	2,19
	38	0,84-26,11	0,17–919,64	2,22–2,66
czerwony spągowiec		(7,52)	(311,81)	(2,39)

Tab. 5.36. Podsumowanie wyników badań fizyczno-chemicznych próbek pobranych z interwału: 1988,0–2033,0 m (dolomit główny, anhydryt górny), 2311,0–2314,5 m (wapień podstawowy), 2314,5–2338,0 m (wapień podstawowy i czerwony spągowiec) w otworze Miłów 1 na podstawie dokumentacji wynikowej (Potera, 1989).

CYBINKA-TORZYM

Stratygrafia	Głębokość [m]	Metoda	Składniki	g/l
			Cl	145,27
			Br⁻	0,72
			HCO ₃ ⁻	0,39
			SiO ₃ ²⁻	0,21
			SO_4^{2-}	0,31
anhydryt dolny,	2201 0 2220 0		$\mathrm{NH_4}^+$	
wapień cechsztyński	2501,0-2520,0	pr. rurowy złoża	Ca ²⁺	75,17
······································			Mg^{2+}	0,36
			Na/K ⁺	4,69/2,4
			Al/Fe ³⁺	1,35
			рН	6,5
			mineralizacja	230,87
		_	Cl	177,59
			Br⁻	n.ozn.
			HCO ₃	n.ozn.
			$\operatorname{SiO}_3^{2^2}$	n.ozn.
dolomit główny			SO4 ²⁻	2,9
		z II pasa obciązników	NH_4^+	-
		nad zaworem		23,96
			Mg ²⁺	25,41
			Na/K^{+}	35,65/6,13
			Al/Fe ³¹	1,41
			pH	n.ozn.
			mineralizacja	273,05
		-	 	4,52
		-		- 0.12
		-	<u>SO 2-</u>	0,15
		pr. rurowy złoża		-
dolomit główny,	1988 0_2033 0		$\frac{\Gamma \Gamma \Gamma_4}{\Gamma a^{2+}}$	0.25
anhydryt górny	1700,0-2055,0		$\frac{Ca}{Ma^{2+}}$	0,25
		-	Na/K ⁺	0,05
		-	$\frac{1100}{\text{A1/Fe}^{3+}}$	
		-	nH	8.4
		-	mineralizacia	-
			Cl	4.44
			Br	_
			HCO ₃ ⁻	0,15
		-	SO_4^{2}	-
1 1 1 1/1 1/			$\overline{NH_4^+}$	-
dolomit główny,	1988,0-2033,0	pr. rurowy złoża	Ca ²⁺	0,24
anhydryt gorny			Mg^{2+}	0,05
			Na/K ⁺	-
			Al/Fe ³⁺	-
			pН	7,2
			mineralizacja	-

Tab. 5.37. Wyniki analiz wody i filtratu w otworze Miłów 1 (Potera, 1989).

Stratygrafia	Głębokość [m]	Metoda	Składniki	% obj.
	2301,0–2320,0		CH_4	13,5683
			C_2H_6	0,4675
			$\begin{array}{c} C_{3}H_{8} \\ \hline C_{3}H_{6} \\ n\text{-}C_{4}H_{10} \end{array}$	0,0053
anhydryt dolny, wapień cechsztyński				0,0018
		z glowiou próbniko		0,0001
			i-C ₅ H ₁₂	0,0001
			$n-C_5H_{12}$	0,0001
			$C_{6}H_{14}$	0
			C ₇ H ₁₆	-
			C_8H_{18}	-

			CO ₂	0,0583
			N ₂	85,6879
			He	0,2123
			H ₂	0
			H_2S	0
			CH_4	16,8272
			C ₂ H ₆	16,3166
		płyn pobrany z 18 pasa nad zaworem	C ₃ H ₈	10,1621
	1988,0–2033,0		i-C ₄ H ₁₀	1,7389
			$n-C_4H_{10}$	3,6712
			i-C ₅ H ₁₂	1,7389
1-1			n-C ₅ H ₁₂	1,2558
anhydryt górny			C ₆ H ₁₄	0,9609
annydryt gorny		obrotowym	C ₇ H ₁₆	-
			C ₈ H ₁₈	-
			CO_2	0,1152
			N ₂	44,5733
			Не	0
			H ₂	2,6399
			H ₂ S	0

Tab. 5.38. Wyniki analiz gazu (w czystym gazie) w otworze Miłów 1 (Potera, 1989).

Stratygrafia	Głębokość [m]		Objerry	
	od	do	Objawy	
dolomit główny	1995,0	1996,0	wycieki ropy	
	1999,0	2001,0	wycieki ropy	
	2002,0	2010,0	wycieki ropy	

Tab. 5.39. Objawy węglowodorów w rdzeniach w otworze Miłów 1 (Potera, 1989).

Stratygrafia	Głębokość [m]	Metoda	Przypływ	Tempo prz. [m ³ /h]
anhydryt podstawowy, dolomit główny	1978,0–1998,5	próbnik złożowy	brak przypływu	-
dolomit główny, anhydryt górny	1998,5–2034,5	próbnik złożowy	brak przypływu	-
anhydryt dolny, wapień cechsztyński, czerwony spągowiec	2293,7–2312,7	próbnik złożowy	przypływ gazu niepal- nego i 0,365 m ³ wody złożowej	natężenie przy- pływu gazu 102,58 m ³ /min P _{pocz.} 249,37 atm.
dolomit główny	2010,0–2020,0	kwasowanie 6 m ³ + 14 m ³ przybitki (4 dni oczekiwa- nia)	proces niedany, płuczka nie wykazuje skrzenia wodą złożową, brak przypływu	-
sól kamienna starsza, anhydryt podstawowy, dolomit główny	1968,5–2020,0	próbnik złożowy	brak przypływu	-

Tab. 5.40. Rezultaty prób złożowych w otworze Miłów 1 (Potera, 1989).

5.16. RADOMICKO 1

Głębokość otworu wg miary wiertniczej: 2138,0 m Głębokość otworu wg miary geofizycznej: 2138,0 m Rok zakończenia wiercenia: 1994 **Rdzenie:** 2063,0–2140,0 m, 74 skrzynki, Magazyn rdzeni w Chmielniku.

Wyniki badań skał:

W dokumentacji wynikowej otworu wiertniczego Radomicko 1 (Zarębska, 1994) znajduja się wyniki analiz fizyczno-chemicznych 89 próbek z dolomitu głównego wraz z oznaczeniem porowatości i przepuszczalności oraz 47 próbek z dolomitu głównego wraz z oznaczeniem porowatości całkowitej i efektywnej. Ponadto dla 8 próbek z dolomitu głównego wykonano pomiary zawartości substancji ilastej i bitumin. Wykonano również 6 analiz wody złożowej, 1 analizę ropy naftowej i 7 analiz gazu. Wykonano również analizy petrograficzne 14 próbek z dolomitu głównego. Dane te, podobnie jak wyniki prób złożowych i objawów weglowodorów w trakcie wiercenia są własnością inwestora i nie mogą zostać ujawnione w niniejszym opracowaniu.

Wyniki geofizyki otworowej:

Dokumentacja otworu Radomicko 1 (Zarębska, 1994) zawiera wyniki badań geofizyki wiertniczej wykonanych w następującym zakresie (dla podkreślonych profilowań w CBDG znajdują się pliki LAS):

- o poprawka gęstości (dRoB): 2050– 2138 m,
- interwałowy czas akustyczny 2050– 2138 m,
- mikroprofilowanie oporności sterowane (mPOst): 2063–2140 m,
- profilowanie porowatości neutronowej w skali wapienia (NPHI): 2050–2138 m,
- pomiar akustyczny stanu zacementowania rur okładzinowych (Pac): 0–2065,1 m,
- profilowanie akustyczne czasu interwałowego (PAdt): 30–2135 m,
- Tsum (PAP): 30–2060 m,
- profilowanie czasu akustycznego T1 (PAt1): 30–2060 m,
- profilowanie czasu akustycznego T2 (PAt2): 30–2060 m,
- profilowanie naturalnego promieniowania gamma (PG): 3–2130 m,
- profilowanie gazowe (PGaz): 1925–2140 m,
- profilowanie gamma–gamma gęstościowe (PGG): 1980–2139 m,
- o porowatość (PHI): 0-2140 m,
- profilowanie krzywizny odwiertu (PK): 30–2060 m,

- profilowanie neutron-gamma (PNG): 3,5–2129,75 m,
- profilowanie neutron-neutron (PNN): 1650–1965 m,
- Profilowanie neutron-neutron długie (PNNd): 0–2140 m,
- prof. neutron-neutron termiczny na krótkim rozstawie (PNNtk): 0–1719 m,
- profilowanie oporności EL03 (PO): 31–2136 m,
- prof. oporności sondą gradientową (POg): 30–2136 m,
- prof. oporności sondą 3–elektr. ster. LL3 (POst): 1650–2140 m,
- profilowanie oporności sterowane (LLD) o dużym zasięgu (POst): 2050–2138 m,
- profilowanie oporności sterowane (LLS)
 małym zasięgu POst: 2050–2138 m,
- profilowanie zawartości potasu (POTA): 1980–2139 m,
- profilowanie potencjałów naturalnych (PS): 30–1710 m,
- profilowanie średnicy otworu CALI (PSr): 30–2135 m,
- profilowanie temperatury (PT): 2050–2138 m,
- o gęstość objętościowa (elektronowa) w stanie nasyconym (RHOB): 2050–2138 m,
- prof. spektrometr. naturalnego prom. gamma bez uranu (sPGbezU): 1980–2139 m,
- profilowanie zawartości toru (THOR): 1980–2139 m,
- profilowanie zawartości uranu (URAN): 1980–2139 m.

Sprawozdanie z pomiarów średnich prędkości i pomiarów pionowego profilowania sejsmicznego w otworze Radomicko 1 (Czaja, 1994) zawiera wyniki pomiarów wykonanych w następującym zakresie (w CBDG dostępne są dla nich pliki LAS):

- profilowanie prędk. śr., czas interpolowany podwojony Tx2: 20–1980 m,
- profilowanie prędk. śr., czas interpolowany TW: 20–1980 m,
- profilowanie prędk. śr., czas pomierzony Tr_PW1: 3–1998 m,
- profilowanie prędk. śr., czas pomierzony Tr_PW2: 33–1998 m,
- profilowanie prędk. śr., czas pomierzony Tr_PW3: 3–1998 m,

- profilowanie prędk. śr., czas uśredniony <u>Tr_PO: 3–1998 m,</u>
- profilowanie prędk. śr., gradient czasu interpol. DT_VSP: 20–1980 m.

5.17. RĄPICE 1A

Głębokość otworu wg miary wiertniczej: 2402,0 m

Głębokość otworu wg miary geofizycznej: 2402,0 m

Rok zakończenia wiercenia: 1995

Rdzenie: 1971,0–2402,0 m, 81 skrzynek, Magazyn rdzeni w Chmielniku.

Wyniki badań skał:

W dokumentacji wynikowej otworu wiertniczego Rapice 1A (Piątkowska-Kudła, 1996b) się wyniki fizycznoznajdują analiz chemicznych 82 próbek z dolomitu głównego, 1 próbki z łupka miedzionośnego oraz 20 próbek z czerwonego spągowca wraz z oznaczeniem porowatości, przepuszczalności. Ponadto wykonano 5 analiz wody złożowej oraz 4 analizy gazu. Wykonano również analizy petrograficzne 18 próbek z dolomitu głównego, 1 próbki z łupka miedzionośnego oraz 7 próbek czerwonego spągowca. Dane te, podobnie jak wyniki prób złożowych i objawów węglowodorów w trakcie wiercenia są własnością inwestora i nie mogą zostać ujawnione w niniejszym opracowaniu.

Wyniki geofizyki otworowej:

Dokumentacja wynikowa otworu Rąpice 1A (Piątkowska-Kudła, 1996b) zawiera wyniki badań geofizyki wiertniczej wykonanych w następującym zakresie (dla podkreślonych profilowań w CBDG znajdują się pliki LAS):

- porowatość akustyczna (APHI): 1950– 2403 m,
- srednica nominalna wiercenia BS: 77– 2403 m,
- porowatość gęstościowa w skali wapienia (DPHI): 1950–2403 m,

- Zarębska B. 1994. Dokumentacja wynikowa odwiertu poszukiwawczego Radomicko-1. Inw. 133397, CAG PIG, Warszawa.
- Czaja E. 1994. Opracowanie średnich prędkości Radomicko 1. Inw. R35 VS, CAG PIG, Warszawa.
- poprawka gęstości (dRoB): 1950– 2403 m,
- Interwałowy czas akustyczny: 1965– 2403 m,
- profilowanie akustyczne o dużym rozstawie (LSS): 1945–2396 m,
- mikrolaterolog sferycznie ogniskowany (MSFL): 1965–2403 m,
- profilowanie porowatości neutronowej w skali wapienia (NPHI): 1950–2403 m,
- pomiar akustyczny stanu zacementowania rur okładzinowych (Pac): 0,6–1970 m,
- profilowanie akustyczne czasu interwałowego (PAdt): 77–2400 m,
- PAP (Tsum): 77–1970,5 m,
- profilowanie czasu akustycznego T1 (PAt1): 77–2403 m,
- profilowanie czasu akustycznego T2 (PAt2): 77–2403 m,
- profilowanie czasu akustycznego T3 (PAt3): 1965–2403 m,
- profilowanie czasu akustycznego T4 (PAt4): 1965–2403 m,
- profilowanie naturalnego promieniowania gamma (PG): 1–2 399,5 m,
- profilowanie gazowe (PGaz): 1868–2402 m,
- profilowanie gamma–gamma gęstościowe (GGDN): 77–2403 m,
- o porowatość (PHI): 0-2400 m,
- profilowanie krzywizny odwiertu (PK): 77–1970,5 m,
- profilowanie neutron-gamma PNG: <u>3–2400 m,</u>
- Profilowanie neutron-neutron długie (PNNd): 0–2400 m,

- prof. neutron–neutron termiczny na krótkim rozstawie (PNNtk): 0–2400 m,
- profilowanie oporności EL07 (PO): 78,5–1970 m,
- profilowanie oporności EL28 (PO): 86–1970 m,
- prof. oporności sondą gradientową (POg): 77–1970,5 m,
- prof. oporności sondą 3-elektr. ster. LL3 (POst): 850–2400 m,
- profilowanie oporności sterowane LLD (POst): 1965–2403 m,
- profilowanie oporności sterowane LLS (POst): 1965–2403 m,
- profilowanie zawartości potasu (POTA): 1950–2403 m,
- profilowanie potencjałów naturalnych (PS): 77–746 m,
- profilowanie średnicy otworu CALI (PSr): 77–2400 m,
- gęstość objętościowa (elektronowa) w stanie nasyconym (RHOB): 1950– 2403 m,
- prof. spektrometr. naturalnego prom. gamma bez uranu (sPGbezU): 1950–2403 m,
- profilowanie zawartości toru (THOR): 1950–2403 m,
- profilowanie zawartości uranu (URAN): 1950–2403 m.

Dokumentacja pomiarów średnich prędkości i pomiarów pionowego profilowania sejsmicznego w otworze Rąpice 1A (Leszczyńska i in., 1996b) zawiera wyniki pomiarów wykonanych w następującym zakresie (dla

5.18. RYBAKI 5

Głębokość otworu wg miary wiertniczej: 1988,0 m

Głębokość otworu wg miary geofizycznej: 1988,0 m

Rok zakończenia wiercenia: 1963 **Rdzenie:** brak

Stratygrafia (CBDG, 2022):

Głębokość [m]		Stuaturanofia
od	do	Stratygrana
0,0	228,0	kenozoik
228,0	1633,0	trias
1633,0	1988,0	perm

podkreślonych profilowań w CBDG znajdują się pliki LAS):

- profilowanie prędk. śr., czas interpolowany podwojony Tx2: 20– 2340 m,
- profilowanie prędk. śr., czas interpolowany TW: 20–2340 m,
- profilowanie prędk. śr., czas pomierzony Tr_PW1: 16–2356 m,
- profilowanie prędk. śr., czas pomierzony Tr_PW2: 16–2356 m,
- profilowanie prędk. śr., czas pomierzony Tr_PW3: 16–2356 m,
- profilowanie prędk. śr., czas uśredniony Tr_PO: 16–2356 m,
- profilowanie prędk. śr., gradient czasu interpol. DT_VSP: 20–2340 m,

- Piątkowska-Kudła S. 1996b. Dokumentacja wynikowa odwiertu poszukiwawczego Rąpice 1, Rąpice 1A. Inw. DW-133806/2, CAG PIG, Warszawa;
- Wolańska A., Leszczyński M. 2006. Dokumentacja prac geologicznych wykonanych na obszarze koncesji na poszukiwanie i rozpoznawanie złóż ropy naftowej i gazu ziemnego Grzmiąca – Cybinka. Inw. 916/2006, CAG PIG, Warszawa.
- Leszczyńska D., Balcerowicz H., Czaja E. 1996b. Opracowani pomiarów średnich prędkości w otworze: Rąpice 1A, opracowanie pionowego profilowania sejsmicznego w otworze: Rąpice 1A. Inw. R66 VS, CAG PIG, Warszawa.

1633,0	1643,0	terygeniczna stropowa seria PZt
1643,0	1678,0	sól kam. najmłodsza Na4a
1678,0	1680,0	anhydryt pegmatytowy dolny A4a1
1680,0	1684,5	ił solny czerwony dolny T4a
1684,5	1815,0	sól kam. młodsza Na3
1815,0	1830,0	anhydryt główny A3
1830,0	1832,5	szary ił solny T3
1832,5	1837,0	anhydryt kryjący A2r
1837,0	1948,0	sól kamienna starsza Na2
1948,0	1960,5	anhydryt podstawowy A2
1960,5	1988,0	dolomit główny Ca2

Wyniki badań skał:

W karcie otworu wiertniczego Rybaki 5 (Olczak, 1963) brak jakichkolwiek informacji na temat wyników analiz fizycznochemicznych próbek.

Wyniki geofizyki otworowej:

Karta otworu Rybaki 5 (Olczak, 1963) zawiera wyniki badań geofizyki wiertniczej wykonanych w następującym zakresie (w CBDG brak plików LAS):

- mikroprofilowania oporności (mPO): 980–1654 m,
- profilowanie naturalnego promieniowania gamma (PG): 0–1986 m,
- profilowanie krzywizny odwiertu (PK): 0–1975 m,
- profilowanie neutron-gamma (PNG): 0–1975 m,
- profilowania oporności standardowe PO: 5–1972 m,
- profilowanie potencjałów naturalnych (PS): 5–1972 m,
- profilowanie średnicy otworu CALI (PSr): 5–325 m,
- profilowanie temperatury (PT): 8–1770 m.

Pomiarów średnich prędkości i pomiarów pionowego profilowania sejsmicznego w otworze Rybaki 5 nie wykonano.

Objawy węglowodorów w trakcie wiercenia i próby złożowe: obserwacje obecności węglowodorów w rdzeniu zestawiono w Tab. 5.41. Brak wyników przeprowadzonych prób złożowych.

Dokumentacje NAG PIG-PIB:

- Olczak D. 1963. Karta otworu: Rybaki 5. Inw. 92309, CAG PIG, Warszawa.
- Cimaszewski L., Korab Z. 1962. Dokumentacja geologiczna złoża ropy naftowej RYBAKI w miejscowości Rybaki Połęcko, pow. Krosno Odrzańskie, woj. zielonogórskie Inw. Dok/sł/AII/60 CUG, CAG PIG, Warszawa.
- Cimaszewski L., Korab Z. 1964. Druga [II] dokumentacja wraz z uzupełnieniem złoża ropy naftowej struktury Rybaki w miejscowości Rybaki, Maszewo, Połęcko, pow. Krosno Odrzańskie, woj. zielonogórskie. Inw. 18104,4020/54, CAG PIG, Warszawa.

Stratygrafia	Głębokość [m]		Obiowy	
od do		do	Objawy	
dolomit główny	1960,5	1967,5	sutury pokryte nalotami bitumicznymi	
	1967,5	1974,0	na spękaniach pęcherzyki ropy	
	1974,0	1 984,7	ślady ropy	
	1 984,7	1988,0	przemazy ciemnoszarych bitumin	

Tab. 5.41. Objawy węglowodorów w rdzeniach w otworze Rybaki 5 (Olczak, 1963).

5.19. RYBAKI 14

Głębokość otworu wg miary wiertniczej: 2022,6 m Głębokość otworu wg miary geofizycznej: 2022,6 m Rok zakończenia wiercenia: 1964 Rdzenie: brak

Stratygrafia (CBDG, 2022):

Głębokość [m]		Stratygrafia	
od	do	Stratygrana	
0,0	256,0	kenozoik	
256,0	1533,0	trias	
1533,0	2022,6	perm	
1533,0	1550,0	terygeniczna stropowa seria PZt	
1550,0	1620,0	sól kam. najmłodsza Na4a	
1620,0	1625,0	ił solny czerwony dolny T4a	
1625,0	1857,5	sól kam. młodsza Na3	
1857,5	1872,5	anhydryt główny A3	
1872,5	1875,0	szary ił solny T3	

1875,0	1877,5	anhydryt kryjący A2r
1877,5	1970,0	sól kamienna starsza Na2
1970,0	1980,0	anhydryt podstawowy A2
1980,0	2021,5	dolomit główny Ca2
2021,5	2022,6	anhydryt górny Alg

Wyniki badań skał:

W karcie otworu wiertniczego Rybaki 14 (Olczak, 1964) brak jakichkolwiek informacji na temat wyników analiz fizycznochemicznych próbek (Olczak, 1964).

Wyniki geofizyki otworowej:

Karta otworu Rybaki 14 (Olczak, 1964) zawiera wyniki badań geofizyki wiertniczej wykonanych w następującym zakresie (dla podkreślonych profilowań w CBDG znajdują się pliki LAS):

- profilowanie elektryczne (PElektr.): 7–2019 m,
- profilowanie naturalnego promieniowania gamma (PG): 7–2021 m,
- profilowanie krzywizny odwiertu (PK): 5–2 000 m,
- profilowanie neutron-gamma (PNG): 7–2021 m,
- profilowanie oporności EL00 (PO): 7–2019 m,
- profilowanie oporności EN16 (PO): <u>7–2019 m,</u>

- profilowanie oporności EN64 (PO): 7–2019 m,
- profilowanie potencjałów naturalnych (PS): 7–2019 m,
- profilowanie średnicy otworu CALI (PSr): 287–2021 m,
- profilowanie temperatury (PT): 10–1944 m,

Pomiarów średnich prędkości i pomiarów pionowego profilowania sejsmicznego w otworze Rybaki 14 <u>nie wykonano</u>.

Objawy węglowodorów w trakcie wiercenia i próby złożowe: obserwacje obecności węglowodorów w rdzeniu zestawiono w Tab. 5.42. Brak wyników przeprowadzonych prób złożowych.

Dokumentacje NAG PIG-PIB:

- Olczak D. 1964. Karta otworu: Rybaki 14. Inw. 92310, CAG PIG, Warszawa.
- Cimaszewski L., Korab Z. 1964. Druga [II] dokumentacja wraz z uzupełnieniem złoża ropy naftowej struktury Rybaki w miejscowości Rybaki, Maszewo, Połęcko, pow. Krosno Odrzańskie, woj. zielonogórskie. Inw. 18104,4020/54, CAG PIG, Warszawa.

Stuaturanofia	Głębokość [m]		Ohione		
Stratygrana	od do		Objawy		
	1980,8	1985,2	przy uderzeniu zapach bituminów		
	1985,2	1991,2	słaby zapach ropy		
	1991,2	1997,0	ślady płynnej ropy		
	1997,0	2002,0	lekkim zapachem bituminów		
dolomit główny	2002,0	2006,5	słaby zapach bituminów		
	2006,5	2009,5	ślady płynnej ropy ze szczelin		
	2009,5	2013,9	pojedyncze pęcherzyki ropy z ukrytych szczelin		
	2013,9	2018,7	silny zapach ropy		
	2018,7	2021,5	silny zapach bitumiczny		

Tab. 5.42. Objawy węglowodorów w rdzeniach w otworze Rybaki 14 (Olczak, 1964).

5.20. SOSNA-1

Głębokość otworu wg miary wiertniczej: 2455,0 m

Głębokość otworu wg miary geofizycznej: 2455,0 m

Rok zakończenia wiercenia: 2012

Rdzenie: 2342,5–2389,36 m, 50 skrzynek, Magazyn rdzeni w Halinowie

Stratygrafia (Szpetnar-Skierniewska i Krajewski, 2017):

Głębokość [m]		Stratygrafia
od	do	Stratygrana
0,0	272,5	kenozoik
272,5	426,0	jura
426,0	2017,0	trias
2017,0	2455,0	perm
2017,0	2057,0	iłowce przejściowe
2057,0	2059,0	anhydryt pegmatytowy górny A4a
2059,0	2107,9	najmłodsza sól kamienna Na4a
2107,9	2110,7	anhydryt pegmatytowy dolny A4a
2110,7	2119,4	czerwony ił solny T4a
2119,4	2182,8	młodsza sól kamienna Na3
2182,8	2205,0	anhydryt główny A3
2205,0	2208,0	szary ił solny T3
2208,0	2211,0	anhydryt kryjący A2r
2211,0	2320,0	sól kamienna starsza Na2
2320,0	2336,5	anhydryt podstawowy A2
2336,5	2376,0	dolomit główny Ca2
2376,0	2455,0	anhydryt górny Alg

Wyniki badań skał:

W dokumentacji wynikowej otworu wiertniczego Sosna-1 (Szpetnar-Skierniewska i Krajewski, 2017) znajdują się wyniki analiz fizyczno-chemicznych 196 próbek z dolomitu głównego i anhydrytu górnego wraz z oznaczeniem porowatości, gęstości objętościowej, przepuszczalności poziomej i przepuszczalności poziomej, podsumowane w Tab. 5.43. Ponadto wykonano 15 analiz Rock-Eval (Tab. 5.44) oraz 8 próbek poddano badaniami SRP (wszystkie z dolomitu głównego). Wykonano także 4 analizy gazu (Tab. 5.45) oraz badania geometrii porów dla 16 próbek z dolomitu jak również głównego, analizy XRD 24 próbek z dolomitu głównego.

Wyniki geofizyki otworowej:

Dokumentacja wynikowa otworu Sosna-1 (Szpetnar-Skierniewska i Krajewski, 2017) zawiera wyniki badań geofizyki wiertniczej wykonanych w następującym zakresie (dla podkreślonych profilowań w CBDG znajdują się pliki LAS):

- o profilowanie gamma: 62–1017 m,
- o laterolog (HRLA): 62–1017 m,
- profilowanie potencjałów naturalnych (SP): 62–1017 m,
- profilowanie akustyczne (BHC): 62–1017 m,
- o cementomierz (CBL-VDL): 20-95 m,
- o średnicomierz (CALI): 882–2096 m,
- o profilowanie gamma: 882–2096 m,
- o laterolog (HRLA): 882–2096 m,
- profilowanie potencjałów naturalnych (SP): 882–2096 m,
- profilowanie akustyczne (BHC): <u>882–2096 m,</u>
- profilowanie gęstościowe (TLD): <u>882–2096 m.</u>
- o cementomierz (CBL-VDL): 25-1043 m,
- o cementomierz (CBL-VDL): 20-2133 m,
- o średnicomierz (CALI): 2134–2455 m,
- o profilowanie gamma: 2134–2455 m,
- o laterolog (HRLA): 2134-2455 m,
- <u>profilowanie potencjałów naturalnych</u> (SP): 2134–2455 m,
- profilowanie gęstościowe (TLD): 2134–2455 m,
- profilowanie porowatości (APS): 2134–2455 m,
- o <u>foto-elektryk: 2134–2455 m</u>,
- profilowanie spektroskopowe minerałów (ECS): 2134–2455 m,
- o średnicomierz (PPC): 2134–2455 m,
- o profilowanie gamma: 2134–2455 m,
- profilowanie akustyczne (Sonic Scanner, <u>MSIP):</u>
- <u>FMI: 2134–2455 m,</u>
- <u>rezonans magnetyczny (CMR):</u> <u>2300–2420 m.</u>
- profilowanie ciśnienia w porach (XPT): 2340–2370 m,
- <u>cementomierz (CBL–VDL):</u> <u>2044–2455 m.</u>

W otworze Sosna-1 wykonano pomiary pionowego profilowania sejsmicznego (Szpetnar–Skierniewska i Krajewski, 2017).

• <u>pionowe profilowanie sejsmiczne (VSP):</u> <u>100–2455 m.</u> **Objawy węglowodorów w trakcie wiercenia i próby złożowe:** w trakcie wiercenia otworu w dolomicie głównym – od jego stropu do głębokości 2353,0 m zaobserwowano silny zapach węglowodorów i siarkowodoru oraz ślady ropy w płuczce i rdzeniach. Głębiej objawy stały się słabsze. Testy złożowe wykonano w dolomicie głównym w interwałach 2339,1–2343,1 m i 2348,1–2370,1 m, nie uzyskując przypływu.

Dokumentacje NAG PIG-PIB:

• Szpetnar-Skierniewska A., Krajewski D. 2017. Dokumentacja geologiczna z wy-

konania prac geologicznych na koncesji nr 8/2008/p na obszarze Torzym niekończących się udokumentowaniem zasobów złóż kopalin (ropy naftowej i gazu ziemnego). Inw. 5750/2020, CAG PIG, Warszawa.

Szpetnar-Skierniewska A. 2019. Dokumentacja geologiczna sporządzona w przypadku likwidacji otworu wiertniczego Sosna-1 [miejsc. Drzewica, gm. Bytnica, pow. krośnieński, woj. lubuskie]. Inw. 5037/2020, CAG PIG, Warszawa.

Stratygrafia	Liczba pomiarów	Porowatość średnia	Przepuszczalność średnia	
		[%]	[mD]	
dolomit główny	165	6,61	0,01	
anhydryt górny	31	0,63	0,10	

Tab. 5.43. Podsumowanie wyników badań fizyczno-chemicznych rdzeni w otworze Sosna-1 (Szpetnar-Skierniewska i Krajewski, 2017).

			TOC	S1	S2	S 3	Tmax	HI
Stratygrafia	Ilość pomiarów		[%wag.]	[mgHC/ gSkały]	[mgHC/ gSkały]	[mgHC/ gTOC]	[°C]	[mgHC/ gTOC]
dolomit główny	15	Śr	0,33	0,11	0,25	0,69	423,43	70,14
		Max	0,53	0,39	0,81	1,74	440,00	152,00
		Min	0,24	0,07	0,08	0,10	408,00	27,00
anhydryt górny	1	Śr	0,27	0,06	0,16	0,10	443	59
		Max	0,27	0,06	0,16	0,10	443	59
		Min	0,27	0,06	0,16	0,10	443	59

Tab. 5.44. Wyniki analiz pirolitycznych w otworze Sosna-1 (Szpetnar-Skierniewska i Krajewski, 2017).

Stratygrafia	Głębokość [m]	Głębokość [m] Metoda		% obj.
			C ₁	7,25166
			C_2	4,23524
			C ₃	3,56972
			i-C ₄	0,36523
			n-C ₄	1,03802
dolomit główny	2342,5–2360,5	z rdzenia	neo-C ₅	0,00244
dololilit główny			i-C ₅	0,33445
			CO ₂	0,15448
			N_2	0
			Не	0,01847
			H ₂	82,3148
			H ₂ S	0
			C ₁	0,04275
delemit glówny			C_2	0,01195
anhydryt górny	2361,5–2379,5	z rdzenia	C ₃	0,00657
annyaryt gorny			i-C ₄	0,00053
			$n-C_4$	0,00134

			neo-C ₅	0
			i-C ₅	0,00038
			CO_2	0,00218
			N ₂	0,97565
			He	0
			H ₂	98,93905
			H_2S	0
			C ₁	0,04206
			C_2	0,01155
			C ₃	0,00615
			i-C ₄	0,00048
			n-C ₄	0,00115
dolomit główny,	2261 5 2270 5		neo-C ₅	0
anhydryt górny	2301,3-2379,5	z rozenia	i-C ₅	0,00028
			CO_2	0,00433
			N_2	0,86365
			He	0
			H_2	99,0652
			H_2S	0
			C_1	0,00822
			C_2	0,00206
			C ₃	0,00149
			i-C ₄	0,00017
			n-C ₄	0,00066
anhydryt górny	2270 5 2201 5	z rdzonio	neo-C ₅	0
annydryt gorny	2579,3-2591,5	z iuzeilla	i-C ₅	0,00018
			CO_2	0,00023
			N ₂	17,275
			He	0
			H ₂	82,70648
			H_2S	0

Tab. 5.45. Skład molekularny próbek gazu (w czystym gazie bez powietrza) z rdzeni otworu Sosna-1 (Szpetnar-Skierniewska i Krajewski, 2017).

5.21. ŚWIEBODZIN-1

Głębokość otworu wg miary wiertniczej: 1503,0 m Głębokość otworu wg miary geofizycznej: 1503,0 m Rok zakończenia wiercenia: 1962 Rdzenie: brak

Stratygrafia (CBDG, 2022):

Głębokość [m]		Stuaturanofia	
od	do	Stratygrana	
0,0	255,0	kenozoik	
255,0	458,0	jura	
458,0	1503,0	trias	

Wyniki badań skał: brak.

Wyniki geofizyki otworowej:

Karta otworu Świebodzin-1 (Sokołowska, 1965) zawiera wyniki badań geofizyki wiert-

niczej wykonanych w następującym zakresie (dla podkreślonych profilowań w CBDG są dostępne pliki LAS):

- profilowanie naturalnego promieniowania gamma (PG): 4–1494 m,
- profilowanie krzywizny odwiertu (PK): 25–1500 m,
- profilowanie neutron-gamma (PNG): <u>4-1494 m</u>,
- profilowania oporności standardowe (PO): 56,5–1493 m,
- profilowanie potencjałów naturalnych (PS): 56,5–1493 m,
- profilowanie temperatury (PT): <u>12–1030 m.</u>

Pomiary średnich prędkości i pionowego profilowania sejsmicznego w otworze Świebodzin-1 znajdują się w dokumentacji Krach i Madeja (1962). W CBDG brak dla nich plików LAS.

Objawy węglowodorów w trakcie wiercenia i próby złożowe: brak objawów, prób złożowych nie wykonano.

5.22. ŚWIEBODZIN 2

Głębokość otworu wg miary wiertniczej: 1998,0 m Głębokość otworu wg miary geofizycznej: 1998,0 m Rok zakończenia wiercenia: 1964

Rdzenie: brak

Stratygrafia (CBDG, 2022):

Głębokość [m]		Stuaturanofia	
od	do	Stratygrana	
0,0	233,0	kenozoik	
233,0	1943,0	jura+trias	
1943,0	1998,0	perm	
1943,0	1958,0	terygeniczna stropowa seria PZt	
1958,0	1988,0	sól kam. najmłodsza Na4a	
1988,0	1998,0	anhydryt pegmatytowy dolny A4a1	

Wyniki badań skał:

W dokumentacji wynikowej otworu wiertniczego Świebodzin 2 (Kienig, 1964b) znajdują się wyniki analiz fizyczno-chemicznych 7 próbek z triasu z interwału 1467,4– 1561,1 m (Kienig, 1964b) wraz z oznaczeniem porowatości, przepuszczalności, zasolenia i zawartości bituminów. (Tab. 5.46).

Wyniki geofizyki otworowej:

Dokumentacja otworu Świebodzin 2 (Kienig, 1964b) zawiera wyniki badań geofizyki wiertniczej wykonanych w następującym zakresie (w CBDG brak plików LAS):

Dokumentacje NAG PIG-PIB:

- Krach B., Madej M. 1962. Pomiar średnich prędkości w odwiercie Świebodzin-1. Kat. Ś22 VS, CAG PIG, Warszawa.
- Sokołowska J. 1965. Karta otworu Świebodzin-1. Inw. 68408, CAG PIG, Warszawa.
- profilowanie naturalnego promieniowania gamma (PG): 3–1738 m,
- profilowanie krzywizny odwiertu (PK): 8–1975 m,
- profilowanie neutron–gamma (PNG): 3–1738 m,
- profilowania oporności standardowe (PO): 8–1938 m,
- profilowanie potencjałów naturalnych (PS): 8–1938 m,
- profilowanie średnicy otworu CALI (PSr): 8–1975 m,
- profilowanie temperatury (PT): 5–1517 m.

Pomiarów średnich prędkości i pomiarów pionowego profilowania sejsmicznego w otworze Świebodzin 2 <u>nie wykonano</u>.

Objawy węglowodorów w trakcie wiercenia i próby złożowe: brak objawów, prób złożowych nie wykonano z powodu przechwycenia przewodu przez czerwone iły solne cechsztynu.

Dokumentacje NAG PIG-PIB:

- Kienig E. 1964b. Sprawozdanie wynikowe z otworu Świebodzin 2. Inw. 7238/2021, CAG PIG, Warszawa.
- Olczak D, 1965. Pomiary geofizyczne otworu Świebodzin 2 + karta otworu. Inw. 83871, CAG PIG, Warszawa.

Stratygrafia	Liczba pomiarów	Porowatość Min-Max	Przepuszczalność Min-Max	Bituminy Min-Max
		[%]	[mD]	[%]
trias	7	8,87–13,48	77,03–573,25	0,0005-0,0372

Tab. 5.46. Podsumowanie wyników badań fizyczno-chemicznych próbek pobranych z interwału 1467,4–1561,1 m (trias), w otworze Świebodzin 2 (Kienig, 1964b).

5.23. ŚWIEBODZIN 3

Głębokość otworu wg miary wiertniczej: 2804,0 m

Głębokość otworu wg miary geofizycznej: 2804,0 m

Rok zakończenia wiercenia: 1966

Rdzenie: brak

Stratygrafia (CBDG, 2022):

Głębokość [m]		Stratygrafia	
od	do	Stratygrana	
0,0	230,0	kenozoik	
230,0	1905,0	trias	
1905,0	2804,0	perm	
1905,0	1919,5	terygeniczna stropowa seria PZt	
1919,5	1954,4	sól kam. najmłodsza Na4a	
1954,4	1956,0	anhydryt pegmatytowy dolny A4a1	
1956,0	1963,0	ił solny czerwony dolny T4a	
1963,0	2075,5	sól kam. młodsza Na3	
2075,5	2110,0	anhydryt główny A3	
2110,0	2111,5	szary ił solny T3	
2111,5	2113,5	anhydryt kryjący A2r	
2113,5	2623,5	sól kamienna starsza Na2	
2623,5	2632,5	anhydryt podstawowy A2	
2632,5	2649,0	dolomit główny Ca2	
2649,0	2673,0	anhydryt górny Alg	
2673,0	2718,3	sól kamienna najstarsza Na1	
2718,3	2754,1	anhydryt dolny Ald	
2754,1	2757,8	wapień cechsztyński Cal	
2757,8	2804,0	czerwony spągowiec	

Wyniki badań skał:

W dokumentacji wynikowej otworu wiertniczego Świebodzin 3 (Binder, 1966b) znajdują się wyniki analiz fizyczno-chemicznych 8 próbek z triasu z interwału 1466,0– 1478,0 m, 10 próbek z dolomitu głównego z interwału 2632,5–2649,0 m, 2 próbek z anhydrytu dolnego z interwału 2740,0– 2746,0 m oraz 16 próbek z czerwonego spągowca z interwału 2758,1–2782,25 m (Binder, 1966b) wraz z oznaczeniem porowatości, przepuszczalności, zasoleniem i zawartości bituminów. Ponadto wykonano 1 analizę wody (Tab. 5.47–5.48).

Wyniki geofizyki otworowej:

Dokumentacja wynikowa otworu Świebodzin 3 (Binder, 1966b) zawiera wyniki badań geofizyki wiertniczej wykonanych w następującym zakresie (w CBDG są dostępne dla nich pliki LAS):

- pomiar akustyczny stanu zacementowania rur okładzinowych (Pac): 1258–1965 m,
- profilowanie naturalnego promieniowania gamma (PG): 3–2738 m,
- profilowanie krzywizny odwiertu (PK): 25–2750 m,
- profilowanie neutron-gamma (PNG): 3–2738 m,
- profilowania oporności standardowe (PO): 26–2746 m,
- profilowanie oporności EL18 (PO): 25–2748 m,
- profilowanie potencjałów naturalnych (PS): 26–2746 m,
- profilowanie średnicy otworu CALI (PSr): 25–2750 m.

Sprawozdanie z pomiarów średnich prędkości i pomiarów pionowego profilowania sejsmicznego w otworze Świebodzin 3 (Materzok i Materzok, 1996) zawiera wyniki pomiarów wykonanych w następującym zakresie (dla podkreślonych profilowań w CBDG dostępne są dla nich pliki LAS):

- profilowanie prędk. śr., czas interpolowany podwojony Tx2: 20–2080 m,
- profilowanie prędk. śr., czas interpolowany TW: 20–2080 m,
- profilowanie prędk. śr., czas pomierzony <u>Tr_PW1: 37–2087 m</u>,
- profilowanie prędk. śr., czas pomierzony <u>Tr_PW2: 37–2087 m</u>,
- profilowanie prędk. śr., czas pomierzony <u>Tr_PW3: 37–2087 m,</u>
- profilowanie prędk. śr., czas uśredniony <u>Tr_PO: 37–2087 m</u>,
- profilowanie prędk. śr., gradient czasu interpol. DT_VSP: 20–2080 m.

Objawy węglowodorów w trakcie wiercenia i próby złożowe: obserwacje zaniku płuczki, obecności węglowodorów w rdzeniu oraz wyniki przeprowadzonych prób złożowych zestawiono w Tab. 5.49–5.51.

Dokumentacje NAG PIG-PIB:

• Binder I. 1966b. Sprawozdanie wynikowe z otworu Świebodzin 3. Inw. 7239/2021, CAG PIG, Warszawa.

- Materzok W., Materzok R. 1966. Dokumentacja pomiarów średnich prędkości, odwiert: Świebodzin 3. Ś23 VS, CAG PIG, Warszawa.
- Pomiary geofizyczne otworu Świebodzin 3 + karta otworu. Inw. 83872, CAG PIG, Warszawa.

Stratygrafia	Liczba pomiarów	Porowatość Min-Max	Przepuszczalność Min-Max	Bituminy Min-Max
		[%]	[mD]	[%]
trias	8	2,6–14,9	8,486-126,684	ślady
dolomit główny	10	0,54–2,28	0,22–2,527	0,033–0,3325
czerwony spągowiec	16	6,68–17,21	5,228–147,455	ślady

Tab. 5.47. Podsumowanie wyników badań fizyczno-chemicznych próbek pobranych z interwału 1466,0–1478,0 m (trias), z interwału 2632,5–2649,0 m (dolomit główny), z interwału 2758,1–2782,25 m (czerwony spągowiec), w otwo-rze Świebodzin 3 na podstawie dokumentacji wynikowej (Binder, 1966b).

Stratygrafia	Głębokość [m]	Metoda	Składniki	g/l
			Cl	208,5048
			Br	-
			HCO ₃ ⁻	0,0854
	2770,0–2785,0	próbka pobrana podczas łyżkowania	SO_4^{2-}	0,679
0705000			$\mathrm{NH_4}^+$	-
czerwoliy			Ca^{2+}	49,089
spągowiec			Mg^{2+}	9,8443
			Na/K ⁺	56,6042
			Al/Fe ³⁺	3,3179
			pН	6
			mineralizacja	355

Tab. 5.48. Wyniki analiz wody i filtratu w otworze Świebodzin 3 (Binder, 1966b).

Stratygrafia	Głębokość [m]	Zanik płuczki [m³/24h]
trias	407,0	20/?

Tab. 5.49. Objawy w trakcie wiercenia (zaniki płuczki) w otworze Świebodzin 3 (Binder, 1966b).

Stratygrafia	Głębokość [m]		Objerry
	od	do	Objawy
dolomit główny	2636,5	2639,5	miejscami nikłe punktowe ślady ropy

Tab. 5.50. Objawy węglowodorów w rdzeniach w otworze Świebodzin 3 (Binder, 1966b).

Stratygrafia	Głębokość [m]	Metoda	Przypływ	Tempo prz. [m ³ /h]
czerwony spągowiec	2770,0–2785,0	łyżkowanie	ściągnięto łącznie 76 m ³ , zerwanie łyżki i niemożliwość jej wyciągnięcia spowodował brak testów w interwale i likwidację otworu	-

Tab. 5.51. Rezultaty prób złożowych w otworze Świebodzin 3 (Binder, 1966b).

Fig. 5.2. Profil otworu Bytomiec-1 na podstawie dokumentacji wynikowej (Krzyżanowski i Łysik, 1972).

Fig. 5.3. Profil otworu Koziczyn-1 na podstawie dokumentacji wynikowej (Żurawik i Tubielewicz, 1972).

6. SEJSMIKA

Badania sejsmiczne w rejonie obszaru przetargowego Cybinka-Torzym prowadzono już w latach 60-tych XX wieku, jednak odbywały się z zapisem analogowym i obecnie mają wartość archiwalną. Pomiary z zapisem cyfrowym zaczęto stosować od 1976 roku, a uzyskane w ten sposób wyniki pomiarów pokryły obszar gęstą siecią linii sejsmicznych 2D (Fig. 6.1–6.2). Większość badań wykonano w latach 90-tych ubiegłego wieku (Tab. 6.1), z których znakomita część jest zlokalizowana w zachodniej części obszaru.

Wykonano również 3 zdjęcia sejsmiczne 3D (Tab. 6.2), przy czym zdjęcie Cybinka-Torzym 3D z 2010 roku, w całości znajduje się w granicach obszaru przetargowego. Cel badań dwóch pozostałych zdjęć był ulokowany poza jego granicami i na obszarze przetargowym znalazły się zaledwie małe fragmenty, wnoszące bardzo małą lub żadną ilość informacji.

Na Fig. 6.3 zamieszczono wyniki interpretacji danych sejsmicznych z obszaru Cybinka-Torzym (Szpetnar-Skierniewska, 2017). Ilustrują one strukturę powierzchni stropowej dolomitu głównego, a więc głównego horyzontu poszukiwawczego na obszarze przetargowym.

Fig. 6.1. Badania sejsmiczne wykonane w rejonie obszaru przetargowego Cybinka-Torzym (CBDG, 2022).

CYBINKA-TORZYM

Fig. 6.2. Badania sejsmiczne wykonane w granicach obszaru przetargowego Cybinka-Torzym (CBDG, 2022).

CYBINKA-TORZYM

Fig. 6.3. Strukturalna mapa czasowa stropu dolomitu głównego na obszarze przetargowym Cybinka-Torzym (Szpetnar-Skierniewska, 2017).

CYBINKA-TORZYM

NAZWA	ROK WYKONANIA	TEMAT	WŁAŚCICIEL	DŁUGOŚĆ [km]
T0150876	1976	Kostrzyń-Skwierzyna	Skarb Państwa	14,14
TA150876	1976	Kostrzyń-Skwierzyna	Skarb Państwa	6,72
TB150876	1976	Kostrzyń-Skwierzyna	Skarb Państwa	10,79
T0050477	1977	Sulęcin-Świebodzin	Skarb Państwa	2,45
T0060477	1977	Sulęcin-Świebodzin	Skarb Państwa	12,68
T0080477	1977	Sulęcin-Świebodzin	Skarb Państwa	2,76
T0100477	1977	Sulęcin-Świebodzin	Skarb Państwa	3,18
T0750477	1977	Cybinka-Nowa Sól	Skarb Państwa	6,71
T0040478	1978	Cybinka-Nowa Sól	Skarb Państwa	12,27
T0520478	1978	Cybinka-Nowa Sól	Skarb Państwa	27,2
T0540478	1978	Cybinka-Nowa Sól	Skarb Państwa	2,89
T0750478	1978	Cybinka-Nowa Sól	Skarb Państwa	15,9
T0800478	1978	Cybinka-Nowa Sól	Skarb Państwa	8,47
T0820478	1978	Cybinka-Nowa Sól	Skarb Państwa	19,68
T0200383	1983	Świebodzin-Zielona Góra-Nowa Sól	Skarb Państwa	5,88
T0170384	1984	Swiebodzin-Zielona Góra-Nowa Sól	Skarb Państwa	5,64
T0290784	1984	Swiebodzin-Zielona Góra-Nowa Sól	Skarb Państwa	5,76
T0320785	1985	Swiebodzin-Zielona Góra-Nowa Sól	Skarb Państwa	5,89
TA100785	1985	Swiebodzin-Zielona Góra	Skarb Państwa	4,41
T0090686	1986	Rzepin-Krosno Odrzańskie	Skarb Państwa	14,3
T0100686	1986	Rzepin-Krosno Odrzańskie	Skarb Państwa	14,48
T0110686	1986	Rzepin-Krosno Odrzańskie	Skarb Państwa	17,06
T0120686	1986	Rzepin-Krosno Odrzańskie	Skarb Państwa	8,05
T0130686	1986	Rzepin-Krosno Odrzańskie	Skarb Państwa	13,18
T2110686	1986	Rzepin-Krosno Odrzańskie	Skarb Państwa	4,42
T0030687	1987	Rzepin-Krosno Odrzańskie	Skarb Państwa	19,75
10040687	1987	Rzepin-Krosno Odrzanskie	Skarb Panstwa	6,17
10050687	1987	Rzepin-Krosno Odrzanskie	Skarb Panstwa	4,45
10060687	1987	Rzepin-Krosno Odrzańskie	Skarb Panstwa	10,43
T01/068/	1987	Rzepin-Krosno Odrzańskie	Skarb Panstwa	0,38
T0140087	1987	Rzepin-Krosno Odrzańskie	Skarb Panstwa	9,57
T01/008/	1987	Rzepin-Krosno Odrzańskie	Skarb Palistwa	7,95
T0100687	1987	Rzepin-Krosno Odrzańskie	Skarb Państwa	0,93
T0190087	1987	Rzepin-Krosno Odrzańskie	Skarb Państwa	12,55
T0200087	1987	Rzepin-Krosno Odrzańskie	Skarb Państwa	9.2
T0210087	1987	Rzepin-Krosno Odrzańskie	Skarb Państwa	13.93
T0220007	1987	Rzepin-Krosno Odrzańskie	Skarb Państwa	13,73
T0240687	1987	Rzepin-Krosno Odrzańskie	Skarb Państwa	15,75
T0280687	1987	Rzepin-Krosno Odrzańskie	Skarb Państwa	8 56
T0290687	1987	Rzepin-Krosno Odrzańskie	Skarb Państwa	5,64
TA200687	1987	Rzepin-Krosno Odrzańskie	Skarb Państwa	15.89
T0010688	1988	Rzepin-Krosno Odrzańskie	Skarb Państwa	19.71
T0020688	1988	Rzepin-Krosno Odrzańskie	Skarb Państwa	6,61
T0150688	1988	Rzepin-Krosno Odrzańskie	Skarb Państwa	9,15
T0160688	1988	Rzepin-Krosno Odrzańskie	Skarb Państwa	6,19
T0210688	1988	Rzepin-Krosno Odrzańskie	Skarb Państwa	15,3
T0220688	1988	Rzepin-Krosno Odrzańskie	Skarb Państwa	10,81
T0230688	1988	Rzepin-Krosno Odrzańskie	Skarb Państwa	11,74
T0320688	1988	Rzepin-Krosno Odrzańskie	Skarb Państwa	9,27
T0820688	1988	Rzepin-Krosno Odrzańskie	Skarb Państwa	12,26
T0860688	1988	Rzepin-Krosno Odrzańskie	Skarb Państwa	10,59
T0990688	1988	Rzepin-Krosno Odrzańskie	Skarb Państwa	13,07
T1010688	1988	Rzepin-Krosno Odrzańskie	Skarb Państwa	13,8
T1020688	1988	Rzepin-Krosno Odrzańskie	Skarb Państwa	13,66
T1030688	1988	Rzepin-Krosno Odrzańskie	Skarb Państwa	12,84
T1040688	1988	Rzepin-Krosno Odrzańskie	Skarb Państwa	13,13
TB240688	1988	Rzepin-Krosno Odrzańskie	Skarb Państwa	2.13

T0100689	1989	Rzepin-Krosno Odrzańskie		9.86
T0110689	1989	Rzepin-Krosno Odrzańskie		8.54
T0120689	1989	Rzepin-Krosno Odrzańskie		12.79
T0130689	1989	Rzepin-Krosno Odrzańskie		15.7
T0150689	1989	Rzepin-Krosno Odrzańskie	-	12.58
T0150009	1989	Rzepin-Krosno Odrzańskie	-	17.12
T0100089	1080	Rzepin-Krosno Odrzańskie		17,12
T0170089	1989	Pzopin Krosno Odrzańskie	-	16.80
T0100690	1989	Rzepin-Krosno Odrzańskie	-	10,89
T0190089	1989	Rzepin-Krosno Odrzańskie	-	8.40
T0200089	1989	Rzepin-Krosno Odrzańskie	-	0,49
10210689	1989	Rzepin-Krosno Odrzanskie	-	13,76
10220689	1989	Rzepin-Krosno Odrzanskie	-	8,39
10230689	1989	Rzepin-Krosno Odrzanskie		4,6
10250689	1989	Rzepin-Krosno Odrzanskie		16,/1
10260689	1989	Rzepin-Krosno Odrzanskie	-	14,41
T0270689	1989	Rzepin-Krosno Odrzańskie	_	17,48
T0280689	1989	Rzepin-Krosno Odrzańskie	_	11,95
T0830689	1989	Rzepin-Krosno Odrzańskie	-	10,26
T0840689	1989	Rzepin-Krosno Odrzańskie		11,25
T0870689	1989	Rzepin-Krosno Odrzańskie		11,7
T0880689	1989	Rzepin-Krosno Odrzańskie		11,22
T0890689	1989	Rzepin-Krosno Odrzańskie		10,63
T0900689	1989	Rzepin-Krosno Odrzańskie		4,2
T0910689	1989	Rzepin-Krosno Odrzańskie		5,23
T0940689	1989	Rzepin-Krosno Odrzańskie		5,37
T0950689	1989	Rzepin-Krosno Odrzańskie		5,5
T0960689	1989	Rzepin-Krosno Odrzańskie		7,34
T0970689	1989	Rzepin-Krosno Odrzańskie		4,4
T0980689	1989	Rzepin-Krosno Odrzańskie		4,39
T1080689	1989	Rzepin-Krosno Odrzańskie	ORLEN S.A.	2,73
T0140690	1990	Rzepin-Krosno Odrzańskie		19,16
T0290690	1990	Rzepin-Krosno Odrzańskie		13.71
T0300690	1990	Rzepin-Krosno Odrzańskie		12.18
T0810690	1990	Rzepin-Krosno Odrzańskie	-	4.99
T0820690	1990	Rzepin-Krosno Odrzańskie	-	5.8
T0830690	1990	Rzepin-Krosno Odrzańskie		4.97
T0850690	1990	Rzepin-Krosno Odrzańskie		5 94
T0860690	1990	Rzepin-Krosno Odrzańskie		4.55
T0870690	1990	Rzepin-Krosno Odrzańskie		6.05
T0970690	1990	Słubice-Krosno Odrzańskie	-	8.63
T1010690	1990	Rzenin-Krosno Odrzańskie		7.0
T1020690	1990	Rzepin-Krosno Odrzańskie	-	8.4
T1020090	1990	Rzepin-Krosno Odrzańskie	-	10.44
T1040690	1990	Stubice-Krosno Odrzańskie	-	7 05
T1050690	1990	Stubice-Krosno Odrzańskie	-	8 75
T1050090	1000	Shibice-Krosno Odrzańskie	1	5 80
T1000090	1990	Słubice Krosno Odrzańskie		10.23
T0010601	1990	Rzenin Krosno Odrzeńskie	-	10,23
T0020601	1991	Pzopin Krospo Odrzeńskie	-	4,07
T0020091	1991	Rzepin-Krosno Odrzańskie		8.09
T0030091	1991	Propin Vroano Odrzańskie	-	0,00
T0040091	1991	Rzepin-Krosno Odrzańskie	-	12,34
T0050091	1991	Rzepin-Krosno Odrzańskie	4	9,04
T0070601	1991	Rzepin-Krosno Odrzańskie	4	10,02
100/0691	1991	Kzepin-Krosno Udrzanskie	1	9,56
10100691	1991	Kzepin-Krosno Udrzanskie	1	/,05
10110691	1991	Rzepin-Krosno Odrzańskie	4	13,44
T0120691	1991	Rzepin-Krosno Odrzańskie	4	5,6
T0130691	1991	Rzepin-Krosno Odrzańskie	4	8,55
T0140691	1991	Rzepin-Krosno Odrzańskie		11,3
T0150691	1991	Rzepin-Krosno Odrzańskie		7,56

T0160691	1991	Rzepin-Krosno Odrzańskie		6,53
T0170691	1991	Rzepin-Krosno Odrzańskie	-	11,86
T1530691	1991	Słubice-Rzepin		5,15
T1570691	1991	Słubice-Rzepin		3.48
T0010692	1992	Cybinka-Krosno Odrz -Gubin	-	6 54
T0020692	1992	Cybinka-Krosno Odrz -Gubin	-	7.0
T0020692	1992	Cybinka-Krosno Odrz - Gubin	-	7.41
T0040692	1002	Cybinka Krosno Odrz. Gubin	-	5 20
T0040092	1992	Cybinka-Kiosno Odrz, Cubin		5.29
T0050092	1992	Cyblinka-Klosho OdrzGubin	-	5,70
T0000092	1992	Cybinka-Krosno OdrzGubin	-	5,07
10070692	1992	Cybinka-Krosno OdrzGubin	_	6,03
10080692	1992	Cybinka-Krosno OdrzGubin	_	/,66
10090692	1992	Cybinka-Krosno OdrzGubin	_	6,5
T0130692	1992	Cybinka-Krosno OdrzGubin	_	9,03
T0140692	1992	Cybinka-Krosno OdrzGubin		8,8
T0150692	1992	Cybinka-Krosno OdrzGubin		6,04
T0160692	1992	Cybinka-Krosno OdrzGubin		5,68
T0170692	1992	Cybinka-Krosno OdrzGubin		5,28
T0180692	1992	Cybinka-Krosno OdrzGubin		9,91
T0190692	1992	Cybinka-Krosno OdrzGubin		5,71
T0200692	1992	Cybinka-Krosno OdrzGubin		5,63
T0210692	1992	Cybinka-Krosno Odrzańskie		6,61
T0220692	1992	Cybinka-Krosno Odrzańskie		10.87
T0240692	1992	Cybinka-Krosno Odrzańskie	-	7.5
T0250692	1992	Cybinka-Krosno Odrzańskie		3.5
T1250692	1992	Krosno Odrzańskie-Świebodzin		3.08
T1200692	1992	Krosno Odrzańskie-Świebodzin	_	3 54
T1300092	1002	Krosno Odrzańskie Świebodzin	-	5 72
T5330602	1992	Krosno Odrzańskie Świebodzin	_	2.11
T0910202	1992	Cubinka Krasna Odrz, Cubin	ODI EN C A	2,11
T0810293	1993	Cybinka-Kiosno Odrz, Cybin	OKLEN S.A.	5,55
T0820293	1993	Cybinka-Krosno OdrzGubin	-	0,8
T0830293	1993	Cybinka-Krosno OdrzGubin	-	4,1
10880293	1993	Cybinka-Krosno OdrzGubin	_	5,64
10110595	1995	Słubice-Krosno Odrzanskie	_	5,24
10120595	1995	Słubice-Krosno Odrzanskie		17,36
10130595	1995	Słubice-Krosno Odrzańskie	_	14,52
T0140595	1995	Słubice-Krosno Odrzańskie	_	4,18
T0150595	1995	Słubice-Krosno Odrzańskie		6,61
T0160595	1995	Słubice-Krosno Odrzańskie		13,2
T0170595	1995	Słubice-Krosno Odrzańskie		20,03
T0180595	1995	Słubice-Krosno Odrzańskie		14,33
T0190595	1995	Słubice-Krosno Odrzańskie		6,22
T0200595	1995	Słubice-Krosno Odrzańskie		11,15
T0210595	1995	Słubice-Krosno Odrzańskie		9,83
T0220595	1995	Słubice-Krosno Odrzańskie		9,0
T0230595	1995	Słubice-Krosno Odrzańskie		8,65
T0240595	1995	Słubice-Krosno Odrzańskie]	8,23
T0250595	1995	Słubice-Krosno Odrzańskie	1	3,49
T0270595	1995	Słubice-Krosno Odrzańskie		11.45
T0280595	1995	Słubice-Krosno Odrzańskie	1	10.47
T0290595	1995	Słubice-Krosno Odrzańskie	1	8.35
T0300595	1995	Słubice-Krosno Odrzańskie	1	8.08
T0310595	1995	Słubice-Krosno Odrzańskie	1	9.97
T0210696	1996	Shibice-Krosno Odrzańskie	4	3.67
T0210090	1990	Shibice Krospo Odrzańskie	4	8.02
T0220090	1770	Shibice Krospo Odrzańskie	4	0,00
T0230090	1990	Shubice Vreame Odrzańskie	4	9,/0
T0240090	1990	Studice-Krosno UdrZanskie	4	9,43
10250696	1996	Studice-Krosno Udrzanskie	4	8,83
10600596	1996	Słubice-Krosno Udrzańskie	4	14,18
TOO10507	1997	Słubice-Krosno Odrzańskie	1	8,9

T0020597	1997	Słubice-Krosno Odrzańskie		15,12
T0030597	1997	Słubice-Krosno Odrzańskie		9,57
T0040597	1997	Słubice-Krosno Odrzańskie		9,17
T0310497	1997	Cybinka-Świebodzin-Krosno Odrz.		13,94
T0320497	1997	Cybinka-Świebodzin-Krosno Odrz.		14,6
T0330497	1997	Cybinka-Świebodzin-Krosno Odrz.		13,52
T0340497	1997	Cybinka-Świebodzin-Krosno Odrz.		8,7
T0350497	1997	Cybinka-Świebodzin-Krosno Odrz.		19,29
T0360497	1997	Cybinka-Świebodzin-Krosno Odrz.		12,39
T0370497	1997	Cybinka-Świebodzin-Krosno Odrz.	ORLEN S.A.	11,91
T0380497	1997	Cybinka-Świebodzin-Krosno Odrz.		11,3
T0390497	1997	Cybinka-Świebodzin-Krosno Odrz.		13,29
T0400497	1997	Cybinka-Świebodzin-Krosno Odrz.		10,7
T0410497	1997	Cybinka-Świebodzin-Krosno Odrz.		14,68
T0420497	1997	Cybinka-Świebodzin-Krosno Odrz.		10,54
T0430497	1997	Cybinka-Świebodzin-Krosno Odrz.		8,47
T0440497	1997	Cybinka-Świebodzin-Krosno Odrz.		5,03
T0470497	1997	Cybinka-Świebodzin-Krosno Odrz.		29,97
T0480497	1997	Cybinka-Świebodzin-Krosno Odrz.		4,17
T0510497	1997	Cybinka-Świebodzin-Krosno Odrz.		7,07
			Skarb Państwa	597,9
			ORLEN S.A.	1294,14

Tab. 6.1. Lista linii sejsmicznych 2D (dłuższych niż 2 km) w granicach obszaru przetargowego Cybinka-Torzym.

NAZWA	ROK WYKONANIA	KONCESJE (dla badań wykonanych po 2001 r.)	WŁAŚCICIEL	POW. [km ²]
Gryżyna 3D	1999		ORLEN S.A.	3,38
Ołobok- Radoszyn 3D	2003	Krosno Odrzańskie-Świebodzin 23/95/p Świebodzin-Wolsztyn 24/95/p	Skarb Państwa	15,22
Cybinka- Torzym 3D	2010	Cybinka 6/2008/p Torzym 8/2008/p	Skarb Państwa	225,94
		· · · · · · · · · · · · · · · · · · ·	Skarb Państwa	241,16
			ORLEN S.A.	3,38

Tab. 6.2. Lista badań sejsmicznych 3D wykonanych w granicach obszaru przetargowego Cybinka-Torzym.

7. BADANIA GRAWIMETRYCZNE, MAGNETYCZNE I MAGNETOTELLURYCZNE 7.1. BADANIA GRAWIMETRYCZNE

Prace grawimetryczne, zmierzające do pokrycia obszaru przedstawionego na Fig. 7.1 zdjęciem o charakterze półszczegółowym, rozpoczęto w latach 70-tych XX w. W bezpośrednim sąsiedztwie, na północ od obszaru przetargowego Cybinka-Torzym zostało wykonane wówczas zdjęcie Gorzów-Jarocin (Duda i Kruk, 1973) o średnim zagęszczeniu 2,5 pkt/km². Niemal jednocześnie powstawało zdjęcie bloku przedsudeckiego, rejonu: Dzierżoniów-Legnica-Bolesławiec (Cieśla i Okulus, 1974), którego fragment jest widoczny w południowo-wschodnim narożu Fig. 7.1, o średnim zagęszczeniu 4,5 pkt/km². Pozostały obszar objęty Fig. 7.1 został pokryty zdjęciem Gubin-Zielona Góra (Pisuła i Ostrowski, 1990), o dość wysokim jak na tę klasę zdjęcia zageszczeniem punktów rzedu 5,5 pkt/km².

punktów Współrzędne pomiarowych wszystkich wymienionych powyżej zdjęć zostały wyznaczone w układzie Borowa Góra, a wartości anomalii Bouguera obliczone w systemie poczdamskim z przyśpieszeniem normalnym wg wzoru Helmerta z 1901 r. Stworzenie komputerowego banku danych grawimetrycznych umożliwiło opracowanie i opublikowanie Atlasu grawimetrycznego Polski (Królikowski i Petecki, 1995), w którym anomalie grawimetryczne zostały obliczone w międzynarodowym systemie grawimetrycznym IGSN 71 (International Gravity Standardization Net, 1971), z uwzględnieniem formuły Moritza na pole normalne dla elipsoidy odniesienia GRS 80 (Geodetic Reference System, 1980). Atlas zawiera mapy anomalii grawimetrycznych o charakterze przeglądowym w skalach 1 : 500 000 oraz 1:750 000. Tak opracowane dane pomiarowe zdjecia poszczegółowego dostępne są w CBDG, w postaci cyfrowego banku danych. Współrzędne stacji (punktów) zostały przeliczone na układ 1992 przez Instytut Geodezji i Kartografii (Kryński, 2007). Należy jednak pamiętać, że tak przeliczone lokalizacje charakteryzują się błędem przekraczającym w niektórych przypadkach 100 m. Problem ten zostanie wyeliminowany w ciągu najbliższych lat ponieważ w 2021 r. rozpoczęto realizację I etapu projektu realizowanego na zlecenie Ministerstwa Klimatu i Środowiska, a finansowanego przez NFOŚiGW, którego celem jest m.in. korekta błędów lokalizacji stanowisk grawimetrycznych, błędów wyrównania osnowy grawimetrycznej, wykonanie nowej redukcji danych z uwzględnieniem współcześnie obowiązujących systemów odniesienia. W efekcie (który ma zostać osiągnięty w połowie 2024 r.) danym grawimetrycznym, m.in. pokrywającym obszar przetargowy Cybinka-Torzym, zostaną przypisane poprawne lokalizacje określone w państwowym układzie współrzędnych geodezyjnych PUWG 1992.

Wyżej opisane problemy z układem Borowa Góra nie dotyczą zdjęć szczegółowych, których w rejonie obszaru przetargowego Cybinka-Torzym jest kilka. Na południe od niego jest zlokalizowane powierzchniowe zdjęcie Krosno Odrzańskie o średnim zagęszczeniu 30 pkt/km² (Bochnia i Duda, 1972). Celem tego zdjęcia było zbadanie możliwości wykrywania struktur halokinetycznych w dolomicie głównym. W tym samym rejonie wykonano również kilka profili o kroku pomiarowym rzędu 250 m (Reczek, 1962). Dwa z tych profili znajdują się w obrębie obszaru przetargowego Cybinka-Torzym. W bliskim sasiedztwie obszaru znajduje się również kilka profili ukierunkowanych na poszukiwanie złóż węgla brunatnego (Łaszczyńska i in., 1982), które zrealizowane były z 50-cio metrowym krokiem pomiarowym, podobnie jak profil w SE-narożu Fig. 7.1 (Okulus, 1980). Ostatnim szczegółowym jest zdjęcie rejonu Sulęcina (Łyszkowska, 1975) o średnim zagęszczeniu 9 pkt/km².

Fig. 7.1. Lokalizacja stanowisk grawimetrycznych z pomiarów półszczegółowych i szczegółowych na obszarze przetargowym Cybinka-Torzym (na podstawie danych CBDG, 2022).

W latach 90-tych XX w., na zlecenie PGNiG S.A. zostało wykonane nowe zdjęcie półszczegółowe średnim zagęszczeniu 0 5,5 pkt/km² (Musiatewicz i Lisowski, 1993, Fig. 7.1). Zdjęcie to niestety nadal dokumentowano w układzie Borowa Góra. Było ono opracowane w formie cyfrowej, ale obecnie nie jest w takiej formie dostępne w CBDG. Sa to jedyne dane grawimetryczne z omawianego obszaru, nie będące własnością Skarbu Państwa. Badania pozwoliły na przeprowadzenie interpretacji ukierunkowanej na rozpoznanie struktur w dolnym cechsztynie i czerwonym spągowcu. Mapy anomalii resztkowych, wykonane dla różnych promieni (metoda Griffina) umożliwiły powiązanie ich ze strukturami m.in. Sulęcina, Chartowa, Lubiszyna, Gorzowa Wlkp., Korbielewka, Międzyrzecza.

Bogaty materiał pomiarowy stał się podstawą do wielu opracowań interpretujących obraz grawitacyjny obszaru obecnego zainteresowania (np. Cieśla i in., 1997; Gaczyński i in., 1986; Kozera i Wronicz, 1976; Królikowski i in., 1986).

Mapa anomalii grawimetrycznych w redukcji Bouguera została przedstawiona na Fig. 7.2. Według podziału na regiony grawimetryczne, zaproponowanego przez Królikowskiego i Peteckiego (1995), obszar przetargowy Cybinka-Torzym znajduje się w północnozachodnim krańcu Wyżu Śląskiego – tzw. wyżu krośnieńsko-ostrzeszowskiego, pokrywającego monoklinę przedsudecką bez części północno-zachodniej i blok przedsudecki. Pochodzenie regionalnej anomalii na mono-
klinie przedsudeckiej wiązane jest najczęściej z podniesieniem powierzchni Moho, z jednoczesnym upatrywaniem przyczyny anomalii drugiego rzędu w obecności zmetamorfizowanych utworów kambryjsko-dewońskich (Królikowski i Grobelny, 1991; Królikowski i Petecki, 1995).

Kompleksową interpretację grawimetryczno-magnetyczną wykonali Cieśla z zespołem (Cieśla i in., 1997), z której najważniejsze wnioski przedstawiono w rozdziale 7.2.

Dokumentacje grawimetryczne

- 1. Bochnia N., Duda W. 1972. Dokumentacja szczegółowych badań grawimetrycznych, temat Krosno Odrzańskie, 1971 r. Inw. 1696, CAG PIG, Warszawa.
- Cieśla E., Okulus H. 1974. Dokumentacja półszczegółowych badań grawimetryczno-magnetycznych. Temat: Blok przedsudecki, rejon: Dzierżoniów – Legnica – Bolesławiec, 1973. Inw. 1799, CAG PIG, Warszawa.
- Cieśla E., Petecki Z., Wybraniec S., Gientka D., Staniszewska B., Twarogowski J., Żółtowski Z. 1997. Kompleksowa interpretacja grawimetryczno-magnetyczna Polski zachodniej, 1997 rok. Inw. 7/98, 4746/2015, CAG PIG, Warszawa.
- Duda W., Kruk B. 1973. Dokumentacja półszczegółowych badań grawimetrycznych. Temat: Gorzów – Jarocin, 1971-1972. Inw. 1754, CAG PIG, Warszawa.
- Gaczyński E., Petecki Z., Zientara P., Wybraniec S. 1986. Analiza obszarów badań geofizycznych na podstawie map gradientu pionowego pola grawitacyjnego. Badania geofizyczne na obszarze ujemnych anomalii grawimetrycznych w północno-zachodniej Polsce, 1986. Inw. 34526, CAG PIG, Warszawa.
- 6. Kozera A., Wronicz S. 1976. Kompleksowa interpretacja materiałów sejsmicznych i grawimetrycznych dla wybranych

obszarów Niecki Szczecińskiej pod kątem rozwoju utworów solnych. Inw. 44854, CAG PIG, Warszawa

- Królikowski C., zespół. 1986. Zastosowanie metody odejmowania efektów grawitacyjnych do wyznaczania anomalii od podłoża podpermskiego północnozachodniej Polski, etap II /ostatni/ -Opracowanie mapy anomalii od podłoża permu, 1986. Inw. 35725, CAG PIG, Warszawa
- Łaszczyńska B., Okulus H., Wojas A. 1982. Dokumentacja badań geofizycznych; temat: Poszukiwania złóż węgla brunatnego w obrębie anomalii grawimetrycznych (obszary: Oborniki, Kłecko, Pogorzela, Świebodzin – Boryszyn, Studzieniec, Bobrowice), 1981. Inw. 2189, CAG PIG, Warszawa
- Lyszkowska J. 1975. Dokumentacja szczegółowych badań grawimetrycznych. Temat Sulęcin, 1974 i 1975. Inw. 1865, CAG PIG, Warszawa.
- Musiatewicz M., Lisowski K. 1993. Dokumentacja półszczegółowych badań grawimetrycznych, temat: Zachodnia Polska obszar: Chojna – Międzyrzecz, 1990 – 1993. Inw. 4375/2013, CAG PIG, Warszawa.
- Okulus H. 1980. Sprawozdanie techniczne z pomiarów grawimetrycznych wykonanych w rejonie obszaru północnosudeckiego i perykliny Żar, 1979. Inw. 2051, CAG PIG, Warszawa.
- Pisuła M., Ostrowski C. 1990. Dokumentacja półszczegółowych badań grawimetrycznych, temat: Gubin – Zielona Góra 1987-1989. Kat. G-569 PBG, CAG PIG, Warszawa.
- Reczek J. 1962. Opracowanie półszczegółowych badań grawimetrycznych w północnej części Monokliny Przedsudeckiej, 1962 r. Inw. 062/63, CAG PIG, Warszawa.

Fig. 7.2. Mapa anomalii grawimetrycznych w redukcji Bouguera w rejonie obszaru przetargowego Cybinka-Torzym (Królikowski i Petecki, 1995).

7.2. BADANIA MAGNETYCZNE

Pierwszym zdjęciem magnetycznym wykonanym w rejonie obszaru przetargowego Cybinka-Torzym było zdjęcie (obecnie o wartości jedynie archiwalnej) pionowej składowej ziemskiego pola magnetycznego Z, o charakterze regionalnym, tj. wykonane z zagęszczeniem rzędu 0,22 pkt/km² (Kozera, 1955; Fig. 7.3).

W latach 70-tych XX w. przystąpiono do realizacji półszczegółowego zdjęcia całkowitego wektora ziemskiego pola magnetycznego T. Wschodnia część obszaru przetargowego Cybinka-Torzym została objęta zdjęciem Monoklina Przedsudecka (Pasik, 1974). Jest to zdjęcie o stosunkowo niedużym średnim zagęszczeniu rzędu 1 pkt/km². Od zachodu graniczy z nim nowsze, a zarazem gęstsze (3 pkt/km²) zdjęcie Polska zachodnia, centralna i południowo-wschodnia (Kosobudzka, 1991). Przy jego realizacji, w celu eliminacji zakłóceń wywołanych zelektryfikowanymi liniami kolejowymi, zastosowano miejscami tzw. różnicową metodę pomiarową. Zastosowanie tej metody przejawia się charakterystycznym, pasmowym układem punktów pomiarowych (centralna część obszaru przetargowego, Fig. 7.3). Od północy omawiany obszar przetargowy graniczy bezpośrednio ze zdjęciem Niecka szczecińska i monoklina przedsudecka (Kosobudzka, 1989), które zostało wykonane ze stosunkowo największym zagęszczeniem średnio 4 pkt/km².

Mapa anomalii magnetycznych ∆T została przedstawiona na Fig. 7.4. Według podziału zaproponowanego przez Peteckiego i Rosowiecką (2017), obszar przetargowy Cybinka-Torzym znajduje się w północno-zachodnim skraju domeny sudeckiej (Sd – Sudetic domain). Znajduje się tu (głównie na południe od analizowanego obszaru) pasmo dodatnich anomalii o rozciągłości NW-SE. Petecki i Rosowiecka (2017) powiązali je z podpermskim wyniesieniem Wolsztyn-Leszno, będącym głęboką strukturą związaną z podłożem krystalicznym, zidentyfikowaną na profilu P4 projektu głębokiej sejsmiki refrakcyjnej PO-LONAISE'97 (Grad i in., 2003).

W ramach opracowania Cieśli i in. (1997) wykonano m.in. mapy elementów anomalnych obu pól potencjalnych (liniowych i strukturalnych; Fig. 7.5). Linie takie wyznaczono m.in. w oparciu o zmiany kierunku i wyraźne przesunięcia osi ekstremalnych wartości anomalii magnetycznych lub grawimetrycznych oraz wyraźne zmiany charakteru pól. W polu magnetycznym część stref dyslokacyjnych została wyznaczona również przez ciągi drobnych, dodatnich form anomalnych.

Do pierwszoplanowych elementów pola magnetycznego zaliczono regionalną strefę podwyższonego gradientu, która rozciąga się od Słubic poprzez Świebodzin w kierunku SEE do Wolsztyna i dalej na SSE do okolic Oleśnicy. Jest to granica pomiędzy dwoma odmiennymi magnetycznie obszarami: południowo-zachodnim o wyraźnie uprzywilejowanych kierunkach rozciagłości anomalii NW-SE NWW-SEE oraz północnoi wschodnim o ujemnych wartościach pola magnetycznego, bez uprzywilejowanego kierunku.

Podobną granicę, o zbliżonym przebiegu zaobserwowano w polu grawitacyjnym (linia SLO – Słubice-Leszno-Oleśnica). Północna część SLO ma przebieg zbliżony do rozłamu Dolska, lecz jest usytuowana na południe od tego uskoku. Obszar przetargowy Cybinka-Torzym znajduje się na południe tego lineamentu. SLO ogranicza od północy regionalne pasmo dodatnich anomalii siły ciężkości, rozciągające się od Cybinki poprzez Leszno do Oławy. Złożony, zaburzony charakter pasma i liczne, niekiedy znaczne przesunięcia osi maksymalnych wartości ∆g mogą świadczyć o istnieniu dyslokacji poprzecznych do jego rozciągłości. Pasmu grawimetrycznemu odpowiada w polu magnetycznym ciąg mało intensywnych dodatnich anomalii o zbliżonym przebiegu i ekstremach zlokalizowanych: na północ od Cybinki, na południowy zachód od Wolsztyna i na południe od Leszna. W wyniku modelowania grawimetrycznomagnetycznego stwierdzono, że strop źródeł zaburzających występuje tu na głębokości 4–5 km (Cieśla i in., 1997).

Dokumentacje magnetyczne

- Kosobudzka I. 1989. Dokumentacja częściowa półszczegółowych badań magnetycznych ΔT, temat: Niecka Szczecińska i Monoklina Przedsudecka, rejon Choszczno – Ińsko, 1988. Kat. M-248 PBG, CAG PIG, Warszawa.
- Kosobudzka I. 1991. Sprawozdanie z półszczegółowych badań magnetycznych ΔT, temat: Polska zachodnia, centralna i południowo-wschodnia, rok 1990. Inw. 1287/91, CAG PIG, Warszawa.
- Kozera A. 1955. Sprawozdanie z prac magnetycznych. Temat: Regionalne badania na Śląsku, Ziemi Lubuskiej i w Wielkopolsce przeprowadzonych przez Gr. Magnetyczną II PPG w 1955 r. Inw. 40604, CAG PIG, Warszawa.
- Pasik J. 1974. Dokumentacja półszczegółowych badań magnetycznych. Temat: Monoklina Przedsudecka, 1974. Kat. M-164, Arch. Przedsiębiorstwa Badań Geofizycznych, Warszawa.
- Tałuc S., Ciszewski S. 1962. Opracowanie półszczegółowych badań magnetycznych w rejonie monokliny przedsudeckiej, 1962. Kat. M-106 PBG, CAG PIG, Warszawa.

Fig. 7.3. Lokalizacja stanowisk pomiarowych pola geomagnetycznego na obszarze przetargowym Cybinka-Torzym, (CBDG, 2022).

Fig. 7.4. Mapa anomalii modułu całkowitego pola geomagnetycznego T w rejonie obszaru przetargowego Cybinka-Torzym (Petecki i Rosowiecka, 2017).

Fig. 7.5. Elementy liniowe i strukturalne wyinterpretowane na podstawie magnetyki i grawimetrii (Cieśla i in., 1997). 1 – granice większych jednostek geofizyczno-geologicznych wydzielone na podstawie: a – magnetyki (oznaczone małymi literami), b – grawimetrii (oznaczone dużymi literami); 2 – najważniejsze linie nieciągłości (kontakty i/lub dyslokacje) wydzielone na podstawie: a – magnetyki, b – grawimetrii; 3 – elementy liniowe: a – granice zespołów jednostek strukturalnych, b – ważniejsze uskoki i strefy uskokowe; 4 – bloki wydzielone na podstawie magnetyki: a – o podwyższonych własnościach magnetycznych, b – o obniżonych własnościach magnetycznych; 5 – bloki wydzielone na podstawie grawimetrii: a – o podwyższonej gęstości, b – o obniżonej gęstości; 6 – lokalizacja S-części VII sejsmicznego profilu międzynarodowego z zaznaczeniem pozycji głębokich rozłamów; 7 – wyinterpretowane profile; 8 – uskok Dolska; 9 – granice wydzielone wg modelowania: a – dyslokacje (grawimetria), b – kontakty magnetyczne.

7.3. BADANIA MAGNETOTELLURYCZNE

W latach 2007-2008 wykonano pierwszy etap realizacji projektu prac magnetotellurycznych w rejonie segmentu pomorskiego bruzdy śródpolskiej (Miecznik i Stefaniuk, 2005). Etap ten obejmował wykonanie pomiarów na dwóch profilach BMT-5 i D-PL. Pierwszy z profili, przecina obszar przetargowy Cybinka-Torzym (Fig. 7.6-7.7). Profil ten ma 300 km długości i przebiega wzdłuż linii profilu refrakcyjnego P2 (program POLONAI-SE'97). Celem pomiarów było zbadanie geometrii krawedzi kratonu, szczególnie w utworach pokrywy platformowej. Wyniki przedstawiono jako przekroje opornościowe z interpretacja geologiczna w skali poziomej 1:500 000. Na podstawie wyników magnetotellurycznych, sejsmicznych i otworowych został opracowany model geofizycznogeologiczny pokrywy osadowej wzdłuż profilu BMT-5 (Dziewińska, w Stefaniuk i in., 2008, Fig. 7.7).

Dokumentacje magnetotelluryczne

- Miecznik J., Stefaniuk M. 2005. Projekt prac magnetotellurycznych w rejonie segmentu pomorskiego bruzdy śródpolskiej – etap I. Inw. 5677/2009; 1349/2005, CAG PIG, Warszawa.
- Stefaniuk M., Wojdyła M., Petecki Z., Pokorski J. 2008. Dokumentacja badań geofizycznych. Temat: Budowa geologiczna pokrywy osadowej i podłoża krystalicznego segmentu pomorskiego bruzdy śródpolskiej na podstawie kompleksowych badań geofizycznych (profilowań magnetotellurycznych). Etap I: 2007-2008. Inw. 1277/2009, CAG PIG, Warszawa.

Fig. 7.6. Lokalizacja sondowań magnetotellurycznych na obszarze przetargowym Cybinka-Torzym (na podstawie danych CBDG, 2022).

Fig. 7.7. Model geofizyczno-geologiczny pokrywy osadowej wzdłuż profilu BMT-5 (Dziewińska, w Stefaniuk i in., 2008). Czerwonym prostokątem zaznaczono fragment profilu znajdujący się w obrębie obszaru przetargowego Cybin-ka-Torzym.

8. PODSUMOWANIE

Perspektywy naftowe poszczególnych horyzontów stratygraficznych oraz związane z nimi koncepcje poszukiwawcze na obszarze przetargowym Cybinka-Torzym zostały opisane w rozdziale 2. Ich podstawą są dane dotyczące systemów naftowych, złóż węglowodorów zlokalizowanych na obszarze przetargowym i w jego okolicy, otworów wiertniczych, sejsmiki i grawimetrii oraz magnetyki i magnetotelluryki (rozdziały 3–7). Poniżej zestawiono najważniejsze informacje o obszarze przetargowym Cybinka-Torzym w formie karty informacyjnej, a także zaproponowano minimalny program fazy poszukiwawczorozpoznawczej przyszłej koncesji, której zakres umożliwiłby odkrycie złóż węglowodorów.

	Nazwa obszaru:	Cybinka-Torzym
Dane ogólne	Lokalizacja:	Na lądzieArkusze mapy geologicznej w skali 1 : 50 000:Rybocice (Brieskow-Finkenheerd) 498,Cybinka 499, Torzym 500, Ołobok 501, Rąpice (Eisenhuttenstadt) 534, Wężyska 535,Krosno Odrzańskie 536, Czerwińsk 537Fragmenty bloków koncesyjnych nr: 222, 223Położenie administracyjne: województwo lubuskie, powiat krośnieński, gminy: Gubin (0,32%),Bytnica (19,30%), Maszewo (22,09%), Krosno Odrzańskie (0,23%);powiat słubicki, gmina Cybinka (31,52%);powiat słubicki, gmina Torzym (8,45%);powiat świebodziński, gminy: Skąpe (1,83%), Łagów (9,75%), Świebodzin (3,66%),Lubrza (2,85%)
	Typ.	oraz wydobywanie węglowodorów ze złóż
	Czas obowiązywania:	koncesja na 30 lat w tym: faza poszukiwawczo-rozpoznawcza (5 lat), faza wydobywcza – po uzyskaniu decyzji inwestycyjnej
	Udziały	zwycięzca przetargu 100%
	Powierzchnia [km ²]	668,50
	Rodzaj złoża	konwencjonalne złoża gazu ziemnego i ropy naftowej w utworach permu – dolomitu głównego
	Piętra strukturalne	kenozoiczne, laramijskie, waryscyjskie
	Systemy naftowe	konwencjonalny system naftowy permu/cechsztynu – w utworach dolomitu głównego
Skały zbiornikowe		zdolomityzowane greinstony i pakstony dolomitu głównego
Skały macierzyste		madstony, bandstony, pakstony i greinstony dolomitu głównego
Skały uszczelniające		utwory ewaporatowe cechsztynu cyklotemów PZ1 (od dołu) 1 PZ2 (od góry)
Typ pułapki		strukturalne, strukturalno-tektoniczne
Złoza rozpoznane <u>na</u> i w pobli- żu obszaru przetargowego		Gryżyna, Kosarzyn-S, <u>Kosarzyn N</u> , Ołobok, Radoszyn, Rybaki
Zu obszaru przetargowego Zrealizowane zdjęcia sejsmiczne, rejon (właściciel)		 1976 Kostrzyń-Skwierzyna 2D, 3 profile (Skarb Państwa) 1977 Sulęcin-Świebodzin 2D, 4 profile (Skarb Państwa) 1977-1978 Cybinka-Nowa Sól 2D, 7 profili (Skarb Państwa) 1983-1985 Świebodzin-Zielona Góra-Nowa Sól 2D, 4 profile (Skarb Państwa) 1985 Świebodzin-Zielona Góra 2D, 1 profil (Skarb Państwa) 1986-1991 Rzepin-Krosno Odrzańskie 2D, 96 profili (ORLEN S.A., Skarb Państwa) 1990 Słubice-Krosno Odrzańskie 2D, 5 profili (ORLEN S.A.) 1991 Słubice-Rzepin 2D, 2 profile (ORLEN S.A.) 1992 Cybinka-Krosno Odrzańskie 2D, 4 profile (ORLEN S.A.) 1992 Krosno Odrzańskie-Świebodzin 2D, 4 profile (ORLEN S.A.) 1992 Słubice-Krosno Odrzańskie 2D, 4 profile (ORLEN S.A.) 1995 Słubice-Krosno Odrzańskie 2D, 30 profili (ORLEN S.A.) 1997 Cybinka-Krosno Odrzańskie 2D, 30 profili (ORLEN S.A.) 1997 Cybinka-Świebodzin-Świebodzin 2D, 4 profile (ORLEN S.A.) 1993 Słubice-Krosno Odrzańskie 2D, 30 profili (ORLEN S.A.) 1994 Słubice-Krosno Odrzańskie 2D, 30 profili (ORLEN S.A.) 1995 Słubice-Krosno Odrzańskie 2D, 30 profili (ORLEN S.A.) 1096 Gryżyna 3D (ORLEN S.A.) 2003 Ołobok-Radoszyn 3D (Skarb Państwa) 2010 Cybinka-Torzym 3D (Skarb Państwa)
Otwory reperowe (glębokość)		BYTOMIEC-1 (2240,0 m) CHLEBÓW 1 (2135,0 m) CYBINKA 1 (2586,0 m) CYBINKA 2 (2617,0 m) GRZMIĄCA 1 (2155,0 m) GRZMIĄCA 3 (2634,0 m)

Karta informacyjna obszaru przetargowego Cybinka-Torzym

CYBINKA-TORZYM

GRZMIĄCA 5 (2020,0 m)
GRZMIĄCA 7 (2120,0 m)
KŁOPOT 1 (2125,0 m)
KOSARZYN-8 (1828,0 m)
KOSOBUDZ 1 (2974,0 m)
KOZICZYN-1 (3208,0 m)
MIŁÓW 1 (2401,0 m)
RADOMICKO 1 (2138,0 m)
RAPICE 1A (2402,0 m)
RYBAKI 5 (1988,0 m)
RYBAKI 14 (2022,6 m)
SOSNA-1 (2455,0 m)
ŚWIEBODZIN 1 (1503,0 m)
ŚWIEBODZIN 2 (1998,0 m)
ŚWIEBODZIN 3 (2804,0 m)

Proponowany minimalny program prac fazy poszukiwawczo-rozpoznawczej

- Interpretacja i analiza archiwalnych danych geologicznych
- Wykonanie jednego odwiertu wiertniczego o maksymalnej głębokości 5000 m TVD wraz z obligatoryjnym rdzeniowaniem interwałów perspektywicznych

9. MATERIAŁY ŹRÓDŁOWE

- Aleksandrowski P. 1995. Rola wielkoskalowych przemieszczeń przesuwczych w ukształtowaniu waryscyjskiej struktury Sudetów. *Przegląd Geologiczny*, 43, 745– 754.
- Aleksandrowski P., Kryza R., Mazur S., Żaba J. 1997. Kinematic data on major Variscan strike-slip faults and shear zones in the Polish Sudetes, northeast Bohemian Massif. *Geological Magazine*, 134, 727– 739.
- Benek R., Kramer W., MC Cann T., Scheck M., Negedank J.F.K, Korich D., Huebscher H.D., Dayer U. 1996. Permo-Carboniferous magmatism of the Northeast German Basin. *Tectonophysics*, 266, 370– 404.
- Bielecka H., Jednoróg A. 2006a. Baza danych GIS Mapy hydrogeologicznej Polski w skali 1 : 50 000 "pierwszy poziom wodonośny – występowanie i hydrodynamika", ark. Rąpice (0534). Państwowy Instytut Geologiczny, Warszawa.
- Bielecka H., Jednoróg A. 2006b. Baza danych GIS Mapy hydrogeologicznej Polski w skali 1 : 50 000 "pierwszy poziom wodonośny – występowanie i hydrodynamika", ark. Chlebowo (0535). Państwowy Instytut Geologiczny, Warszawa.
- **Biernat A. 2015.** Dodatek nr 1 do dokumentacji geologicznej złoża ropy naftowej Kosarzyn, bloki: Kosarzyn-S w kat. B i Kosarzyn-E w kat. C. Inw. 2946/2015, CAG PIG, Warszawa.
- **Binder I. 1966a.** Geologiczna metryka otworu poszukiwawczego Kosobudz-1. Inw. 7237/2021, CAG PIG, Warszawa.
- **Binder I. 1966b.** Sprawozdanie wynikowe z otworu Świebodzin-3. Inw. 7239/2021, CAG PIG, Warszawa.
- Blus R., Szczypa Z. 1973. Dokumentacja pomiarów ciężarów objętościowych i porowatości skał, rok 1972. Inw. 44269,ObO/1438, CAG PIG, Warszawa.
- Bochnia N., Duda W. 1972. Dokumentacja szczegółowych badań grawimetrycznych, temat Krosno Odrzańskie, 1971 r. Inw. 1696, CAG PIG, Warszawa.

- Buniak A., Kwolek K., Nowicka A., Dyjaczyński K., Papiernik B., Peryt T., Protas A., Wagner R. 2013. Mapa perspektyw poszukiwawczych w utworach dolomitu głównego. PGNiG, Oddział w Zielonej Górze; Państwowy Instytut Geologiczny – Państwowy Instytut Badawczy, Warszawa.
- **CBDG**, **2022.** Centralna Baza Danych Geologicznych. baza.pgi.gov.pl
- Chmal R. 2003. Objaśnienia do szczegółowej mapy geologicznej Polski 1 : 50 000. Arkusz Toporów (501). Państwowy Instytut Geologiczny, Warszawa.
- Chmielowiec-Stawska A. 2008. Dodatek nr 1 do dokumentacji geologicznej złoża ropy naftowej Radoszyn w kat. B i C. Inw. 41/2009, CAG PIG, Warszawa.
- Chruścińska J. 2014. Dodatek nr 3 do dokumentacji geologicznej złoża ropy naftowej Kosarzyn N. Inw. 115/2015, CAG PIG, Warszawa.
- Cieśla E., Okulus H. 1974. Dokumentacja półszczegółowych badań grawimetrycznomagnetycznych. Temat: Blok przedsudecki, rejon: Dzierżoniów – Legnica – Bolesławiec, 1973. Inw. 1799, CAG PIG, Warszawa.
- Cieśla E., Petecki Z., Wybraniec S., Gientka D., Staniszewska B., Twarogowski J., Żółtowski Z. 1997. Kompleksowa interpretacja grawimetrycznomagnetycz-na Polski zachodniej, 1997 rok. Inw. 7/98, 4746/2015, CAG PIG, Warszawa.
- Cimaszewski L., Korab Z. 1962. Dokumentacja geologiczna złoża ropy naftowej Rybaki. Inw. Dok/sł/AII/60 CUG, CAG PIG, Warszawa.
- Cimaszewski L., Korab Z. 1964. Druga [II] dokumentacja wraz z uzupełnieniem złoża ropy naftowej struktury Rybaki w miejscowości Rybaki, Maszewo, Połęcko, pow. Krosno Odrzańskie, woj. zielonogórskie. Inw. 18104,4020/54, CAG PIG, Warszawa.
- Czaja E. 1994. Opracowanie średnich prędkości Radomicko 1. Inw. R35 VS, CAG PIG, Warszawa.

- Czapigo-Czapla M., Brzeziński D. 2021. Ropa naftowa. [W]: Bilans zasobów złóż kopalin w Polsce wg stanu na 31.12.2020 r., [Red.]: Szuflicki M., Malon A., Tymiński M. 29-34. Państwowy Instytut Geologiczny – Państwowy Instytut Badawczy, Warszawa.
- Czapowski G. 1983. Zagadnienia sedymentacji soli kamiennej cyklotemu PZ1 we wschodnim skłonie wyniesienia Łeby. *Przegląd Geologiczny*, **31**, 278–284.
- Czapowski G., Tomassi-Morawiec H. 1985. Sedymentacja i geochemia najstarszej soli kamiennej w rejonie Zatoki Puckiej. *Przegląd Geologiczny*, **33**, 663–670.
- Czapowski G., Peryt T.M., Raup O.B. 1992. Carbonate-anhydrite-halite cycles in the Roet (Lower Triassic) of western Poland. Bulletin of the Polish Academy Sciences, Earth Sciences, 40, 161–164.
- Czyż E. 2018. Dokumentacja geologicznoinwestycyjna złoża ropy naftowej Rybaki. Inw. 1680/2020, CAG PIG, Warszawa.
- Dadlez R., Marek S., Pokorski J. 2000. Mapa geologiczna Polski bez utworów kenozoiku, 1 : 1 000 000. Państwowy Instytut Geologiczny, Warszawa.
- Dadlez R., Narkiewicz M., Stephenson R. A., Visser M. T. M., Van Wess J.-D. 1995. Tectonic evolution of the Mid-Polish Trough: modelling implications and significance for central European geology. *Tectonophysics*, 252, 179–195.
- Dąbrowska M., Flieger-Szymańska M., Zachaś-Janecka J. 2011. Baza danych GIS Mapy hydrogeologicznej Polski w skali 1 : 50 000 "pierwszy poziom wodonośny – występowanie i hydrodynamika", ark. Torzym (0500). Państwowy Instytut Geologiczny, Warszawa.
- Dabrowski S., Rynarzewski W., Straburzyńska-Janiszewska R., Matusiak M., Zachaś-Janecka J., Filipiak P., Flieger-Szymańska M., Dabrowska M., Wesołowski K., Kryszczyńska I., Pawlak A. Dokumentacja hydrogeologiczna 2011. określająca warunki hydrogeologiczne w związku z ustanawianiem obszarów ochronnych Głównego Zbiornika Wód Podziemnych nr 144 Dolina Kopalna Wielkopolska. Inw. 8484/2011, CAG PIG, Warszawa.

- Deczkowski Z. 1997. Trias górny. Noryk i retyk. Formalne i nieformalne jednostki litostratygraficzne. [W]: Epikontynentalne perm i mezozoik w Polsce, [Red.]: Marek S., Pajchlowa M. *Prace Państwowego Instytutu Geologicznego*, **153**, 184–186.
- Deczkowski Z., Gajewska I. 1977. Charakterystyka starokimeryjska i laramijskich struktur blokowych monokliny przedsudeckiej. *Kwartalnik Geologiczny*, 21, 467– 481.
- Deczkowski Z., Gajewska I. 1979. Budowa geologiczna podłoża retyku obszaru monokliny przedsudecką. *Kwartalnik Geologiczny*, 23, 161–177.
- Deczkowski Z., Gajewska I. 1980. Mezozoiczne i trzeciorzędowe rowy obszaru monokliny przedsudeckiej. *Przegląd Geologiczny*, 28, 151–156.
- Duda W., Kruk B. 1973. Dokumentacja półszczegółowych badań grawimetrycznych. Temat: Gorzów – Jarocin, 1971-1972. Inw. 1754, CAG PIG, Warszawa.
- Dyjaczyński K., Peryt T.M. 2014. Controls on basal Zechstein (Wuchiapingian) evaporite deposits in SW Poland. *Geological Quarterly*, **58**, 485–502
- Dziadkiewicz M., Leszczyński M., Piątkowska-Kudła S., Czekański E. 1994.
 Dokumentacja geologiczna złoża ropy naftowej Kosarzyn, bloki Kosarzyn-S i Kosarzyn E. Inw. 579/94, CAG PIG, Warszawa.
- Formowicz R., Zembal M., Brodziński I. 2004. Objaśnienia do Mapy Hydrogeologicznej Polski w skali 1 : 50 000 arkusz Toporów (0501). Państwowy Instytut Geologiczny, Warszawa.
- Gaczyński E., Petecki Z., Zientara P., Wybraniec S. 1986. Analiza obszarów badań geofizycznych na podstawie map gradientu pionowego pola grawitacyjnego. Badania geofizyczne na obszarze ujemnych anomalii grawimetrycznych w północno-zachodniej Polsce, 1986. Inw. 34526, CAG PIG, Warszawa.
- Gad A. 2000. Mapa hydrogeologiczna Polski w skali 1 : 50 000, ark. Chlebowo (0535). Państwowy Instytut Geologiczny, Warszawa.

- Gajewska I. 1983. Trias dolny pstry piaskowiec. *Profile Głębokich Otworów Wiertniczych*, 57, 40–42.
- Gajewska I. 1997a. Trias środkowy (wapień muszlowy-kajper dolny). Formalne i nieformalne jednostki litostratygraficzne. [W]: Epikontynentalne perm i mezozoik w Polsce, [Red.]: Marek S., Pajchlowa M. *Prace Państwowego Instytutu Geologicznego*, 153, 133–136.
- Gajewska I. 1997b. Trias górny. Kajper. Formalne i nieformalne jednostki litostratygraficzne. [W]: Epikontynentalne perm i mezozoik w Polsce, [Red.]: Marek S., Pajchlowa M. *Prace Państwowego Instytutu Geologicznego*, 153, 164–166.
- Grad, M., Jensen, S. L., Keller, G.R., Guterch, A., Thybo, H., Janik, T., Tiira, T., Yliniemi, J., Luosto, U., Motuza, G., Nasedkin, V., Czuba, W., Gaczyński, E., Środa, P., Miller, K.C., Wilde-Piórko, M., Komminaho, K., Jacyna, J., Korabliova, L. 2003. Crustal structure of the Trans-European suture zone region along POLONAISE'97 seismic profile P4. Journal of Geophysical Research, 108 (B11): 12-1-12-24.
- Grocholski W. 1991. Budowa geologiczna przedkenozoicznego podłoża Wielkopolski. Przewodnik 62 Zjazdu Polskiego Towarzystwa Geologicznego, Poznań.
- Hoffmann N., Pokorski J., Lindert W., Bachmann H. 1997. Rotliegend stratigraphy, paleogeography and facies in eastern part of the central European Basin. *Prace Państwowego Instytutu Geologicznego*, 157, 75–86.
- Hunt J.M. 1996. Petroleum Geochemistry and Geology. W.H. Freeman and Company, San Francisco, 743.
- Jaskowiak-Schoeneichowa M. 1981. Sedymentacja i stratygrafia kredy górnej w północno-zachodniej Polsce. *Prace Instytutu Geologicznego*, 98.
- Jaworowski K., Mikołajewski Z. 2007. Oil- and gas-bearing sediments of the Main Dolomite (Ca2) in the Międzychód region: a depositional model and the problem of the boundary between the second and third depositional sequences in the Polish Zechstein Basin. *Przegląd Geologiczny*, **55**, 1017–1024.

- Jedynak A. 2011a. Baza danych GIS Mapy hydrogeologicznej Polski w skali 1 : 50 000 "pierwszy poziom wodonośny – występowanie i hydrodynamika", ark. Krosno Odrzańskie (0536). Państwowy Instytut Geologiczny, Warszawa.
- Jedynak A. 2011b. Baza danych GIS Mapy hydrogeologicznej Polski w skali 1 : 50 000 "pierwszy poziom wodonośny – występowanie i hydrodynamika", ark. Czerwieńsk (0537). Państwowy Instytut Geologiczny, Warszawa.
- Jeziorski J. 1987. Objaśnienia do szczegółowej mapy geologicznej Polski 1 : 50 000. Arkusz Rąpice (534), Chlebowo (535). Państwowy Instytut Geologiczny, Warszawa.
- Juroszek C., Kłapciński J., Sachanbiński M. 1981. Wulkanity dolnego permu południowej części monokliny przedsudeckiej i perykliny Żar. Annales Societatis Geologorum Poloniae, 51, 517–546.
- Karnkowski P.H. 1987. Litostratygrafia czerwonego spągowca w Wielkopolsce. *Kwartalnik Geologiczny*, **31**, 643–672.
- **Kielczawa J. 2004.** Mapa hydrogeologiczna Polski w skali 1 : 50 000, ark. Krosno Odrzańskie (0536). Państwowy Instytut Geologiczny, Warszawa.
- **Kienig E. 1964a.** Sprawozdanie wynikowe z otworu Cybinka 1. Inw. 7236/2021, CAG PIG, Warszawa.
- **Kienig E. 1964b.** Sprawozdanie wynikowe z otworu Świebodzin 2. Inw. 7238/2021, CAG PIG, Warszawa.
- Kiersnowski H. 2003. Środowiska sedymentacji osadów czerwonego spągowca dolnego na obszarze Wielkopolski. [W]: Wulkanoklastyczne osady czerwonego spągowca dolnego na obszarze Wielkopolski, [Red.]: Maliszewska A. Prace Państwowego Instytutu Geologicznego, 179, 15–27.
- Kiersnowski H. 2008. Litostratygrafia osadów czerwonego spągowca dolnego na obszarze platformy waryscyjskiej oraz jej związki z litostratygrafią niemiecką w NE Brandenburgii. Państwowy Instytut Geologiczny – Państwowy Instytut Badawczy, Warszawa.
- Kiersnowski H., Petecki Z. 2017. Budowa geologiczna podcechsztyńskiego pod-

łoża Legnicko-Głogowskiego Okręgu Miedziowego (LGOM) i jego otoczenia: spojrzenie krytyczne. *Biuletyn Państwowego Instytutu Geologicznego*, **468**, 175– 198.

- Kiersnowski H., Buniak A., Waśkiewicz K. 2020. Mapa litofacji stropu osadów czerwonego spągowca górnego. Państwowy Instytut Geologiczny – Państwowy Instytut Badawczy, Warszawa.
- Klecan A. 1989. Opracowanie pomiarów średnich prędkości w odwiercie Miłów 1 Inw. M70 VS, CAG PIG, Warszawa.
- Klapciński J. 1991. Zechstein anhydrites in western Poland. Zentralblatt für Geologie und Paläontologie, Teil I, H.4, 1171– 1188
- Kondracki J. 2013. Geografia regionalna Polski, Wydawnictwa Naukowe PWN, Warszawa.
- Kosakowski P., Krajewski M. 2014. Hydrocarbon potential of the Zechstein Main Dolomite in the western part of the Wielkopolska platform, SW Poland: New sedimentological and geochemical data. *Marine and Petroleum Geology*, **49**, 99 – 120.
- Kosakowski P., Wróbel M. 2010. Sourcerock evaluation and basin modelling in the Western Part of the Fore-Sudetic Monocline SW Poland (P343). 72nd EAGE Conference and Exhibition incorporating SPE EUROPEC 2010 Barcelona, Spain, 14-17 June, 1-5.
- Kosobudzka I. 1989. Dokumentacja częściowa półszczegółowych badań magnetycznych ΔT, temat: Niecka Szczecińska i Monoklina Przedsudecka, rejon Choszczno Ińsko, 1988. Kat. M-248 PBG, CAG PIG, Warszawa.
- Kosobudzka I. 1991. Sprawozdanie z półszczegółowych badań magnetycznych ΔT, temat: Polska zachodnia, centralna i południowo-wschodnia, rok 1990. Inw. 1287/91, CAG PIG, Warszawa.
- Kotarba M., Wagner R. 2007. Generation potential of the Zechstein Main Dolomite (Ca2) carbonates in the Gorzów Wielko-polski–Międzychód–Lubiatów area: geological and geochemical approach to microbial–algal source rock. *Przegląd Geologiczny*, **55**, 1025–1036.

- Kotarba M.J., Więcław W., Stecko Z. 2000. Skład, geneza i środowisko generowania gazu ziemnego w utworach dolomitu głównego zachodniej części obszaru przedsudeckiego. *Przegląd Geologiczny*, **48**, 429–435.
- Kowalski J., Życzkowska M., Szczepiński J. 2011. Dokumentacja hydrogeologiczna określająca warunki hydrogeologiczne w związku z ustanawianiem obszaru ochronnego Głównego Zbiornika Wód Podziemnych nr 148 Sandr rzeki Pliszka. Inw. 7661/2011, CAG PIG, Warszawa.
- Kozera A. 1955. Sprawozdanie z prac magnetycznych. Temat: Regionalne badania na Śląsku, Ziemi Lubuskiej i w Wielkopolsce przeprowadzonych przez Gr. Magnetyczną II PPG w 1955 r. Inw. 40604, CAG PIG, Warszawa.
- Kozera A., Wronicz S. 1976. Kompleksowa interpretacja materiałów sejsmicznych i grawimetrycznych dla wybranych obszarów Niecki Szczecińskiej pod kątem rozwoju utworów solnych. Inw. 44854, CAG PIG, Warszawa
- Krach B., Madej M. 1962. Pomiar średnich prędkości w odwiercie Świebodzin-1. Kat. Ś22 VS, CAG PIG, Warszawa.
- Krawczyk J., Gorczyca G. 2000a. Mapa hydrogeologiczna Polski w skali 1 : 50 000,
- Krawczyk J., Gorczyca G. 2000b. Mapa hydrogeologiczna Polski w skali 1 : 50 000,
- Królikowski, C., Grobelny, A. 1991. Preliminary results of the geophysical interpretation (stripping method) in respect to the pre-Permian basement of south-western Poland. *Kwart. Geol.*, **35** (4), 449–476.
- Królikowski, C., Petecki, Z. 1995. Atlas grawimetryczny Polski. *Państwowy Instytut Geologiczny, Warszawa*.
- Królikowski C., zespół. 1986. Zastosowanie metody odejmowania efektów grawitacyjnych do wyznaczania anomalii od podłoża podpermskiego północno-zachodniej Polski, etap II /ostatni/ – Opracowanie mapy anomalii od podłoża permu, 1986. Inw. 35725, CAG PIG, Warszawa
- Kryński, J. 2007. Precyzyjne modelowanie quasigeoidy na obszarze Polski – wyniki i ocena dokładności. *Seria Monograficzna IGiK*, 13, Warszawa

- Krzyżanowski S., Łysik H. 1972. Dokumentacja wynikowa otworu poszukiwawczego Bytomiec-1 [zawiera kartę otworu]. Inw. 113712, CAG PIG, Warszawa.
- Kuczak M. 2008. Dokumentacja geologiczna złoża ropy naftowej Ołobok. Inw. 5894/2008, CAG PIG, Warszawa.
- Kudrewicz R. 2007. Mapy strukturalne powierzchni podcechsztyńskiej i podpermskiej, 1 : 500 000. [W:] Wagner R. i in., 2008 [red.], Zasoby prognostyczne, nieodkryty potencjał gazu ziemnego w utworach czerwonego spągowca i wapienia cechsztyńskiego w Polsce - badania geologiczne. Inw. 2293/2009, CAG PIG, Warszawa.
- **Kwolek K. 2000.** Wiek ruchów tektonicznych w strefie dyslokacji Poznań – Kalisz, monoklina przedsudecka. *Przegląd Geologiczny*, **48**, 804–814.
- Leszczyńska D., Balcerowicz H. 1994. Opracowanie pomiarów średnich prędkości w otworze Grzmiąca 2 Opracowanie pionowego profilowania sejsmicznego w otworze Grzmiąca 2 Inw. G151 VS, CAG PIG, Warszawa.
- Leszczyńska D., Balcerowicz H., Czaja E. 1995a. Opracowanie pomiarów średnich prędkości w otworze Kłopot 1. Opracowanie pionowego profilowania sejsmicznego w otworze Kłopot-1. Inw. K87 VS, CAG PIG, Warszawa.
- Leszczyńska D., Balcerowicz H., Czaja E. 1995b. Opracowanie pomiarów średnich prędkości w otworze Kosarzyn-8, Opracowanie pionowego profilowania sejsmicznego w otworze Kosarzyn-8. Inw. K115 VS, CAG PIG, Warszawa.
- Leszczyńska D., Balcerowicz H., Czaja E. 1996a. Sprawozdanie z opracowania pomiarów średnich prędkości w otworze Grzmiąca-5. Sprawozdanie z opracowania pionowego profilowania sejsmicznego w otworze Grzmiąca-5. Inw. G152 VS, CAG PIG, Warszawa.
- Leszczyńska D., Balcerowicz H., Czaja E. 1996b. Opracowani pomiarów średnich prędkości w otworze: Rąpice-1A, opracowanie pionowego profilowania sejsmicznego

w otworze: Rąpice-1A. Inw. R66 VS, CAG PIG, Warszawa.

- Leszczyńska D., Balcerowicz H., Czaja E. 1998. Opracowanie pomiarów średnich prędkości w otworze Grzmiąca 7 Sprawozdanie z opracowania pionowego profilowania sejsmicznego w otworze Grzmiąca 7. Inw. G153 VS, CAG PIG, Warszawa.
- Leszczyński M. 1996. Dokumentacja geologiczna w kat. C złoża ropy naftowej Kosarzyn-N. Inw. 1643/96, CAG PIG, Warszawa.
- Leszczyński M., Strzelecka D., Strzelecki C., Bednarczyk K. 2000. Dokumentacja geologiczna złoża ropy naftowej i gazu ziemnego Gryżyna. Inw. 388/2001, CAG PIG, Warszawa.
- Łaszczyńska B., Okulus H., Wojas A. 1982. Dokumentacja badań geofizycznych; temat: Poszukiwania złóż węgla brunatnego w obrębie anomalii grawimetrycznych (obszary: Oborniki, Kłecko, Pogorzela, Świebodzin – Boryszyn, Studzieniec, Bobrowice), 1981. Inw. 2189, CAG PIG, Warszawa
- Łyszkowska J. 1975. Dokumentacja szczegółowych badań grawimetrycznych. Temat Sulęcin, 1974 i 1975. Inw. 1865, CAG PIG, Warszawa.
- Maliszewska A., Jackowicz E., Kuberska M., Kiersnowski H. 2016. Skały permu dolnego (czerwonego spągowca) zachodniej Polski – monografia petrograficzna. *Prace Państwowego Instytutu Geolo*gicznego, 204.
- Maliszewska A., Kiersnowski H., Jackowicz E. 2003. Wulkanoklastyczne osady czerwonego spągowca dolnego na obszarze Wielkopolski. *Prace Państwowego Instytutu Geologicznego*, **179**, 1–59.
- Marciński J. 1971. Dokumentacja wynikowa otworu poszukiwawczego Grzmiąca-3 [zawiera kartę otworu] Inw. 110478, CAG PIG, Warszawa.
- Marciński J., Łysik H. 1972. Dokumentacja wynikowa otworu poszukiwawczego Grzmiąca-1 [zawiera kartę otworu] Inw. 114792, CAG PIG, Warszawa.
- Marciński J., Łysik H. 1971. Dokumentacja wynikowa otworu poszukiwawczego Cybinka-2 [zawiera kartę otworu] Inw. 110572, CAG PIG, Warszawa.
- Marciński J., Żurawik J., Łysik H. 1971. Dokumentacja wynikowa otworu poszuki-

wawczego Chlebów 1 [zawiera kartę otworu] Inw. 111071,CAG PIG, Warszawa.

- Markiewicz A. 2007. Naskórkowa struktura południowej części monokliny przedsudeckiej a zagospodarowanie utworów najstarszej soli kamiennej (Na1). *Gospodarka Surowcami Mineralnymi*, 23, 35–49.
- Markiewicz A. 2010. Morfotektonika rejonu Zielonej Góra. Zeszyty Naukowe Uniwersytetu Zielonogórskiego, 139, 81– 92.
- Markiewicz A., Kraińska A. 2002. Neotektoniczna reaktywacja struktur halotektonicznych a zaburzenia glacitektoniczne w strefach marginalnych zlodowaceń plejstoceńskich na przykładzie wzgórz Dalkowskich (SW Polska). Materiały IX Sympozjum Glacitektoniki, Zeszyty Naukowe Uniwersytetu Zielonogórskiego, 129, 123–142.
- Markiewicz A., Winnicki J. 2005. Plejstoceńska reaktywacja cienkopokrywowej struktury monokliny przedsudeckiej a strefy dużych zaburzeń glacitektonicznych w rejonie Zielonej Góry, Kożuchowa i Głogowa (SW Polska). Materiały VI Ogólnopolskiej Konferencji "Neotektonika Polski" Aktywne uskoki Europy Środkowej.
- Markiewicz A., Winnicki J. 2007a. Morfotektonika Wału Trzebnickiego (Śląskiego). Zeszyty Naukowe Uniwersytetu Zielonogórskiego, **134**, 113–131.
- Markiewicz A., Winnicki J. 2007b. Gravitational collapse in the Nysa Łużycka River Valley between Łęknica and Dübern (Polish-German borderland). Materiały VII Ogólnopolskiej Konferencji "Neotectonic Cross-Bordering the Western and Eastern European Platform, 183–184.
- Materzok W., Materzok R. 1966. Dokumentacja pomiarów średnich prędkości, odwiert: Świebodzin-3. Ś23 VS, CAG PIG, Warszawa.
- MIDAS, 2022. System Gospodarki i Ochrony Bogactw Mineralnych Polski https://geoportal.pgi.gov.pl/midas-web
- Miecznik J., Stefaniuk M. 2005. Projekt prac magnetotellurycznych w rejonie segmentu pomorskiego bruzdy śródpolskiej – etap I. Inw. 5677/2009; 1349/2005, CAG PIG, Warszawa.

- Mikołajków J., Sadurski A. 2017. Informator PSH Główne Zbiorniki Wód Podziemnych w Polsce, Państwowy Instytut Geologiczny Państwowy Instytut Badawczy, Warszawa.
- Musiatewicz M., Lisowski K. 1993. Dokumentacja półszczegółowych badań grawimetrycznych, temat: Zachodnia Polska obszar: Chojna – Międzyrzecz, 1990 – 1993. Inw. 4375/2013, CAG PIG, Warszawa.
- Nawrocki J. 1995. Skala magnetostratygraficzna dla utworów czerwonego spągowca, cechsztynu i pstrego piaskowca z obszaru Polski. *Przegląd Geologiczny*, 43, 1027–1029.
- Nawrocki J. 1997. Permian to Early Triassic magnetostratigraphy from the Central European Basin in Poland. *Earth Planetary Science Letters*, 152, 37 58.
- Oberc J. 1990. Monoklina przedsudecka i jej tło geologiczne. Materiały Konferencyjne Komitetu Tektonicznego KNG PAN: Problemy tektoniki Legnicko-Głogowskiego Okręgu Miedziowego, cz. 1, 7–14, CUPRUM, Wrocław.
- Okulus H. 1980. Sprawozdanie techniczne z pomiarów grawimetrycznych wykonanych w rejonie obszaru północnosudeckiego i perykliny Żar, 1979. Inw. 2051, CAG PIG, Warszawa.
- Olczak D. 1963. Karta otworu: Rybaki 5. Inw. 92309, CAG PIG, Warszawa.
- Olczak D. 1964. Karta otworu: Rybaki 14. Inw. 92310, CAG PIG, Warszawa.
- Olczak D. 1965. Pomiary geofizyczne otworu Świebodzin 2 + karta otworu. Inw. 83871, CAG PIG, Warszawa.
- Olczak D. 1966. Pomiary geofizyczne otworu Kosobudz 1 + karta otworu. Inw. 83873, CAG PIG, Warszawa.
- Olszewska K., Filipiak M. 2015. Dokumentacja geologiczna zlikwidowanego odwiertu Kosarzyn-8 (w miejsc. Kosarzyn, gm. Gubin, pow. krośnieński, woj. lubuskie). Inw. 4921/2015, CAG PIG, Warszawa.
- Oszczepalski S., Rydzewski A. 1987. Paleogeography and sedimentary model of the Kuperschiefer in Poland. *Lecture Notes in Earth Sciences*, **10**, 189–205.

- Paczyński B, Sadurski A. 2007. Hydrogeologia regionalna Polski, tom I- wody słodkie, Państwowy Instytut Geologiczny, Warszawa.
- Pasik J. 1974. Dokumentacja półszczegółowych badań magnetycznych. Temat: Monoklina Przedsudecka, 1974. Kat. M-164, Arch. Przedsiębiorstwa Badań Geofizycznych, Warszawa.
- Pawłowski A., Jankowski K., Zoła K. 1998. Dokumentacja geologiczna złoża ropy naftowej Kosarzyn-N. Dodatek nr 1. Inw. 593/99, CAG PIG, Warszawa.
- Pawłowski A., Zoła K. 2000. Dokumentacja geologiczna złoża ropy naftowej Kosarzyn-N. Dodatek nr 2. Inw. 1290/2000, CAG PIG, Warszawa.
- **Peryt T.M. 1978.** Charakterystyka mikrofacjalna cechsztyńskich osadów węglanowych cyklotemu pierwszego i drugiego na obszarze monokliny przedsudeckiej. *Studia Geologica Polonica*, **54**, 1–88.
- Peryt T.M. 1984. Sedymentacja i wczesna diageneza utworów wapienia cechsztyńskiego w Polsce zachodniej. *Prace Państwowego Instytutu Geologicznego*, 109, 1–80.
- Peryt T.M. 1990. Cechsztyński anhydryt górny (A1g) na obszarze polskiej części syneklizy perybałtyckiej. *Biuletyn Państwowego Instytutu Geologicznego*, **364**, 5–29
- Peryt T.M., Piątkowski T.S. 1976. Osady caliche w wapieniu cechsztyńskim zachodniej części syneklizy perybałtyckiej. *Kwartalnik Geologiczny*, **20**, 525–538
- Peryt T.M., Piątkowski T.S. 1977. Algal vadose pisoliths in the Zechstein Limestone (Upper Permian) of Poland. *Sedimentary Geology*, 19, 275–286.
- Petecki Z., Rosowiecka O. 2017. A new magnetic anomaly map of Poland and its contribution to the recognition of crystalline basement rocks. *Geological Quarterly* 61, 934-945.
- Peters K.E., Cassa M.R. 1994. Applied source rock geochemistry. [W]: The Petroleum System – from Source to Trap, [Red.]: Magoon L.B., Dow W.G., *AAPG Memoir*, **60**, 93–120.

- **Piątkowska-Kudła S. 1995**. Dokumentacja wynikowa otworu poszukiwawczego Grzmiąca 2 Inw. 133695, CAG PIG, Warszawa.
- **Piątkowska-Kudła S. 1996a.** Dokumentacja wynikowa otworu Kłopot 1. Inw. 133758, CAG PIG, Warszawa.
- **Piątkowska-Kudła S. 1996b.** Dokumentacja wynikowa odwiertu poszukiwawczego Rąpice 1, Rąpice 1A. Inw. DW-133806/2, CAG PIG, Warszawa.
- Piątkowska-Kudła S., Liberska H. 1996. Dokumentacja geologiczna w kat. C wraz z uzupełnieniem złoża ropy naftowej Radoszyn. Inw. 1756/96, CAG PIG, Warszawa.
- Piątkowska-Kudła S., Strzelecka D. 1997. Dokumentacja wynikowa otworu poszukiwawczego Grzmiąca 5 Inw. 134047, CAG PIG, Warszawa.
- Pisuła M., Ostrowski C. 1990. Dokumentacja półszczegółowych badań grawimetrycznych, temat: Gubin – Zielona Góra 1987-1989. Kat. G-569 PBG, CAG PIG, Warszawa.
- Pletsch T., Appel J., Botor D., Clayton C.J., Duin E.J.T., Faber E., Górecki W., Kombrink H., Kosakowski P., Kuper G., Kus J., Lutz R., Mathiesen A., Ostertag C., Papiernik B., Van Bergen F. 2010. Petroleum generation and migration. [W]: Petroleum Geological Atlas of the Southern Permian Basin Area. [Red.] Doornenbal J.G., Stevenson A.G., 225–253. EAGE Publications b. v., Houten.
- **Poborski J. 1960.** Cechsztyńskie zagłębie solne Europy Środkowej na ziemiach Polski. *Prace Instytutu Geologicznego*, **30**, 355–366.
- **Podemski M. 1973.** Sedymentacja cechsztyńska w zachodniej części monokliny przedsudeckiej na przykładzie okolicy Nowej Soli. *Prace Instytutu Geologicznego*, 71, 1–101.
- **Pokorski J. 1981**. Propozycja formalnego podziału litostratygraficznego czerwonego spągowca na Niżu Polskim. *Kwartalnik Geologiczny*, **25**, 41–58
- **Pokorski J. 1988.** Rotliegendes lithostratigraphy in north-western Poland. *Bulletin* of the Polish Academy of Sciences, Earth Sciences, **36**, 99–108.

- **Pokorski J. 1997.** Perm dolny (czerwony spągowiec). Litostratygrafia i litofacje. Formalne i nieformalne jednostki litostratygraficzne. [W]: Epikontynentalne perm i mezozoik w Polsce, [Red.]: Marek S., Pajchlowa M. *Prace Państwowego Instytutu Geologicznego*, **153**, 35–38.
- **Pomiary geofizyczne** otworu Świebodzin 3 + karta otworu. Inw. 83872, CAG PIG, Warszawa.
- **Potera J. 1989.** Dokumentacja wynikowa otworu poszukiwawczego Miłów 1. Inw. 131878, CAG PIG, Warszawa.
- Pożaryski W., Dembowski Z. 1983. Mapa geologiczna Polski i krajów ościennych bez utworów kenozoicznych, mezozoicznych i permskich, 1 : 1 000 000. Instytut Geologiczny, Warszawa.
- Reczek J. 1962. Opracowanie półszczegółowych badań grawimetrycznych w północnej części Monokliny Przedsudeckiej, 1962 r. Inw. 062/63, CAG PIG, Warszawa.
- Richter-Bernburg G. 1955. Stratigraphische Gliederung des deutschen Zechsteins. Z. dt. Geol. Ges., 105, 843–854.
- Semyrka R. 2013. Jakościowa i ilościowa charakterystyka petrofizyczna subfacji dolomitu głównego w strefach paleogeograficznych. *Gospodarka Surowcami Mineralnymi*, 29, 99–114.
- Semyrka R., Jarzyna J.J., Krakowska P.I., Semyrka G. 2015. Analiza statystyczna parametrów mikrofacji dolomitu głównego w granicznej strefie platformy węglanowej. *Gospodarka Surowcami Mineralnymi*, **31**, 123–140.
- Skompski S. 1988. Objaśnienia do szczegółowej mapy geologicznej Polski 1 : 50 000. Arkusz Rybocice (498). Państwowy Instytut Geologiczny, Warszawa.
- Słowakiewicz M., Gąsiewicz A. 2013. Palaeoclimatic imprint, distribution and genesis of Zechstein Main Dolomite (Upper Permian) petroleum source rocks in Poland: Sedimentological and geochemical rationales. [W]: Palaeozoic Climatic Cycles: Their Evolutionary and Sedimentological Impact, [Red.]: Gąsiewicz A., Słowakiewicz M., Geological Society of London, Special Publications, 376, 523– 538.

- Słowakiewicz M., Tucker M.E., Hindenberg K., Mawson M., Idiz E.F., Pancost R.D. 2016. Nearshore euxinia in the photic zone of an ancient sea: Part II The bigger picture and implications of understanding ocean anoxia. *Palaeogeography, Palaeoclimatology, Palaeoecology*, 461, 432–448.
- Sokolińska Z. 2000a. Mapa hydrogeologiczna Polski w skali 1 : 50 000, ark. Rybocice (498). Państwowy Instytut Geologiczny, Warszawa.
- Sokolińska Z. 2000b. Mapa hydrogeologiczna Polski w skali 1 : 50 000, ark. Rąpice (0534). Państwowy Instytut Geologiczny, Warszawa.
- Sokołowska J. 1965. Karta otworu Świebodzin-1. Inw. 68408, CAG PIG, Warszawa.
- Sokołowski J. 1967. Charakterystyka geologiczna i strukturalna obszaru przedsudeckiego. *Geologia Sudetica*, **3**, 297–367
- Solon J., Borzyszkowski J., Bidłasik M., Richling A., Badora K., Balon J., Brzezińska-Wójcik T., Chabudziński Ł., Dobrowolski R., Grzegorczyk I., Jodłowski M., Kistowski M., Kot R., Krąż P., Lechnio J., Macias A., Majchrowska A., Malinowska E., Migoń P., Myga-Piątek U., Nita J., Papińska E., Rodzik J., Strzyż M., Terpiłowski S., Ziaja W. 2018. Physico-geographicalmesoregions of Poland - verification and adjustment of boundaries on the basis of contemporary spatial data. *Geographia Polonica*, 91.
- Sowa D. 2018. Dokumentacja geologiczno-inwestycyjna złoża ropy naftowej Gryżyna. Inw. 7351/2019, CAG PIG, Warszawa.
- Stefaniuk M., Wojdyła M., Petecki Z., Pokorski J. 2008. Dokumentacja badań geofizycznych. Temat: Budowa geologiczna pokrywy osadowej i podłoża krystalicznego segmentu pomorskiego bruzdy śródpolskiej na podstawie kompleksowych badań geofizycznych (profilowań magnetotellurycznych). Etap I: 2007-2008. Inw. 1277/2009, CAG PIG, Warszawa.
- Strzelecka D. 1998. Dokumentacja wynikowa otworu poszukiwawczego Grzmiąca-7. Inw. 134213, CAG PIG, Warszawa.
- Szostak I., Blus R. 1971. Dokumentacja pomiarów ciężarów objętościowych i po-

rowatości skał, rok 1971. Inw. 43960,ObO/1269,CAG PIG, Warszawa.

- Szpetnar-Skierniewska A. 2019. Dokumentacja geologiczna sporządzona w przypadku likwidacji otworu wiertniczego Sosna-1 [miejsc. Drzewica, gm. Bytnica, pow. krośnieński, woj. lubuskie]. Inw. 5037/2020, CAG PIG, Warszawa.
- Szpetnar-Skierniewska A. 2017. Dokumentacja geologiczna z wykonania prac geologicznych na koncesji nr 6/2008/p na obszarze Cybinka niekończących się udokumentowaniem zasobów złóż kopalin (ropy naftowej i gazu ziemnego). Inw. 6825/2019, CAG PIG, Warszawa.
- Szpetnar-Skierniewska A., Krajewski D. 2017. Dokumentacja geologiczna z wykonania prac geologicznych na koncesji nr 8/2008/p na obszarze Torzym niekończących się udokumentowaniem zasobów złóż kopalin (ropy naftowej i gazu ziemnego). Inw. 5750/2020, CAG PIG, Warszawa.
- Sztromwasser E. 2003. Objaśnienia do szczegółowej mapy geologicznej Polski 1 : 50 000. Arkusz Krosno Odrzańskie (536). Państwowy Instytut Geologiczny, Warszawa.
- Sztromwasser E. 2005. Objaśnienia do szczegółowej mapy geologicznej Polski 1 : 50 000. Arkusz Torzym (500). Państwowy Instytut Geologiczny. Państwowy Instytut Geologiczny, Warszawa.
- Szyperko-Teller A. 1997. Formalne i nieformalne jednostki litostratygraficzne. Litostratygrafia i litofacje. Trias dolny (pstry piaskowiec). [W]: Epikontynentalne perm i mezozoik w Polsce, [Red.]: Marek S., Pajchlowa M. *Prace Państwowego Instytutu Geologicznego*, 153, 112–117.
- Tałuc S., Ciszewski S. 1962. Opracowanie półszczegółowych badań magnetycznych w rejonie monokliny przedsudeckiej, 1962. Kat. M-106 PBG, CAG PIG, Warszawa.
- Tokarski A. 1958. Poszukiwawcze zadania wiercenia Mogilno 1. Nafta, 14, 4–12.
- Urbański K., Skompski S. 2012. Objaśnienia do szczegółowej mapy geologicznej Polski 1 : 50 000. Arkusz Cybinka (499). Państwowy Instytut Geologiczny Państwowy Instytut Badawczy, Warszawa.
- Wagner R. 1987. Cechsztyn. W: Budowa geologiczna wału pomorskiego i jego pod-

łoża. Prace Instytutu Geologicznego, 119, 64–81.

- Wagner R. 1988. Ewolucja basenu cechsztyńskiego w Polsce. *Kwartalnik Geologiczny*, **32**, 33–51.
- Wagner R. 1994. Stratygrafia osadów i rozwój basenu cechsztyńskiego na Niżu Polskim. *Prace Państwowego Instytutu Geologicznego*, 146, 1–71.
- Wagner R. 2012. Mapa paleogeograficzna dolomitu głównego (Ca2) w Polsce. Państwowy Instytut Geologiczny – Państwowy Instytut Badawczy, Warszawa.
- Wagner R., Peryt T.M. 1997. Possibility of sequence stratigraphic subdivision of the Zechstein in the Polish Basin. *Geological Quarterly*, **41**, 457–474.
- Wagner R., Peryt T.M. 1998. O możliwości podziału cechsztynu na sekwencje stratygraficzne w basenie Polskim. *Prace Państwowego Instytutu Geologicznego*, 165, 129–146.
- Wagner R., Buniak A., Dadlez R., Grotek I., Kiersnowski H., Kuberska M., Kudrewicz R., Lis P., Maliszewska A., Mikołajewski Z., Papiernik B., Pokorski J., Poprawa P., Skowroński L., Słowakiewicz M., Szewczyk J., Wolnowski T. 2008. Zasoby prognostyczne, nieodkryty potencjał gazu ziemnego w utworach czerwonego spągowca i wapienia cechsztyńskiego w Polsce badania geologiczne. Inw. 2293/2009, Arch. CAG PIG, Warszawa.
- Wagner R., Piątkowski T.S., Peryt T.M. 1978. Polski basen cechsztyński. *Przegląd Geologiczny*, 26, 673–686.
- Waśkiewicz K., Kiersnowski H. 2020. • Systemy naftowe basenów permskich. Basen permski (czerwony spagowiec; dolomit główny). [W]: Pięcioletni plan rewaluacji rozpoznania stanu geologicznego kraju z wykorzystaniem nowoczesnych technik eksploracyjnych, szczególnie na większych głębokościach i w nowych strukturach geologicznych, pod kątem poszukiwań i wydobycia weglowodorów. Inw. 9530/2021, CAG PIG, Warszawa, 41–78.
- Wierzchowska-Kicułowa K. 1984. Budowa geologiczna utworów podpermskich

monokliny przedsudeckiej. *Geologia Sudetica*, **19**, 121–142.

- Wierzchowska-Kicułowa K. 1987. Charakterystyka geologiczna podłoża permu obszaru przedsudeckiego. *Kwartalnik Geologiczny*, 31, 557–568.
- Wierzchowska-Kicułowa K. 2007. Podłoże monokliny. Monografia KGHM Polska Miedź S.A. (wydanie II): 90–92, Lubin.
- Wojciechowska R. 2006. Baza danych GIS Mapy hydrogeologicznej Polski w skali 1 : 50 000 "pierwszy poziom wodonośny – występowanie i hydrodynamika", ark. Cybinka (0499). Państwowy Instytut Geologiczny, Warszawa.
- Wojciechowska R., Ruszkiewicz P. 2006. Baza danych GIS Mapy hydrogeologicznej Polski w skali 1 : 50 000 "pierwszy poziom wodonośny – występowanie i hydrodynamika", ark. Rybocice (0498). Państwowy Instytut Geologiczny, Warszawa.
- Wojtysiak B., Leszczyński M. 1995. Dokumentacja wynikowa otworu Kosarzyn-8. Inw. 133719, CAG PIG, Warszawa.
- Wolańska A., Leszczyński M. 2006. Dokumentacja prac geologicznych wykonanych na obszarze koncesji na poszukiwanie i rozpoznawanie złóż ropy naftowej i gazu ziemnego Grzmiąca – Cybinka. Inw. 916/2006, CAG PIG, Warszawa.
- Zachaś-Janecka J. 2011. Baza danych GIS Mapy hydrogeologicznej Polski w skali 1 : 50 000 "pierwszy poziom wodonośny – występowanie i hydrodynamika" ark. Toporów (0501). Państwowy Instytut Geologiczny, Warszawa.

- Zarębska B. 1994. Dokumentacja wynikowa odwiertu poszukiwawczego Radomicko-1. Inw. 133397, CAG PIG, Warszawa.
- Zembal M., Formowicz R., Brodziński I. 2004. Mapa Hydrogeologiczna Polski w skali 1 : 50 000 arkusz Czerwieńsk (537). Państwowy Instytut Geologiczny, Warszawa.
- Zoła K. 1999. Dokumentacja geologiczna złoża ropy naftowej Rybaki. Dodatek nr 4 (przeliczenie zasobów). Inw. 1288/2000, CAG PIG, Warszawa.
- Zoła K., Pyzik M. 1994. Dodatek nr 3 do dokumentacji geologicznej złoża ropy naftowej Rybaki. Inw. 1353/94, CAG PIG, Warszawa.
- Żelaźniewicz A., Aleksandrowski P., Buła Z., Karnkowski P.H., Konon A., Ślączka A., Żaba J., Żytko K. 2011. Regionalizacja tektoniczna Polski. Komitet Nauk Geologicznych PAN, Wrocław.
- Żelaźniewicz A., Nowak I., Achramowicz S., Czapliński W. 2003. The northern part of the Izera-Karkonosze block: a passive margin of the Saxothuringian terrane. [W]: Sudety Zachodnie od wendu do czwartorzędu, [Red.]: Ciężkowski W., Wojewoda J., Żelaźniewicz A., WIND, Wrocław: 17–32.
- Żurawik E., Tubielewicz D. 1972. Dokumentacja wynikowa otworu Koziczyn-1 [zawiera kartę otworu] Inw. 114147, CAG PIG, Warszawa.